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siRNAs regulate DNA methylation 
and interfere with gene and lncRNA expression 
in the heterozygous polyploid switchgrass
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Abstract 

Background:  Understanding the DNA methylome and its relationship with non-coding RNAs, including microRNAs 
(miRNAs) and long non-coding RNAs (lncRNAs), is essential for elucidating the molecular mechanisms underlying key 
biological processes in plants. Few studies have examined the functional roles of the DNA methylome in grass species 
with highly heterozygous polyploid genomes.

Results:  We performed genome-wide DNA methylation profiling in the tetraploid switchgrass (Panicum virgatum L.) 
cultivar ‘Alamo’ using bisulfite sequencing. Single-base-resolution methylation patterns were observed in switchgrass 
leaf and root tissues, which allowed for characterization of the relationship between DNA methylation and mRNA, 
miRNA, and lncRNA populations. The results of this study revealed that siRNAs positively regulate DNA methylation 
of the mCHH sites surrounding genes, and that DNA methylation interferes with gene and lncRNA expression in 
switchgrass. Ninety-six genes covered by differentially methylated regions (DMRs) were annotated by GO analysis as 
being involved in stimulus-related processes. Functionally, 82% (79/96) of these genes were found to be hypomethyl-
ated in switchgrass root tissue. Sequencing analysis of lncRNAs identified two lncRNAs that are potential precursors of 
miRNAs, which are predicted to target genes that function in cellulose biosynthesis, stress regulation, and stem and 
root development.

Conclusions:  This study characterized the DNA methylome in switchgrass and elucidated its relevance to gene and 
non-coding RNAs. These results provide valuable genomic resources and references that will aid further epigenetic 
research in this important biofuel crop.
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Background
Switchgrass (Panicum virgatum L.) is a warm season, 
perennial, C4 grass native to the North American prairie 
[1]. Switchgrass has been identified as one of the most 
promising feedstock grass species for biofuel produc-
tion [2]. There are two different ecotypes of switchgrass, 

upland and lowland, which are distinguished according 
to their natural habitats. The majority of upland ecotypes 
are octoploid (2n = 8x = 72) and most lowland ecotypes 
are tetraploid (2n = 4x = 36) [3, 4]. The tetraploid switch-
grass genome is comprised of two sets of closely related 
homeologous chromosomes, and it is highly heterozy-
gous due to the outcrossing nature of the species [5, 6].

DNA methylation is an epigenetic mechanism that 
influences molecular processes pertaining to plant 
growth and development [7], including immunity to virus 
infection [8], gene imprinting [9], transposon silencing 
[10, 11], and embryogenesis [12]. Methylation on the 
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cytosine of three different nucleotide patterns is com-
mon in plants: CG, CHG, and CHH (H = A, T, or C) 
contexts [13]. DNA methylation can induce repression 
or activation of genes and transposable elements (TEs) 
in response to environmental and developmental signals. 
Therefore, characterization of cytosine methylation pat-
terns can provide valuable information that allows for a 
greater understanding of the regulation of gene expres-
sion, and the dynamics of TEs in the shaping of the plant 
genome architecture.

Non-coding RNAs are RNA molecules that are not 
translated into proteins. There are two major classes of 
non-coding RNAs: microRNAs (miRNAs) and long non-
coding RNAs (lncRNAs). MiRNAs are small sequences 
between 20 and 24 nt in length. These molecules often 
regulate gene expression post-transcriptionally by either 
mRNA cleavage or translation repression [14, 15]. LncR-
NAs are transcripts of more than 200 nucleotides that 
have numerous functions within the plant cell. They have 
been shown to target promoters upstream of genes, func-
tion as precursors of small RNAs, generate alternatively 
spliced transcripts, produce endogenous small inter-
fering RNAs, and form RNA–protein complexes [16]. 
Non-coding RNAs have been shown to be closely related 
to DNA methylation. It has been reported that siRNAs 
can increase CHH methylation in many plant species 
through the RNA-dependent DNA methylation (RdDM) 
pathway [17–20]. More recently, lncRNAs have also been 
demonstrated to have key roles in the regulation of DNA 
methylation in mammals [21, 22]. For example, the long 
non-coding ecCEBPA transcript, encoded within the 
CEBPA gene, binds to DNMT1 and limits methylation 
of the CEBPA gene [21]. Alternatively, the H19 lncRNA 
alters genome-wide DNA methylation patterns by regu-
lating S-adenosylhomocysteine hydrolase in mammals 
[22]. To date, the relationship between lncRNAs and 
DNA methylation in plants, especially in C4 grasses, has 
not been extensively studied [23, 24].

C4 grasses are the most prominent in the grass family 
and include some of the most economically important 
crop species such as maize (Zea mays), great millet (sor-
ghum bicolor), sugarcane (Saccharum officinarum), and 
switchgrass. Primary production of these crops annually 
accounts for roughly 25% of arable land [25]. Currently, 
DNA methylation patterns have been characterized 
in several C3 grasses such as rice (Oryza sativa) [26], 
Brachypodium distachyon [27], and wheat [28]; however, 
few DNA methylation studies have been performed on 
C4 grasses, such as switchgrass, which usually contain 
highly heterozygous and polyploid genomes. Thus far, 
DNA methylation studies in model plants, such as Arabi-
dopsis thaliana, rice, and B. distachyon, have generated 
several conserved rules: (1) mCG is dominating among 

the three methylated contexts; (2) methylation may act 
as a mechanism for controlling gene expression, but the 
methylation variation depends on types of contexts and 
gene region; and (3) RdDM pathways are highly associ-
ated with mCHH [17, 26, 27, 29, 30]. Since switchgrass 
is a polyploid, it would be interesting to investigate if it 
has unique methylation patterns that are different from 
the general rules identified in other model plant species.

In this study, we performed global DNA methylation 
sequencing on leaf and root tissues of tetraploid switch-
grass (cv. Alamo) and profiled expression of mRNAs, miR-
NAs, and lncRNAs in the leaf tissue. Our results revealed 
that siRNAs positively regulated DNA methylation at the 
mCHH sites surrounding genes and that DNA methyla-
tion may interfere with both gene and lncRNA expression 
in the polyploid switchgrass genome. In addition, we iden-
tified a small subset of genes hypomethylated in the root 
tissue that were characterized by differentially methylated 
regions (DMRs), which could potentially be involved in 
stimulus-related GO processes. Finally, we predicted two 
precursors (lncRNAs) of miRNAs that might function in 
cellulose biosynthesis, stress regulation, and stem and 
root development. Overall, this study described the DNA 
methylome of switchgrass and its relation to gene and 
non-coding RNAs. These results provide a platform for 
future epigenetic studies in biofuel crops.

Results
Single‑base resolution landscapes of DNA methylation 
in switchgrass
Whole-genome bisulfite sequencing was applied to 
genomic DNA of switchgrass extracted from leaves and 
roots. In total, 411 million reads were generated for 
switchgrass leaf tissue and 392 million reads were gener-
ated for switchgrass root tissue. Of the reads generated in 
this study, 334 (81%) million reads from the leaf sample 
and 304 (77%) million reads from the root sample could 
be aligned to the reference genome of switchgrass (V4.1) 
(Additional file 1: Table S1). For both tissues, the effective 
coverage rate of cytosine was analyzed at the chromo-
some level, as well as in genic and repetitive regions, to 
evaluate the quality of the methylation data (Additional 
file 2: Data S1). The effective coverage rates of chromo-
somes ranged between 75 and 85%, whereas the cover-
age rates of gene regions ranged between 82 and 87%. For 
the repetitive regions, low complexity repeats (cryptic, 
tandem, and interspersed repeats) had coverage rates 
between 56 and 64%, and the remaining repetitive ele-
ments had coverage rates ranging from 69 to 86% (Addi-
tional file 2: Data S1). In addition, the sequencing depths 
of the leaf and root samples were calculated to be 29X 
and 26X, respectively. These numbers suggest that the 
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amount of detected cytosines reached saturation (Addi-
tional file  1: Table  S1 and Additional file  3: Figure S1). 
Overall, the methylation data generated in this experi-
ment had a highly effective coverage rate (~ 80%) of cyto-
sine. The sequencing depths indicated a sufficient level 
for further methylation analysis.

A total of 66 and 77 million methylcytosines (mCs) 
were identified in the genomic DNA isolated from 
switchgrass leaves and roots, respectively. For the leaf 
tissue, the cytosine methylation levels were higher at the 
mCG sites (60%) than those at mCHG (40%) and mCHH 
(4%) sites (Table  1). The data from the root tissue dis-
played similar patterns of mCG (59%) and mCHG sites 
(39%), and increased mCHH sites (7%) (Table  1). Most 
of the mCs identified in this study were located in unan-
notated intergenic and TE regions (Fig.  1a). Most mCG 
and mCHG sites were either highly methylated (meth-
ylation levels > 80%) or lowly methylated (methylation 
levels < 10%). These sites shared similar patterns in both 
tissues. Most mCHH sites, however, only displayed low 
methylation levels (< 15%) (Fig.  1b). Interestingly, the 
methylation levels of the intronic regions were higher 
than the levels of other regions (Fig. 1c).

A chromosome-scale view of the methylation sites 
and their levels was generated from the sequencing data 
(Fig.  1d and Additional file  4: Figure S2). It was discov-
ered that the terminal regions of the chromosomes had a 
lower level of methylation at mCG and mCHG sites while 
methylation at mCHH sites exhibited a more flat distri-
bution pattern.

Methylation across the three types was also found to 
vary for different plant species (Fig.  1e and Additional 
file  5: Table  S2). For each species analyzed, mCG and 
mCHG sites had higher methylation levels across the 
genomes than mCHH sites, which were universally the 
lowest (< 6%). Specifically, maize and Arabidopsis had the 
highest and lowest proportion of mCG (85%) and mCHG 

(10%), respectively. For the four Poaceae plants examined 
in this study, the levels of mCG and mCHG were higher 
in switchgrass than B. distachyon and rice, but lower than 
similar sites in maize (Fig. 1e).

DNA methylation profiles in genic and transposable 
element rich regions
Methylation patterns in the protein-coding genes were 
examined by analyzing the three common methyla-
tion contexts across the gene body regions and the 2-kb 
regions flanking the genes (Fig.  2a, b). Relatively high 
methylation levels were discovered on the CG sites, fol-
lowed by the CHG and CHH sites in the genic regions 
(Fig.  2a). Interestingly, the 5′ flanking region upstream 
of the genes exhibited low levels of methylation that 
increased at the mCG and mCHG sites near the start of 
the coding sequence but subsequently decreased across 
the gene body. Another region of highly methylated 
region for these mCG and mCHG sites was observed 
near the point of transcription termination; however, 
lower levels of methylation were then found in the 3′ 
flanking region (Fig. 2a, c).

The methylation patterns of TEs were also examined 
similarly to the genic regions and included both up- and 
downstream regions (Fig.  2b). The average methyla-
tion level of TEs was higher than that of protein-coding 
genes (Fig.  2a–c). The mCG and mCHG sites showed a 
similar trend where the methylation levels were much 
higher at the start and end point of transcription than in 
both the TE gene body and flanking regions. The meth-
ylation levels of mCHH sites were similar at the start 
and end points, as well as across the body and flanking 
regions, for all examined TEs (Fig. 2b). Previous reports 
have suggested that methylation levels of CG and CHG 
are positively correlated with genome size in plants [17], 
which was re-confirmed in this study using different set 
of plant genomes including switchgrass (Additional file 6: 
Figure S3). In addition, it has been shown that prolifera-
tion of TEs contributes to the genome size [31]. Several 
reports, along with the data generated in this study, have 
discovered that the average methylation levels in TEs are 
higher than in the genic regions (Fig. 2a–c) [19, 20, 32]. 
Therefore, TE methylation levels contribute to the over-
all genome methylation levels in plants and regulation of 
these levels may positively correlate with plant genome 
sizes.

To further characterize the methylation patterns within 
TEs, the methylation trends of ten major families of 
TEs were compared. These TEs were grouped into two 
classes: class I (retrotransposons including Copia, Gypsy, 
LTR-Other, LINE, and SINE), and class II (DNA transpo-
sons including DNA-Other, hAT, MULE-MuDR, EnSpm, 
and Stowaway) (Fig.  3a–d). While the methylation 

Table 1  The number of  epigenetically modified sites 
and  the  estimated proportion of  the  genome methylated 
according to  three methylation contexts in  leaf and  root 
tissues of switchgrass

mCG mCHG mCHH

Leaf

 Number of modified sites 29,369,883 23,637,970 13,739,344

 Proportion of the genome (%) 44.00 35.41 20.58

 Methylation level (%) 60.34 40.06 4.16

Root

 Number of modified sites 30,097,757 23,937,098 22,509,824

 Proportion of the genome (%) 39.32 31.27 29.41

 Methylation level (%) 59.35 38.95 6.67
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distributions of the ten TE families were different, they 
all displayed a similar pattern with obviously higher 
methylation levels in body regions than flanking regions. 
For the class I TEs, significantly higher methylation levels 
were detected on mCG and mCHG sites than on mCHH 
sites (Fig. 3a, b). In addition, the mCG and mCHG posi-
tions were hyper-methylated in the body regions of all 

class I TEs, while the mCHH levels were equally meth-
ylated to those in the up- and downstream regions in 
Copia, Gypsy, and LINE. The mCHH sites were found 
to be hyper-methylated in the body regions of Copia and 
Gypsy. For the class II TEs, the levels of mCG and mCHG 
were also higher than mCHH (Fig. 3c, d). In comparison 
with the class I TEs, the class II TEs methylation patterns 

Fig. 1  DNA methylation levels of three methylated contexts (mCG, mCHG, and mCHH) and distribution in the leaf and root tissues of switchgrass. 
a The percentage of methylated cytosine sites distribution of mCG, mCHG, mCHH in genes, intergenic regions, and TEs. b Distribution of the 
methylation levels in each methylated context (the x-axis indicates the methylation level is divided into ten bins from 0 to 100%, and the y-axis 
represents methylation levels in each bin). c Methylation level in different parts of gene region (Exon; Intron; Five_UTR; Three_UTR). d Methylation 
level in 80-kb windows throughout chromosome 1a in the leaf tissue of switchgrass. The red line means ‘−’ strand, and the blue line means ‘+’ 
strand. e The methylation levels of nine different species shown in Additional file 5: Table S2
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showed a significant increase in methylation levels at all 
three methylation contexts across the DNA transposon 
gene body rather than in the flanking regions, despite 
mCHH being slightly elevated in the body regions of 
hAT and MULE-MuDR (Fig.  3c, d). The levels of mCG 
and mCHG were overall higher in class I than class II TEs 
(Additional file 7: Figure S4; Additional file 8: Table S3). 
Transposition of non-LTR retrotransposons (LINE and 
SINE) is rarely observed in plants, indicating that these 

retroelements are inactive [33]. This could be attributed 
to the high methylation levels of mCG and mCHG sites 
observed in both LINE and SINE (Fig. 3b).

DNA methylation differences between leaf and root tissues 
in switchgrass
To identify global differentially methylated DNA between 
leaf and root tissues, the methylation levels of both genic 
and TE regions were compared. The analysis of these two 

Fig. 2  DNA methylation profiles and levels of gene and TE regions in leaf and root tissues of switchgrass. a DNA methylation patterns in gene 
regions. b DNA methylation patterns in TE regions. The average methylation level for each 100-bp interval is plotted. The dashed lines for gene 
and TE regions indicate the transcriptional start (left) and end (right) sites. AL and AR indicate leaf and root tissues, respectively, in switchgrass. 
c Comparison of DNA methylation levels between leaf and root tissues of switchgrass in gene and TE body and their flanking regions (2-kb), 
respectively. * means the p < 0.05. ** means the p < 0.01

Fig. 3  DNA methylation profiles and levels of class I and class II TEs in leaf and root tissues of switchgrass. a, b Average methylation level 
distribution over class I TEs (Retrotransposons; Copia, Gypsy, LTR-Other, LINE, and SINE). c, d Average methylation level distribution over class II TEs 
(DNA transposons; DNA transposons including DNA-Other, hAT, MULE-MuDR, EnSpm, and Stowaway). “−”, B” and “+” mean upstream (2-kb), body 
and downstream (2-kb) regions of TEs, respectively. AL and AR indicate leaf and root tissues, respectively, in switchgrass. e–g comparison of DNA 
methylation levels in Class I and Class II TEs between leaf and root tissues of switchgrass in the body and 2 kb-flanking regions. * means the p < 0.05, 
and ** means the p < 0.01. The red asterisk means hyper-methylation in the leaf tissue, and the green asterisk means hyper-methylation in the root 
tissue
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genomic components was further divided into upstream, 
body, and downstream regions (Fig. 2c; Additional file 9: 
Table S4). In the genic regions, the mCG and mCHG lev-
els were significantly higher in leaves compared to roots, 
whereas the mCHH levels were significantly lower in 
leaves. In the TE regions, mCG and mCHG displayed no 
significant methylation differences between the leaf and 
root tissue. However, hypomethylated mCHH sites were 
observed in the TE body and flanking regions in the leaf 
tissue (Fig.  2c; Additional file  9: Table  S4). Therefore, 
there is a tissue-specific regulation pattern of DNA meth-
ylation in the genic regions in switchgrass. These results 
are consistent with those found in Arabidopsis, Norway 
spruce (Picea abies), and castor bean (Ricinus communis) 
[17, 20, 34].

Differential methylation of the two TE classes was also 
observed between the leaf and root tissues in the TE 
body and flanking regions (Fig. 3e–g; Additional file 10: 
Table  S5). For the mCG and mCHG sites in both TE 
classes, no significant methylation difference was identi-
fied between the leaf and root tissues (Fig. 2c); however, 
significant differences were detected when the methyl-
ated TEs were annotated into 15 regions (five regions per 
upstream, body, and downstream regions) for the two 
classes. For the class I TEs, four regions displayed signifi-
cant mCG changes in leaves compared to roots, including 
two hypomethylated and two hyper-methylated regions. 
In addition, four regions were CHG hyper-methylated 
and all regions were CHH hypomethylated (Fig.  3e–g; 
Additional file  10: Table  S5). For the class II TEs, three 
regions displayed significant CG hypomethylation and 
two regions were significantly CHG hypomethylated. All 
regions were CHH hypomethylated for this class in leaf 
tissue (Fig. 3e–g; Additional file 10: Table S5).

Differential methylation regions (DMRs) play an impor-
tant role for epigenetic methylation modifications across 
plant species [35]. In this study, the DMRs were analyzed 
for switchgrass through a sliding window by subtract-
ing the leaf methylation loci from the root methylation 
loci. A total number of 1,480,569 DMRs were discov-
ered, and the number of identified CHH DMRs (574,126) 
was larger than that for CG DMRs (490,017) and CHG 
DMRs (416,426) (Fig.  4a). Most mCG DMRs (80.29%) 
were hyper-methylated, and nearly half of mCHG DMRs 
(55.39%) were hyper-methylated in the leaf tissue. Sur-
prisingly, almost all mCHH DMRs (99.59%) were hypo-
methylated in the leaf tissue (Fig. 4b).

Plant roots are essential for responding to abiotic stress 
stimuli and must quickly react to environmental changes 
by controlling key stress-related genes [36, 37]. Previous 
reports have showed that root and leaf tissues were dif-
ferently methylated [38–41]. To detect differential meth-
ylation modifications between leaf and root tissues in 

switchgrass, we applied GO annotation towards genes 
covered by the DMRs (p < 0.05; Additional file  11: Data 
S2). The enriched molecular processes were different 
among all three methylation contexts and the locations 
of the DMRs within genes (Fig.  4c; Additional file  11: 
Data S2). We identified 96 genes covered by the DMRs 
that were involved in various response-related processes 
including response to stimulus (GO:0050896), response 
to abiotic stimulus (GO:0009628), regulation of response 
to stimulus (GO:0048583), response to temperature stim-
ulus (GO:0009266), and response to cold and freezing 
(GO:0009409 and GO:0050826) (Additional file 12: Data 
S3; Additional file 11: Data S2; Fig. 4c). Eighty-nine genes 
were covered by downstream DMRs on the mCG sites 
and one gene was covered by mCHG and mCHH DMRs 
in the upstream and downstream regions, respectively. 
For the other six genes, three were covered by mCHG 
DMRs in the upstream region and three were covered 
by mCHH DMRs in the downstream region. Majority 
of these genes (82%, 79/96) were hypomethylated in the 
root tissue, suggesting this subset of 79 genes may func-
tion in stress-related pathways by methylation modifica-
tion. Additionally, 148 genes were identified that function 
related to oxidation–reduction processes (highlighted 
in red and yellow in Additional file 13: Figure S5). These 
genes were covered by mCHH DMRs in both the flanking 
and body regions (Fig.  4c and Additional file  13: Figure 
S5), and all were found to have CHH hyper-methylation 
in the root (Additional file 14: Data S4).

Effects of DNA methylation on gene expression
To further determine whether DNA methylation influ-
ences gene expression in switchgrass, total RNAs were 
extracted from the same sets of leaf samples and sub-
jected to RNA-sequencing. A total of 150,545 tran-
scripts were assembled from the RNA-seq data and 
these transcripts were grouped into four categories 
according to the criteria of Lu et  al. [42]. These cat-
egories included a non-expressed group (reads per 
kilobase per million reads mapped [RPKM] ≤ 1), a low-
expressed group (1 < RPKM ≤ 10), a middle-expressed 
group (10 < RPKM ≤ 100), and a high-expressed group 
(RPKM > 100) (Additional file 15: Table S6 and Fig. 5a–c).

In the 2-kb regions upstream and downstream of genes, 
the category of non-expressed gene group contained the 
highest levels of mCG. Alternatively, the methylation 
levels at this site were the lowest for the high-expressed 
gene group (Fig. 5a). This indicates a negative association 
between mCG levels and gene expression in the flank-
ing regions (Fig.  5). In contrast, the mCG levels found 
to occur in the gene body regions were positively corre-
lated to the gene’s expression level (Fig. 5a). For mCHG, 
the methylation levels in the gene body and downstream 
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regions were found to be negatively correlated with 
gene expression. Correspondingly, the non-expressed 
gene category contained the highest mCHG levels in the 
upstream, gene body, and downstream regions (Fig.  5b). 
For the mCHH sites, methylation levels in the upstream 
region close to transcription starting sites (TSS) were pos-
itively correlated with gene expression (Fig. 5c). There was 
a negative association, however, between gene expression 
and mCHH levels in the gene body regions, although the 
changes in methylation levels were minimal across the 
different categories for this region (Fig.  5c). No obvious 
relation was observed between mCHH levels in the down-
stream region (2-kb or less) of genes or in the proximity 
close to transcription termination sites (TTS) (Fig. 5c).

Spearman correlation analysis was performed to dis-
cern statistically the relationships between DNA meth-
ylation and gene expression within the 2-kb flanking 
regions of the protein-coding genes [43] (Fig. 5d–f; Addi-
tional file  16: Table  S7). The results from that analysis 
found similar associations between DNA methylation 
levels and gene expression patterns (Fig.  4a–c). For the 
mCG sites, there was a significantly different positive 
correlation of methylation across the gene body region 
(rho = 0.279, p = 2.25E −267), whereas mCG in the 
upstream (rho = − 0.080, p = 2.42E−51) and downstream 
(rho = − 0.191, p = 2.02E−289) regions exhibited a signif-
icantly different negative correlation (Fig. 4d; Additional 
file  16: Table  S7). The mCHG sites were found to be 

Fig. 4  Different methylation regions between leaf and root tissues in switchgrass. a DMR numbers of three cytosine contexts. b Proportions of 
hyper- and hypo- DMRs in CG, CHG, and CHH contexts for the leaf tissue. c Biological processes for genes covered by DMRs in the flanking (2 kb) 
and gene body region in the GO annotation. Different color words and numbers showed the biological process and gene numbers, respectively. 
The same color represents the same biological process
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negatively and significantly correlated with gene expres-
sion in the body and flanking regions; however, the abso-
lute rho of the upstream (rho = − 0.027, p = 5.25E − 07) 
and body regions (rho = − 0.045, p = 1.14E − 17) were 
lower than that of the downstream regions (rho = − 0.198, 
p = 2.71E − 311). This suggests a weaker correlation 
between CHG methylation and gene expression in the 
upstream and body regions than in the downstream 
regions (Fig. 5e; Additional file 16: Table S7). For mCHH 
sites, the upstream region exhibited a positive and signifi-
cant correlation (rho = 0.078, p = 5.05E -47), whereas the 

gene body and downstream regions displayed negative 
and significant correlations (rho = − 0.068, p = 7.6E−39 
in the body; rho = − 0.107, p = 6.84E−92 in the down-
stream) (Fig.  5f ). Regression analysis, based on a zero 
hurdle model, was conducted to verify the associations 
between DNA methylation and gene expression [44]. 
Those results found that the mCG sites of the gene body 
and the mCHH sites of upstream regions were signifi-
cantly and positively associated with gene expression 
(model coefficient = 0.01255, p = 2.83E−244 for the mCG 
sites; model coefficient = 0.02431, p = 1.63E−41 for the 

Fig. 5  Effect of DNA methylation of mCG (a), mCHG (b), and mCHH (c) on global gene expression in switchgrass. X-axis indicates distance from 
2-kb upstream to 2-kb downstream, and y-axis indicates methylation level (%). TSS and TTS means transcript start site and transcript terminate site, 
respectively. Red, blue, green, and purple colors mean high-expressed group, middle-expressed group, low-expressed group, and non-expressed 
group, respectively. d–f The Spearman analysis between DNA methylation, and gene expression in mCG (d), mCHG (e), and mCHH (f) sites, 
respectively. rho > 0, means positive correlation; rho < 0, means negative correlation
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mCHH sites). Other methylated regions, which had zero 
model coefficients less than 0, had negative associations 
with gene expression. The predictivity of the regression 
model was tested using a tenfold cross-validation method 
[45] and generated small positive Q2 values, suggesting 
a limited ability of the model to predict gene expression 
(Additional file  17: Table  S8). This is expected as gene 
expression is regulated by a number of different genetic 
and environmental factors interacting with each other.

Collectively, the Spearman and regression analyses 
determined that the mCG and mCHH sites were posi-
tively correlated with gene expression in the gene body 
and upstream regions, respectively. The other regions 
analyzed exhibited negative correlations. Despite these 
results, most regions had very weak correlations accord-
ing to previously established criteria (www.stats​tutor​.ac.
uk/resou​rces/uploa​ded/spear​mans.pdf; the criteria ‘very 
weak’ was defined as the absolute value of rho < 0.2) in 
the Spearman analysis. Regardlessly, these weak correla-
tions supported all of the relationships predicted through 
RNA-seq analysis with the exception that no association 
was found in the downstream region for mCHH sites 
(Fig. 5a–c).

mCHH is positively correlated with siRNA expression 
in genic regions
siRNAs can direct the de novo methylation of cyto-
sine of complementary DNA sequences [46, 47]. In this 
study, switchgrass miRNAs were profiled using high-
throughput sequencing of leaf tissue to elucidate the 
relationship between DNA methylation and siRNA 
expression. Switchgrass siRNAs were extracted from 
the miRNA data. The 24-nt class was the most abundant 

group (Additional file  18: Figure S6). The 24-nt siRNAs 
were mapped to the switchgrass reference genome, and 
the average methylation levels in the regions mapped 
with or without a siRNA were calculated (Fisher’s exact 
test, p < 0.05; Additional file  19: Table  S9). The levels of 
mCG, mCHG, and mCHH in the siRNA-covered regions 
were significantly (p < 0.01) higher than in the regions not 
targeted by any siRNAs (Fig.  6a). Therefore, these three 
methylation sites might positively correlate to siRNAs on 
a whole-genome scale.

Spearman correlation analysis was employed to further 
understand if the relationship between siRNA and DNA 
methylation occurs within the gene body and the 2-kb 
flanking regions surrounding the genes (Fig.  6b; Addi-
tional file 20: Table S10). The mCG sites exhibited a posi-
tive and significant correlation in the gene body region 
(rho = 0.044, p = 1.68E−07), but negative correlations in 
the upstream (rho = − 0.085, p = 2.77E−46) and down-
stream regions (rho = − 0.184, p = 3.26E−192). Similarly, 
the mCHG sites were found to have positive and signifi-
cant correlations between siRNA and DNA methylation 
in the gene body region (rho = 0.185, p = 1.39E−110), 
and a negative correlation in the downstream flanking 
region (rho = − 0.035, p = 2.56E−08). No correlation 
between the two elements was determined for this site 
for the upstream gene region (p > 0.05). In contrast, the 
gene body (rho = 0.228, p = 3.42E−214), as well as the 
flanking regions (upstream: rho = 0.253, p = 1.02E−171; 
downstream: rho = 0.317, p = 2.02E−115), were found to 
have positive and significant correlations at the mCHH 
sites. Regression analysis was conducted based on a neg-
ative binomial model [44] to validate these relationships. 
For mCG sites, regression analysis identified positive and 

Fig. 6  Association between 24-nt siRNA and DNA methylation in switchgrass. a Comparison of DNA methylation levels between siRNA uniquely 
mapping region and without that region in the whole genome-scale. ** represents highly significant difference (p < 0.01). b The Spearman analysis 
between DNA methylation, and siRNA expression surrounding genic region. rho > 0, means positive correlation; rho < 0, means negative correlation. 
Up, body, and down mean upstream, body, and downstream regions of genes

http://www.statstutor.ac.uk/resources/uploaded/spearmans.pdf
http://www.statstutor.ac.uk/resources/uploaded/spearmans.pdf
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significant correlations in the gene body (model coef-
ficient = 0.00845, p = 1.84E−69) and upstream regions 
(model coefficient = 0.00177, p = 6.52E−11), and a 
negative and significant correlation in the downstream 
region (model coefficient = − 0.00412, p = 1.27E−46). 
The mCHG sites displayed positive correlations in the 
upstream and body regions (model coefficient = 0.00558, 
p = 2.07E−60 for the upstream region; model coef-
ficient = 0.00835, p = 1.98E−33 for the body region); 
however, there was no significant correlation in the 
downstream region (p > 0.05). In contrast, mCHH sites 
in all regions exhibited positive and significant correla-
tions (model coefficient > 0, p < 0.05). Through the tenfold 
cross-validation analysis, the model showed a limited 
power (small positive Q2 values) to predict the siRNA 
expression (Additional file 21: Table S11).

Collectively, the levels of mCHH were positively and 
significantly correlated with siRNA expression in both 
the gene body and flanking regions. The mCHH sites had 
overall higher correlation rho than the mCG and mCHG 
sites in the Spearman analysis (Fig. 6b). Taken together, 
these results suggest that RdDM plays a critical role in 
directing formation of mCHH in switchgrass.

Identification of long non‑coding RNAs and their negative 
relation to DNA methylation
LncRNAs have been shown to be closely associated with 
DNA methylation [21]. A total of 9244 lncRNAs were 
identified in the leaf tissue. These lncRNAs ranged in 
length from 200 base pair (bp) to 3023 bp with an average 
of 399 bp. The lncRNAs were found to be close to adja-
cent genes and had an average distance of 12,632 bp away 
from their flanking genes. This number is higher than 
that found in similar studies for rice (871 bp) and maize 
(6761 bp) [48]. The switchgrass lncRNAs could be classi-
fied into six groups, the majority of which were classified 
as the intergenic group (8217; 88.89%). This was followed 
by the bidirectional (470; 5.08%) and antisense groups 
(381; 4.12%). The rest of the lncRNAs (< 100) were clas-
sified into three additional small groups: intronic sense 
(1.07%), sense (0.77%), and intronic antisense (0.06%) 
(Additional file 22: Figure S7). To determine if the switch-
grass lncRNAs have homologous genes in rice and maize, 
the identified 9244 lncRNAs were BLAST against 8594 
rice and 4403 maize lncRNAs in CANTATAdb (http://
canta​ta.amu.edu.pl/index​.html#about​) [49]. Surprisingly, 
only 63 (0.68%) and 308 (3.33%) switchgrass lncRNAs 
were found to have homologous genes in rice and maize, 
respectively. Therefore, most of the lncRNAs identified in 
this study are unique to switchgrass. The identified lncR-
NAs were then BLAST against the Rfam family database 
(http://rfam.xfam.org/) [50]. Seven lncRNAs (Additional 
file  23: Table  S12) were found to belong to the HAR1A 

[51], Xist_exon1 [52], SOX2OT_exon2 [53], H19_3 [54], 
ZEB2_AS1_2 [55], and RFPL3 [56] non-coding RNA 
families, which have been characterized in animal and 
human systems [57]. The function of these seven lncR-
NAs in plants, however, still needs to be evaluated. The 
lncRNAs were aligned to miRbase (v21). Two lncRNAs, 
TCONS_00103604 and TCONS_00155383, were identi-
fied that could potentially be the precursors of miR169 
and miR171, respectively (Additional file 24: Table S13). 
According to the gene annotations of these miRNA tar-
gets, three pectinesterase inhibitor genes are targeted by 
miR169 and an additional two genes are believed to be 
involved in responses to stressful conditions. The genes 
targeted by miR171 were primarily predicted to be Scare-
crow (SCR) genes (Additional file 24: Table S13).

DNA methylation allows for an organism to quickly 
respond to environmental stimuli by altering levels of 
mRNA expression [58]. LncRNAs have structural and 
functional regulations similar to mRNAs [59–61]. Thus, 
the expression of lncRNAs might also be regulated by 
DNA methylation. The 9244 switchgrass lncRNAs were 
classified into four groups based on their expression lev-
els (high-expressed group, middle-expressed group, low-
expressed group, and non-expressed group) using the 
same criteria as shown in Fig. 4a–c [42]. DNA methyla-
tion association patterns at mCG and mCHH sites were 
found to be different between mRNA and lncRNA genes. 
In general, the non-expressed lncRNA group was hyper-
methylated on the mCG and mCHG sites, which was 
not found for the mRNA genes (Figs. 5a, b, 7a, b). In the 
upstream flanking region, the non-expressed lncRNAs 
displayed the highest mCG levels. In contrast, the high-
expressed lncRNAs were hypomethylated at this site 
(Fig. 7). These results suggest that mCG in the upstream 
flanking region might be negatively associated with gene 
expression of lncRNAs (Fig.  7a). In the gene body and 
downstream flanking regions, the non-expressed group 
exhibited the highest methylation levels, and the high-
and middle-expressed lncRNAs displayed similar meth-
ylation patterns (Fig. 7a). Additionally, the mCHG sites of 
lncRNAs had comparable patterns with mRNAs, and the 
mCHG levels in both the flanking and body regions were 
found to be negatively associated with gene expression 
(Figs. 5b, 7b). In the gene body region, mCHH levels were 
determined to be negatively associated with gene expres-
sion; however, this was not found to be true in the flank-
ing regions (Fig. 7c).

We also performed Spearman and regression analysis 
(based on a zero hurdle model) to verify the predicted 
relationships of lncRNAs within the 2-kb flanking 
regions (Fig. 7d–f; Additional file 25: Table S14; Addi-
tional file 26: Table S15). For all three methylation con-
texts, these two different statistical approaches both 

http://cantata.amu.edu.pl/index.html%23about
http://cantata.amu.edu.pl/index.html%23about
http://rfam.xfam.org/
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showed that methylation levels had significant negative 
correlations to lncRNA expression in the 2-kb flank-
ing regions as well as the gene body region, except for 
the mCHH sites of downstream region (p > 0.05) in 
the regression analysis. This predictivity of regression 
model was also tested via the tenfold cross-validation 
method. The yielded small positive Q2 values from 
the model exhibited a restrictive ability to predict the 
lncRNA expression. (Additional file  25: Table  S14; 
Additional file  26: Table  S15). Overall, these results 

supported the findings of a negative relationship 
between lncRNA expression and mCHG in the flank-
ing and body regions, mCG in upstream region, and 
mCHH in the gene body region (Fig. 7a–c).

Discussion
Switchgrass is a largely self-incompatible species [62, 63]. 
The relatively complex genome of switchgrass has ham-
pered the development of whole-genome sequencing on 
this important biofuel crop. Recently, the latest version 

Fig. 7  Effect of DNA methylation of mCG (a), mCHG (b), and mCHH (c) on global lncRNA expression in switchgrass. X-axis indicates distance from 
2-kb upstream to 2-kb downstream, and y-axis indicates methylation level (%). TSS and TTS means transcript start site and transcript terminate site, 
respectively. Red, blue, green, and purple colors mean high-expressed group, middle-expressed group, low-expressed group, and non-expressed 
group, respectively. d–f The Spearman analysis between DNA methylation, and lncRNA expression in mCG (d), mCHG (e), and mCHH (f) sites, 
respectively. rho < 0, means negative correlation
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of the switchgrass genome (v4.1) was released, which 
contains high-chromosome-scale contiguity that can 
allow for researchers to apply modern omics techniques 
to this plant species. A recent report generated a profile 
of DNA methylation on genomic features of two switch-
grass genotypes, AP13 (Alamo clone) and VS16 [64]. In 
general, this study found similar methylation patterns for 
switchgrass as the ones identified in the current study: 
methylation levels of genic flanking regions were higher 
than in the gene body region and TEs themselves were 
more highly methylated than the upstream and down-
stream regions flanking them. However, this previous 
study did not examine the association between the DNA 
methylome and the transcriptome of switchgrass. To 
resolve relationships between these two omics, we con-
ducted genome-wide single-base resolution methylome, 
lncRNA, miRNA, and mRNA sequencing and aligned the 
data to the latest switchgrass genome (v4.1) with a rela-
tively high assembly quality.

Switchgrass has unique DNA methylation features 
but also shares general DNA methylation profiles 
with other plant species
In this study, the methylation distribution across the 
gene body was analyzed. It was discovered that the meth-
ylation levels of intron regions were higher than other 
regions in the switchgrass genome (Fig. 1c). These results 
are not consistent with those found in C3 model plants, 
such as Arabidopsis, rice, and poplar [65]. In addition, 
the mCG sites were the most dominant in switchgrass, 
followed by mCHG and mCHH. The levels of mCG and 
mCHG were the highest in the gene body region (Fig. 2a), 
which is consistent with observations in most plants [34, 
36, 42, 66, 67]. The gene flanking regions in switchgrass, 
however, displayed higher mCG levels than in the gene 
body region (Fig. 2a, c). This is a stark contrast to meth-
ylation patterns in most other plant species [32, 68, 69] 
and suggests that more methylation modifications, and 
subsequently more epigenetic mechanisms, may occur 
in the gene flanking regions of switchgrass. The average 
methylation level of TEs was higher than that of the genic 
regions in switchgrass, which is consistent with results 
found in most other plant species [17, 20, 32]. Addition-
ally, we discovered that the terminal chromosome regions 
were less methylated at the mCG and mCHG sites, which 
is similar to rice [17, 20, 32]. It has been reported that the 
largest number of repeats with high methylation levels 
exists in telomeric heterochromatin regions [70]. There-
fore, the lower methylation levels detected in the terminal 
chromosome regions in this study may indicate that these 
terminal regions do not cover telomeric heterochroma-
tin, which could be caused by sequence limitations of 

the current switchgrass genome. Overall, despite having 
a polyploid genome and several methylation differences, 
switchgrass does indeed share some DNA methylation 
profiles with the majority of plant species.

Identification of stress‑related genes covered by DMRs
Switchgrass has a relatively large and strong root sys-
tem that allows it to be more tolerant to various abiotic 
stresses [71]. In addition, identification of DMRs between 
roots and leaves might help find stress-related genes con-
trolled by DNA methylation.

A total of 96 genes covered by DMRs were found 
to be involved in stimulus-related GO processes. For 
these genes, 82% were mCG hypomethylated in the 
downstream region and mCHG hypomethylated in the 
upstream region in the root tissues (Additional file  12: 
Data S3). Since the levels of mCG in the downstream 
regions and mCHG in the upstream regions were nega-
tively correlated with gene expression, these 79 genes 
may possibly be upregulated by hypomethylation in the 
root tissue (Fig.  4c). Additionally, nine of the 79 hypo-
methylated genes were annotated to be auxin response 
factors and Small Auxin Upregulated RNA (SAUR) genes, 
which have been shown to be involved in stress defense 
responses [72]. These data suggest that switchgrass roots 
can quickly respond to environmental stresses, as well 
as maintain proper growth and development, by chang-
ing methylation on some auxin and stress-responsive 
genes. Some of these 79 genes also contained specific 
functional domains. For example, two genes contained 
Mildew resistance Locus O (MLO) domains, which are 
known to function as negative regulators of broad spec-
trum disease resistance [73]. In addition, one gene had a 
flavin adenine dinucleotide (FAD)-binding domain that 
is related to DNA photolyase [74]. Finally, one gene pos-
sessed a DOS2-like protein (BSD) domain, which has 
been reported in a rice OsBSD gene and has been shown 
to have a crucial role in plant growth [75] (Additional 
file 12: Data S3).

The mCHH DMRs covered a different subset of 148 
switchgrass genes, which were identified and annotated 
to function in oxidation–reduction processes. All of these 
genes were hyper-methylated in the root tissues (Addi-
tional file 14: Data S4). The reactive oxygen intermediates 
(ROIs) produced as signaling molecules by these gene 
products, along with each gene’s role in oxidation–reduc-
tion reactions, could control switchgrass response to var-
ious processes including pathogen defense, programmed 
cell death, abiotic stress response, and systemic signal-
ing [76]. Unfortunately, the mRNA expression profiles of 
these genes were not examined in the switchgrass root 
tissue. Therefore, additional studies are needed to deter-
mine if all or most of these 148 DMR genes have higher 
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or lower expression levels in roots compared to other 
plant tissues. It would be interesting to further character-
ize if these genes do indeed play roles in switchgrass tol-
erance to abiotic stress.

DNA methylation can either positively or negatively 
regulate gene expression depending on the methylation 
sites in different genic regions
DNA methylation is not simply an inhibitor of gene 
expression [17, 26, 27, 29, 30]. In the gene promoter 
regions, the presence of DNA methylation usually sup-
presses transcription initiation, although low methyla-
tion levels occurring in these regions may promote gene 
expression. Our results found a negative relationship 
between DNA methylation of CG and CHG sites in the 
gene promoter regions and gene expression, suggesting 
that methylation of promoters represses gene expression 
in switchgrass (Fig. 5a, b). This observation was consist-
ent with studies in Arabidopsis [26, 30, 67] and rice [26, 
30, 67]. These results support previous studies that found 
that promoter symmetrical methylation is a common epi-
genetic mechanism controlling gene expression in eukar-
yotes. Interestingly, the mCHH levels in the upstream 
gene regions were positively correlated with gene expres-
sion (Fig.  5c). This could be attributed to TEs located 
close to or within the promoters of nearby genes [77, 
78]. It is possible that RNA polymerase II- or IV-medi-
ated transcription, which is initiated by TEs, can spread 
to the nearby gene regions and subsequently increase 
expression of the nearby genes [46, 79]. We observed 
that a higher number of 24-nt siRNAs target to TEs that 
are closer to genes than those TEs that are located at the 
intergenic regions (Additional file 27: Figure S8). Studies 
have shown that siRNAs can induce mCHH methylation 
through the RdDM pathway [80]. The abundance of siR-
NAs in these areas can result in a higher level of mCHH. 
This would explain the positive association between 
mCHH sites and gene expression in the upstream pro-
moter region (Fig. 5c).

In the gene body region, the mCG sites were positively 
correlated with gene expression (Fig. 5a). This phenom-
enon could be attributed either to DNA methylation 
directly/indirectly preventing the initiation of intragenic 
promoters or to DNA methylation interfering with the 
activities of repetitive DNAs within the transcriptional 
unit [81]. In contrast, a negative association was found to 
exist between gene expression and methylation levels of 
mCHG and mCHH in the gene body regions, suggesting 
that the mCHG and mCHH in the actively transcribed 
genes may not inhibit gene transcription (Fig. 5b, c) [82, 
83].

The data from this study also revealed that mCG and 
mCHG sites in the transcriptional termination regions 

(TTR) were negatively correlated with gene expression 
(Fig. 5a, b). The differences in methylation levels among 
four categories (high, low, middle, and non-expressed 
genes) near the TTR regions were substantially greater 
than in the promoter regions. These results imply that 
mCG and mCHG in the TTR region might have a more 
significant role in the regulation of gene expression than 
their corresponding sites in the promoter region (Fig. 5a, 
b).

Overall, the mCG and mCHH were found to be posi-
tively related to gene expression in the gene body and 
upstream flanking regions, respectively. These results 
differed from other regions that displayed a negative cor-
relation (Fig.  5). Taken together, these findings suggest 
that DNA methylation can either positively or negatively 
regulate gene expression and control of these processes 
depends on the methylation sites in different genic 
regions.

The 24‑nt siRNAs induce increased mCHH levels 
in the genic regions of switchgrass
RdDM is a process by which 24-nt siRNAs direct the de 
novo methylation of cytosine of complementary DNA 
sequences. The de novo methylation of DNA at all mCG, 
mCHG, and mCHH contexts is usually performed by 
domains rearranged methylase 2 (DRM2) through the 
RdDM pathway [84]. In this study, mCHH levels, but 
not mCG and mCHG levels, were found to have a posi-
tive correlation with siRNA expression (Fig.  6b). After 
the initial methylation of DNA, mCG and mCHG sites 
could be sustained by copying the information from the 
parental strand after DNA replication. In comparison, 
most mCHH sites need to be maintained de novo after 
each round of DNA replication through the RdDM path-
way [80]. Therefore, only the production of mCHH sites 
was positively correlated with siRNA expression in the 
switchgrass genic region, suggesting that 24-nt siRNAs 
can significantly increase mCHH levels in the canoni-
cal RdDM pathway. However, on a whole-genome scale, 
these three methylation contexts might all be positively 
correlated with siRNA expression (Fig.  6a), suggest-
ing that siRNAs might activate mCG and mCHG in the 
intergenic and TE regions rather than the genic regions.

Identification of two functional precursory lncRNAs 
of miRNAs
Previous studies suggest that lncRNAs could be pre-
cursors of miRNAs [85, 86]. By aligning the lncRNAs 
identified in this study to miRbase (v 21), two lncRNAs 
TCONS_00103604 and TCONS_00155383, were found 
that could be the precursors of miR169 and miR171, 
respectively (Additional file  24: Table  S13). Based on 
the annotations of the genes targeted by these miRNAs, 
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we found three genes targeted by miR169 identified as 
pectinesterase inhibitors (Additional file  24: Table  S13). 
Pectinesterase can convert components of the plant cell 
wall to pectic acid and may have a role in the cellulose 
biosynthetic pathway [87, 88]. Correspondingly, the 
chemical and structural features of switchgrass cell walls 
can have a significant effect on biofuel yields [89, 90]. 
Therefore, the regulation of miR169 and its precursor 
sequence may contribute to biofuel yields in switchgrass. 
miR169 might also target two genes that code for stress-
responsive proteins, indicating that miR169 and its pre-
cursor might also regulate stress tolerance in switchgrass. 
The targets of miR171 were primarily predicted to be 
the SCR genes (Additional file 24: Table S13), which are 
expressed in hypocotyl, inflorescence, and stem tip tis-
sues [91]. Recent studies have revealed that mutations in 
SCR genes can cause proliferation of bundle sheath cells 
and abnormal differentiation of bundle sheath chloro-
plasts in maize [92]. In addition, suppression of LaSCR1 
was shown to decrease root numbers in transformed 
roots of white lupin (Lupinus albus) and Medicago 
truncatula [93]. Therefore, miR171 and its precursor 
(TCONS_00155383) are likely to be involved in stem and 
root development in switchgrass.

Conclusion
This study utilized a combination of omics techniques 
to conduct genome-wide single-base-resolution methyl-
ome, lncRNA, miRNA, and mRNA sequencing in switch-
grass. The results presented here support that siRNAs 
positively regulate DNA methylation at mCHH sites 
and that DNA methylation may interfere with gene and 
lncRNA expression in the polyploid switchgrass genome. 
In addition, a total of 96 genes were identified that are 
covered by DMRs in leaf and root tissues. These genes 
are believed to be involved in stimulus-related GO pro-
cesses and 79 of them were hypomethylated in the root 
tissue. We also identified 9244 novel lncRNAs in switch-
grass and predicted two lncRNA precursors of miRNAs 
that may function in cellulose biosynthesis, stress regu-
lation, and stem and root development. Overall, the suc-
cessful DNA methylome and transcriptome sequencing 
of switchgrass presented in this study provides a refer-
ence for other highly heterozygous Poaceae grasses with 
similar characteristics. These results could also serve as 
genomic resources for identifying further methylation 
patterns and additional non-coding RNAs analysis in 
switchgrass.

Experimental procedures
Plant materials
The switchgrass cv. Alamo was propagated through tiller-
splitting and planted in pots (0.25  m diameter × 0.4  m 

tall) containing 1500  g soil (pH 5.37, 1.26% organic 
qualitative content, 98.38  mg/kg  N, 4.48  mg/kg  P, and 
328.22 mg/kg K). The plants were maintained in a green-
house (Wenjiang, Sichuan, China) at 28  °C/20  °C (day/
night) with a photoperiod of 16  h/8  h (day/night). Four 
months after transplanting and approximately 1  week 
before the emergence of flower primordium (E5 stage), 
the flag leaves and roots of six individual plants were col-
lected [94]. The leaf and root tissues were frozen in liq-
uid nitrogen and stored at − 80 °C before total DNAs and 
RNAs were extracted.

Methylation data analysis
DNA extraction
The flag leaves and roots were pooled from six random 
individuals with equal masses for each one and were 
ground to a fine powder in liquid nitrogen. Genomic 
DNA was extracted using a plant genomic DNA kit 
(Tiangen, China) following the manufacturer’s instruc-
tions. The DNA integrity and concentration were meas-
ured by agarose gel electrophoresis and NanoDrop 
spectrophotometer, respectively.

Library construction and sequencing
Bisulfite sequencing libraries were prepared using the 
TruSeq Nano DNA LT kit (Illumina, San Diego, CA, 
USA) as described in Du’s study [95]. The genomic 
DNAs were then fragmented into 100–300 bp by sonica-
tion (Covaris, USA) and purified using a MiniElute PCR 
Purification Kit (QIAGEN, Silicon Valley Redwood City, 
CA, USA). The fragmented DNAs were end repaired 
and a single ‘A’ nucleotide was appended to the 3′ end of 
each fragment. After ligating the DNAs to the sequenc-
ing adapters, the genomic fragments were bisulfite con-
verted via a Methylation-Gold kit (ZYMO, Murphy Ave. 
Irvine, CA, USA). The converted DNA fragments were 
PCR amplified and sequenced as paired-end reads using 
the Illumina HiSeq™ 4000 platform by the Gene Denovo 
Biotechnology Co. (Guangzhou, China).

Data filtering
The raw reads generated from the Illumina HiSeq™ 4000 
were filtered to get high-quality reads using fastq-mcf 
(v1.04) tool [96] according to the following principles: (1) 
reads with more than 10% of unknown nucleotides (N) 
were removed, and (2) reads with more than 40% of low-
quality (Q-value ≤ 20) bases were removed.

Methylation level analysis
We mapped the clean reads to the switchgrass ref-
erence genome (https​://phyto​zome.jgi.doe.gov/pz/
porta​l.html#!info?alias​=Org_Pvirg​atum_er;V4.1) 
using BSMAP software (v 2.90) [97] with the default 

https://phytozome.jgi.doe.gov/pz/portal.html%23!info%3falias%3dOrg_Pvirgatum_er;V4.1)
https://phytozome.jgi.doe.gov/pz/portal.html%23!info%3falias%3dOrg_Pvirgatum_er;V4.1)
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parameters. The effective coverage of cytosine was 
defined as the number of coverage reads on cytosine ≥ 1. 
The effective coverage rate of cytosine was calculated 
based on the ratio of the number of effective coverage 
of cytosine per all cytosines in one specific region. The 
mC was called from these effective coverage cytosines, 
and the methylation level was calculated using a custom 
script as part of the BSMAP package based on the fol-
lowing ratio: (mC)/(mC + non-mC). This was calculated 
for the whole switchgrass genome, every chromosome, 
and for all genomic regions for each of the three meth-
ylation contexts (CG, CHG, and CHH). The methylation 
patterns for the gene body, transposable elements, and 
flanking upstream and downstream 2-kb regions were 
plotted using R project software (http://miyov​iqo.tha.
im/) according to the average methylation levels for each 
100-bp interval. ANOVA analysis was applied to test the 
significance of the average methylation levels of both 
genic and TE regions between leaf and root tissues [98].

Differentially methylated regions analysis
Differentially methylated regions (DMRs) between leaf 
and root tissues of switchgrass for CG, CHG, and CHH 
were identified based on the following criteria:

(1) The length of each DMR region was between 40 bp 
and 10 kb; (2) the distance between adjacent methylated 
sites was < 200-bp; (3) more than ten reads needed to be 
present for each cytosine, and more than four reads were 
need for coverage for each methylated cytosine; (4) more 
than five methylated cytosines must be present in at least 
one sample; (5) the fold change of the average methyla-
tion level was > 2; (6) Pearson’s chi-square test (χ2) value 
was p ≤ 0.05.

Enrichment analysis of DMR‑related genes
We sorted the putative DMRs covering the gene body 
regions, the 2-kb flanking regions of genes, and the TEs 
and conducted GO enrichment analysis via topGO pack-
age in R [99] for the DMR-related genes using a hyper-
geometric test with a corrected p ≤ 0.05.

RNA‑seq and data analysis
The six individual plants were pooled into two inde-
pendent biological replicates, and each replicate con-
tained three individuals. Total RNAs were isolated from 
the flag leaves of the two replicates using TRIzol rea-
gent (Invitrogen, Carlsbad, NM, USA) according to the 
manufacturer’s instructions. rRNAs were removed from 
the samples, retaining only mRNAs and non-coding 
RNAs. The sequencing libraries were built following Illu-
mina’s standard protocol for RNA-seq library construc-
tion as previously described [20], and the libraries were 
sequenced on an Illumina HiSeq™ 4000 RNA-sequencer 

at Gene Denovo Biotechnology Co. (Guangzhou, China). 
To obtain quality reads, the raw data were filtered by 
removing sequences containing adaptors, low-quality 
reads (Q-value ≤ 20), and reads containing more than 
10% of unknown nucleotides (N) using fastq-mcf (v1.04) 
tool [96]. Bowtie2 [100] was used to map the reads 
against the ribosome RNA (rRNA) database to remove 
rRNA mapped reads. The remaining reads were used for 
further transcriptome analysis and were mapped to the 
switchgrass reference genome (https​://phyto​zome.jgi.
doe.gov/pz/porta​l.html#!info?alias​=Org_Pvirg​atum_er; 
V4.1) using TopHat2 (v 2.0.3.12) with default parameters 
[101]. Reconstruction of the transcripts was conducted 
using both Cufflinks [102] and TopHat2. The recon-
structed transcripts were re-aligned to the switchgrass 
reference genome and clustered into 12 categories using 
Cuffcompare [102]. The abundance of each transcript 
was quantified using RSEM (v 1.2.19) [103] and tran-
script expression levels were normalized using RPKM 
(Reads per kb per Million reads).

LncRNA data analysis
LncRNA prediction
Two programs: CNCI (v2) [104] and CPC [105] (http://
cpc.cbi.pku.edu.cn/) were used to evaluate the protein-
coding potential of new transcripts with default param-
eters. Transcripts that had both CPC and CNCI scores 
less than 0 were chosen as long non-coding RNAs.

LncRNA family analysis
Rfam divides non-coding RNAs into families based on 
their evolution from a common ancestor. Producing mul-
tiple sequence alignments of these families can provide 
insight into their structure and function, similar to the 
case of protein families. To better annotate lncRNAs at 
the evolution level, the software Infernal [106] (http://
eddyl​ab.org/infer​nal/) was used in the sequence align-
ment and lncRNAs were classified by sequence consen-
sus and secondary structures.

miRNA precursor prediction
To find potential miRNA precursors, lncRNAs were 
aligned to miRBase (v 21) using BLAST (v 2.2.25), and 
those with greater than 90% identity were selected. Addi-
tionally, the software miRPara (v 6.2) [107] was employed 
to predict miRNA precursors using default parameters.

Functional group analysis
GO analysis and KEGG analysis were applied to deter-
mine the biological roles of the targets genes of identified 
lncRNAs in switchgrass. GO terms were assigned based 
on the Gene Ontology (GO) database [108] using GOseq 

http://miyoviqo.tha.im/
http://miyoviqo.tha.im/
https://phytozome.jgi.doe.gov/pz/portal.html%23!info%3falias%3dOrg_Pvirgatum_er
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R package [109] and the latest KEGG (Kyoto Encyclope-
dia of Genes and Genomes) database (http://www.genom​
e.jp/kegg/) using KOBAS [110]. The p value (Hypergeo-
metric-P value) cut-off was set to 0.05.

Small RNA‑seq data analysis
RNAs extracted from the flag leaves of the two bio-
logical replicates were used for small RNA-sequencing. 
Small RNA molecules with a size range of 18–30 nt 
were enriched by polyacrylamide gel electrophoresis 
(PAGE) and libraries were built using the NEBNext mul-
tiplex small RNA library prep set (NEB#E7300, Ipswich, 
MA, England) based on the manufacturer’s protocol. 
The small RNAs were then sequenced using an Illumina 
HiSeq 2500 by Gene Denovo Biotechnology Co. (Guang-
zhou, China). Raw reads were filtered by removing the 
following: reads without 3′ adapters, reads containing 5′ 
adapters, reads containing 3′ and 5′ adapters but no small 
RNA fragment between them, reads containing poly A 
sequences in the small RNA fragment, and reads shorter 
than 18-nt (not including adapters). The high-quality 
sequences were then BLAST (v 2.2.25) [111] against the 
small RNAs in the GenBank database (Release 209.0) and 
Rfam database (v 11.0) to remove rRNAs, snRNAs, snoR-
NAs, scRNAs, and tRNAs. High-quality, clean small RNA 
sequences were then aligned with the switchgrass refer-
ence genome using Bowtie (v 1.1.2) [112] to remove those 
that mapped to exons or introns. The known switchgrass 
miRNAs were identified by searching the clean sequences 
against the miRBase database (Release 21). In addition, 
the 24-nt reads that did not match any miRNAs were 
retained and used as siRNAs for subsequent analyses. 
The siRNA sequences were normalized by calculating the 
siRNA reads per million based on the total abundance of 
genome-matched small RNA reads.

Statistics analysis
The relationships between methylation and mRNAs, 
siRNAs, and lncRNAs were all analyzed using Spear-
man and regression analysis. For Spearman analysis, 
the evaluation of correlation was based on the follow-
ing criteria (www.stats​tutor​.ac.uk/resou​rces/uploa​ded/
spear​mans.pdf ): (1) rho > 0 equated to a positive cor-
relation, (2) rho < 0 signified a negative correlation, 
(3) very weak was indicated by the absolute value of 
rho < 0.2, (4) weak was indicated by 0.2 ≤ the abso-
lute value of rho < 0.4, (5) moderate was determined 
by 0.4 ≤ the absolute value of rho < 0.6, (6) strong was 
determined by 0.6 ≤ the absolute value of rho < 0.79, 
and (7) very strong was indicated by 0.8 ≤ the absolute 
value of rho < 1.0. The relationships of mRNA, siRNA 
and lncRNA with methylation were evaluated by mod-
eling gene expression as a function of the number of 

methylated cytosines in the body of the gene and both 
flanking regions [44]. For mRNA and lncRNA we used 
hurdle regression analysis. These two-part models han-
dle read counts with excessive amounts of zeroes (i.e. 
unexpressed genes) by specifying process for zeroes. 
This process was modeled with the logistic distribu-
tion. The relationship between siRNA and methylation 
was modeled solely with the negative binomial distri-
bution because zeros were not overrepresented in this 
case. The prediction power of all regression models was 
then tested using a tenfold cross-validation method 
[45]. The input data were randomly and equally divided 
into ten subsets (tenfold) for the validation. The cross-
validate R2 (also known as Q2) values were calculated 
by a formula: Q2 = 1 − PRESS (predictive error sum of 
squares)/TSS (total sum of squares).

Additional files

Additional file 1: Table S1. Information on bisulfite sequencing data in 
switchgrass.

Additional file 2: Data S1. Effective coverage rate of cytosine in the 
chromosome, gene, and repeat regions in both leaf and root tissues of 
switchgrass.

Additional file 3: Figure S1. Sequencing depth and saturation analysis 
of in leaf (a) and root (b) tissues of switchgrass. The x-axis represents the 
sequencing depth. The y axis represents the percentage for cytosine with 
a sequencing depth over a specific depth of the whole genome cytosine.

Additional file 4: Figure S2 Chromosome distribution for root (a) and 
leaf (b). Methylation level in 80-kb windows throughout chromosomes in 
the leaf tissue of switchgrass. The red line means ‘−’ strand, and the blue 
line means ‘+’ strand.

Additional file 5: Table S2. The levels of mCG, mCHG, and mCHH and 
genome size in genomes of different species.

Additional file 6: Figure S3. Correlation between genome sizes and 
methylation levels for different species as Arabidopsis, B. rapa, G. max, M. 
truncatula, P. trichocarpa, Z. mays, O. sativa, B. distachyum, and P. virgatum 
(leaf tissue) used in Figure 1e.

Additional file 7: Figure S4. Methylation levels of Class I and Class II TEs 
in the leaf (a) and root (b) of switchgrass.

Additional file 8: Table S3. Comparison of methylation levels between 
class I and class II transposons in leaf and root tissues.

Additional file 9: Table S4. Comparison of methylation levels in genic 
and TE regions between switchgrass leaf and root tissues.

Additional file 10: Table S5. Comparison of methylation levels in differ-
ent TE types between switchgrass leaf and root tissues.

Additional file 11: Data S2. GO annotation of genes covered by the 
DMRs between switchgrass leaf and root tissues.

Additional file 12: Data S3 . The methylation levels of 96 genes covered 
by DMRs and involved in stimulus related GO processes in both leaf and 
root tissues of switchgrass.

Additional file 13: Figure S5. Molecular function for genes covered by 
the CHH DMRs in the GO annotation in gene upstream (a), body (b), and 
downstream (c). The colored boxes mean the adjust p < 0.05, and the 
more deeper color, the less adjust p values for the boxes.

Additional file 14: Data S4. The CHH methylation of DMR covered genes 
annotated in the oxidation-reduction process and oxidoreductase in both 
leaf and root tissues.
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