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Abstract 

Production of biofuels and bioenergy precursors by phototrophic microorganisms, such as microalgae and cyano‑
bacteria, is a promising alternative to conventional fuels obtained from non-renewable resources. Several species of 
microalgae have been investigated as potential candidates for the production of biofuels, for the most part due to 
their exceptional metabolic capability to accumulate large quantities of lipids. Constraint-based modeling, a systems 
biology approach that accurately predicts the metabolic phenotype of phototrophs, has been deployed to identify 
suitable culture conditions as well as to explore genetic enhancement strategies for bioproduction. Core metabolic 
models were employed to gain insight into the central carbon metabolism in photosynthetic microorganisms. More 
recently, comprehensive genome-scale models, including organelle-specific information at high resolution, have 
been developed to gain new insight into the metabolism of phototrophic cell factories. Here, we review the current 
state of the art of constraint-based modeling and computational method development and discuss how advanced 
models led to increased prediction accuracy and thus improved lipid production in microalgae.
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Background
Photosynthetic microorganisms have been recognized as 
one of the oldest life forms on Earth [1]. These organisms, 
including microalgae such as Chlamydomonas sp., Syne-
chocystis sp., and Chlorella sp., have attracted significant 
attention from the biotechnology industry because of 
their ability to efficiently transform renewable resources 
(CO2, light, and water) into biomass and fuel precursors 
[2]. The photosynthetically produced biomass along with 
accumulated and secreted metabolites can be employed 
for the downstream synthesis of fuels (e.g., ethanol, bio-
diesel, and biocrude) and fine chemicals (e.g., pigments 
and organic acids) [3].

The world’s ever-expanding requirement for cheap 
energy and fuel requires constant improvement of pro-
duction platforms to meet the demand. The increased 
fuel consumption has led to an increase in global 

greenhouse gas emissions [4], exemplified by a sharp 
increase in CO2 levels from 280 ppm before the industrial 
revolution to today’s 407 ppm [5, 6]. Over 75% of these 
CO2 emissions have been attributed to the burning of 
fossil fuels [7, 8], rendering the reduction of humanity’s 
carbon footprint a major global technological challenge. 
One alternative to address this challenge is increased uti-
lization of biofuels from renewable resources and thus 
significant efforts have been underway to improve the 
efficiency of production of various biofuels [9].

Biofuels are categorized into first-, second-, and third-
generation biofuels depending on the type of raw mate-
rial that is used for their production [10]. First-generation 
biofuels are produced from agricultural crops; one exam-
ple being bioethanol production from sugarcane. These 
biofuels have been widely criticized as they pose extra 
demands on food production, which consequently raises 
food prices. Additionally, intensive agricultural processes 
to satisfy cost-effective production of crops for biofuels 
can lead to eutrophication and contamination of envi-
ronmental resources [8, 11, 12]. As an alternative second-
generation biofuels generated from woody waste and 
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inedible food parts, such as biofuels from lignocellulosic 
biomass, have been proposed as a substitute for first-
generation biofuels generated from food sources [10]. 
Secondary biofuels still require fertile land and often 
substantial amount of water for irrigation, limiting their 
areas of production. Third-generation biofuels, such as 
biosustainable production by microalgae, have thus been 
investigated to complement first- and second-generation 
biofuels. Third-generation biofuels also face several draw-
backs which need to be overcome before turning into an 
economically viable alternative [13]. One of the largest 
challenges for third-generation biofuels from photosyn-
thetic microorganisms lies in the harvesting process and 
downstream refinement of compounds of interest. For 
example, the costly recovery process of lipids from micro-
algal biomass, which in the case of biodiesel can account 
for up to 50% of the final cost [14], often prevents algae 
biofuel operations to be economically viable [14]. Higher 
lipid content would offset these staggering costs and 
would widely benefit the profitability and applicability of 
a third-generation biofuel technology. An early study by 
the US Department of Energy from 1978 reported that a 
lipid content of 60% would be necessary for third-gener-
ation biofuels to become economically feasible [15]. This 
number is now being revised to 20–40%, depending on 
strain and cultivation conditions [16]. Increasing the lipid 
content of phototrophs has thus been a major focus for 
the biofuel industry. Major efforts to improve lipid con-
tent have been focused on optimizing culture conditions 
and on advanced strain engineering designs, both strat-
egies of which greatly benefit from the use of metabolic 
modeling. In this review we compare various computa-
tional methods used for the rational design of strains 
and culture media, including flux balance analysis (FBA), 
dynamic flux balance analysis (dFBA), 13C metabolic 
flux analysis (13C MFA), and elementary modes (EM) 
analysis. We focus in particular on the latest insights into 
central carbon metabolism (tricarboxylic acid cycle, the 
Calvin cycle, the glyoxylate shunt, glycolysis/gluconeo-
genesis, and the pentose-phosphate pathway) of oleagi-
nous microalgae obtained by computational modeling 
as it is most relevant for production of biofuels and fuel 
precursors. Furthermore, we discuss the impact of time 
course modeling as well as the importance of incorpo-
rating compartmentalization into genome-scale models 
for microalgae and highlight the complexity of modeling 
lipid metabolism to increase biofuel productivity.

Oleaginous photosynthetic microorganisms
Microalgae have historically been classified into two 
classes: bacterial microalgae (Cyanophyta) and eukar-
yotic microalgae, the latter including green algae 
(Chlorophyta), red algae (Rhodophyta), and diatoms 

(Bacillariophyta). Characteristic for all microalgae is 
their ability to grow photoautotrophically with CO2 and 
light as only carbon and energy sources. Several microal-
gae are also able to grow heterotrophically in the absence 
of light using various organic substrates, or grow mixo-
trophically, which refers to the uptake of organic carbon, 
e.g., glucose, sucrose, or acetate during growth in the 
light [17]. Oleaginous microalgae are attractive cell fac-
tories for the production of third-generation biofuels due 
to their ability to achieve an outstanding accumulation of 
lipids, in some cases surpassing 20% of total biomass in 
dry weight [13] and reaching economic feasibility [16]. 
Some studies have reported microalgae lipid productivi-
ties around 136,900 L ha−1 year−1 [12], which are several 
times higher than those achieved by oil palm plantations 
(22,780 L ha−1 year−1) [12, 18]. Microalgae have also been 
explored for the production of non-lipid-based biofuels 
[12]. Several genera of microalgae have been used for 
biofuel production, and metabolic models now exist for 
organisms such as Chlamydomonas [19–30], Chlorella 
[31–35], Nannochloropsis [36–38], Synechocystis [39–46], 
Tetraselmis [47], Monoraphidium [48], Ostreococcus [49], 
Tisochrysis [50], and Phaeodactylum [51–54]. The genetic 
tractability of several microalgae (Chlamydomonas, 
Synechocystis, Phaeodactylum) [55] also renders them 
interesting for gene-knockout studies using metabolic 
modeling tools. Metabolic models have enabled retriev-
ing key information about central carbon metabolism, 
nutrient dependence, and distribution of reactions 
throughout different compartments in these organisms. 
Furthermore, dependence of carbon allocation on nutri-
ent availability and the differential role of the main car-
bon pathways under several growth conditions have been 
revealed using these models. Examples for these findings 
will be discussed in detail below.

Metabolic modeling
Various modeling approaches have been deployed to 
improve the applicability of microorganisms for indus-
trial applications. Modeling efforts can be categorized 
into isotope labeling-based, kinetic-based, and con-
straint-based approaches [56]. Isotope labeling stud-
ies and kinetic-based approaches are restricted to core 
metabolic networks or whole-cell analyses, although 
none of those methods is yet available on a genome scale 
and neither of these approaches considers organelle-spe-
cific compartmentalization. Constraint-based modeling 
approaches are currently the most widely used methods 
in metabolic modeling of oleaginous microalgae. These 
models enable in-depth understanding of microorgan-
isms and their metabolism by simulating intracellular 
fluxes throughout a metabolic network, often at genome 
scale [57].
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Genome-scale metabolic models (GSMs) are a math-
ematical representation of all the available biochemical 
and genomic information about a specific organism. 
GSMs have extensively been used to guide strain engi-
neering designs by optimizing biochemical processes 
within an organism [33]. The reconstruction of a meta-
bolic network can start de novo by identifying and add-
ing reactions one by one, or it can be initiated by the 
creation of a draft reconstruction based on sequence 
homology to another related organism [33]. As of May 
2018, 44 metabolic models for oleaginous microorgan-
isms have been reported. Details about characteristics 
of available models are summarized in Table  1. The 
highlights of milestones in metabolic modeling of ole-
aginous microalgae are shown in Fig. 1. While the first 
models for oleaginous microorganisms contained only 
core reaction, reaction size and complexity increased 
significantly over time (Fig. 1).

The first GSMs for oleaginous microalgae were recon-
structed for Chlamydomonas reinhardtii [19] and 
Synechocystis sp. [41]. Reconstructing a GSM model 
requires high-quality information on genome sequence, 
gene function, and metabolism [58–60]. Manual cura-
tion is required to improve the accuracy of the model. 
This curation process is very time and labor intensive, 
often spanning weeks to months before completion. 
To facilitate rapid model generation, automated pipe-
lines, such as ModelSEED [61] and PATRIC [62], have 
been made publicly available. ModelSEED and PATRIC 
are reconstruction tools based on subsystems annota-
tion, in which metabolic networks are decomposed into 
subsystems and analyzed individually. Both tools are 
based on RAST (Rapid Annotations using Subsystems 
Technology) that compares the genome sequence with 
existing information from phylogenetic neighbors [63]. 
However, it has to be noted that reconstructions cre-
ated by automated tools are prone to errors and spe-
cial attention must be directed toward quality control 
and quality assurance (QC/QA) tests, in particular with 
regard to mass balance and energy production without 
input [57, 64]. Automatically and semi-automatically 
reconstructed models thus require intensive manual 
curation before detailed and accurate predictions can 
be made. Figure  2a compiles the number of core and 
genome-scale models created for oleaginous photosyn-
thetic microorganisms reported to date.

All GSM models can be expressed as a general mass 
balance, which includes every metabolite being pro-
duced or consumed within the network in its respec-
tive reaction. This mass balance takes the form shown 
in Eq. (1):

(1)d
dt
C = [S]v.

The vector C represents the instantaneous concentra-
tion of metabolites inside the cell, the vector contains all 
reaction rates and the matrix represents the stoichiomet-
ric information about reactions and participant metabo-
lites. The stoichiometric matrix is a shared requirement 
among all constraint-based flux analysis approaches. 
Each column of this matrix contains the stoichiometric 
coefficients of a compound for all included reactions. In 
a similar fashion, each row represents the coefficients of 
all metabolites that take part in a single reaction [65]. An 
m number of metabolites would render the S matrix of 
m × n dimensions, with n always greater than m.

The rectangular nature of the S matrix is one of the 
most important obstacles to overcome when working 
with metabolic networks and is easily seen when taking 
into account that for m number of metabolites, there are 
m change rates inside vector C, m transport rates, and p 
intracellular rates that are unknown. The system of equa-
tions then comprises only m mass balances and as many 
as n = 2m + p variables [66]. This system indetermination 
is what has given birth to several different approaches 
to metabolic modeling, which are discussed below. For 
system determination to be achieved, the measurement 
of a total of m − n variables would be required. Large 
metabolic networks contain degrees of freedom that can 
amount to several hundreds. Therefore, the so-called 
core models, focusing on central metabolism, have been 
developed. These core models are used in metabolic flux 
analysis, such as the 13C-MFA, i.e., fluxomics. However, 
it is currently computationally infeasible to use large and 
compartmentalized metabolic networks for fluxomics 
analysis. Due to this, metabolic engineers have simplified 
the problem by transforming Eq. (1) into an optimization 
problem using an objective function and a defined set of 
constraints [65]. The definition of constraints results in 
a solution space, which delimits all possible functional 
states of a reconstructed network and a set of permit-
ted phenotypes [67]. Metabolic models account for three 
types of constraints [65, 67]: (a) physico-chemical, which 
are based on conservation laws of mass and energy, 
dependency of reaction rates on biochemical loops and 
thermodynamics; (b) environmental, such as availability 
of nutrients, electron acceptors, and other external con-
ditions (e.g. photon uptake); and (c) regulatory, including 
enzyme composition and performance, which helps to 
contextualize gene-related information, such as expres-
sion data and accurate gene–protein–reaction associa-
tions [68].

In phototrophic organisms, some physicochemical con-
straints are decided upon by following thermodynamic 
limits, regarding direction, reversibility or non-reversi-
bility of reactions, which can be determined by calculat-
ing the Gibbs free energy. Environmental constraints are 
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Table 1  Characteristics of current metabolic models of oleaginous microalgae

Metabolic models are classified into two different groups: Genome-scale metabolic models (GSM) and core models (CM). The analyses were classified in: flux balance 
analysis (FBA), dynamic FBA (dFBA), elementary modes (EM), metabolic flux analysis (MFA), MFA using 13C tracer (13C MFA), and their combinations
a  Modified the metabolic model of C. reinhardtii from Cogne et al. [27]
b  Modified the metabolic model of C. reinhardtii from Chang et al. [26]
c  Used the genome-scale model of C. vulgaris from Zuñiga et al. [32]
d  Used the genome-scale model of C. reinhardtii from Dal’Molin et al. [25] with constraints for Tetraselmis sp.

Organism Metabolic model (ID) Analysis Genes Reactions Metabolites Compartments Citations 
[references]

Chlamydomonas reinhardtii GSM – 1069 – – – 143 [19]

Chlamydomonas reinhardtii GSM – – 1500 1200 – 53 [20]

Chlamydomonas reinhardtii GSM FBA – 484 458 3 292 [23]

Chlamydomonas reinhardtii GSM FBA – 259 – 10 82 [24]

Chlamydomonas reinhardtii GSM (AlgaGEM) FBA 2249 1725 1862 4 96 [25]

Chlamydomonas reinhardtii GSM (iRC1080) FBA 1080 2190 1068 10 231 [26]

Chlamydomonas reinhardtii CM FBA – 280 278 – 47 [27]

Chlamydomonas reinhardtii GSM FBA – 160 164 2 100 [28]

Chlamydomonas reinhardtii GSM FBA – 280 278 0 12 [29]a

Chlamydomonas reinhardtii GSM (iBD1106) FBA 1106 2445 1959 10 10 [30]b

Chlamydomonas reinhardtii GSM (iCre1355) FBA 1355 2394 1133 10 12 [21]

Chlamydomonas reinhardtii GSM FBA/13C MFA – 139 – 3 2 [22]

Chlorella protothecoides CM 13C MFA – 24 19 0 83 [34]

Chlorella protothecoides GSM FBA/13C MFA 461 272 – 4 0 [31]

Chlorella pyrenoidosa CM MFA – 67 – 0 258 [35]

Chlorella sp. CM dFBA – 114 161 – 31 [79]

Chlorella variabilis GSM (iAJ526) FBA 526 1455 1236 5 10 [91]

Chlorella vulgaris UTEX 395 GSM (iCZ843) FBA 843 2294 1770 6 14 [32]

Chlorella vulgaris UTEX 396 GSM (iCZ946) dFBA 946 2294 1770 6 2 [33]c

Nannochloropsis gaditana GSM (iRJ1321) FBA 1321 1918 1862 4 1 [38]

Nannochloropsis salina GSM (iNS934) dFBA 934 2345 – 10 4 [37]

Nannochloropsis sp. GSM FBA 383 987 1024 6 0 [36]

Ostreococcus lucimarinus GSM FBA – 964 1100 2 38 [49]

Ostreococcus tauri GSM FBA – 871 1014 2 38 [49]

Phaeodactylum tricornutum GSM – 151 88 – 5 289 [51]

Phaeodactylum tricornutum GSM FBA – – – 2 12 [52]

Phaeodactylum tricornutum GSM FBA 607 849 587 6 27 [53]

Phaeodactylum tricornutum GSM (iLB1027) FBA 1027 4456 2172 6 24 [54]

Synechococcus elongatus PCC7942 GSM (iJB785) FBA 785 850 768 7 13 [78]

Synechococcus sp. PCC 7002 GSM (iSyp611) FBA 611 552 542 2 39 [92]

Synechococcus sp. PCC 7002 GSM (iSyp708) FBA 708 646 581 2 39 [93]

Synechococcus sp. PCC 7002 GSM (iSyp821) FBA 821 792 777 3 3 [94]

Synechococcus sp. PCC 7002 GSM (iSyp728) FBA 728 742 696 7 22 [95]

Synechocystis sp. PCC 6803 CM  13C MFA – 29 – – 181 [96]

Synechocystis sp. PCC 6803 CM FBA – 70 46 2 165 [39]

Synechocystis sp. PCC 6803 CM FBA – 43 – – 43 [40]

Synechocystis sp. PCC 6803 GSM FBA – 380 291 6 159 [41]

Synechocystis sp. PCC 6803 GSM FBA 669 882 790 2 113 [44]

Synechocystis sp. PCC 6803 GSM (iSyn811) FBA 811 956 911 2 59 [43]

Synechocystis sp. PCC 6803 GSM FBA/13C MFA – 493 465 2 51 [42]

Synechocystis sp. PCC 6803 GSM (iJN678) FBA 678 863 795 3 206 [46]

Synechocystis sp. PCC 6803 GSM FBA 677 759 601 6 143 [45]

Tetraselmis sp. GSM FBA 2249 1725 1862 4 2 [47]d

Tisochrysis lutea CM EM – 157 162 2 2 [50]
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usually based on measured experimental values of light 
quality, and nutrient and substrate uptake rates. Some 
regulatory constraints are those used in a study by Lever-
ing et al., in which the GSM of the diatom Phaeodacty-
lum tricornutum was employed to capture the response 
to varying environmental conditions due to a transcrip-
tional regulatory network [69]. Despite this, there are still 
too many variables to account for in the dynamic system. 
Various approaches to analyze the metabolic network of 
oleaginous microalgae are discussed below.

Flux balance analysis (FBA)
Most metabolic modeling studies involving oleaginous 
microalgae have been using FBA for simulation. A few 
other approaches have been used as an alternative or 
complement, such as 13C-MFA [22, 31, 34, 42] or EM 
[50]. Figure 1b, c highlights existing models and methods 

used to interrogate these models. Currently, large-scale 
metabolic networks are analyzed mainly in silico using 
FBA. Analysis of dynamic data obtained by experimen-
tally intensive strategies like 13C-MFA rely on simplified 
metabolic models, e.g., representing only central metabo-
lism [22, 31, 34, 42].

FBA refers to the application of linear programming to 
analyze fluxes under balanced metabolite conditions [65]. 
This statement is based on two assumptions: first, the 
cells are in steady state and, second, all cells have a gen-
eral objective while growing. The first assumption sim-
plifies the system significantly by neglecting all transient 
behavior of the metabolite concentrations, thus yielding 
Eq.  (2). The elimination of all the unknown concentra-
tion change rates inside is mathematically convenient, 
but forces the system, i.e., a culture flask or bioreactor, to 
theoretically exist in a steady state.

Fig. 1  Key developments in constraint-based metabolic modeling of oleaginous microalgae. a Cumulative number of citations for all 44 
publications related to “Metabolic Modeling of Oleaginous Microalgae and Cyanobacteria” (blue line) and conservatively estimated future citations 
(blue dotted line). Dashed lines represent the number of reactions per model for Chlamydomonas (yellow), Synechocystis, and Synechococcus 
(gray), Chlorella (orange), Phaeodactylum (green). b Breakdown of the total number of publications by microorganism (percentage) highlights the 
importance of model organisms such as Synechocystis, Synechococcus, Chlorella, Chlamydomonas, and Chlorella. c Frequency of metabolic modeling 
approaches used to solve models for oleaginous microalgae: flux balance analysis (FBA), followed by 13C metabolic flux analysis, dynamic flux 
balance analysis (dFBA), and elementary modes (EM)



Page 6 of 15Tibocha‑Bonilla et al. Biotechnol Biofuels  (2018) 11:241 

The second assumption of an objective function in the 
model implies that all cells grow with a specific objec-
tive, which is the same for every cell during the calcula-
tion time. The most widely used objective function for 
FBA is the maximization of biomass production, which 
implies that the organism has evolved sufficiently to have 
the optimal arrangement of fluxes so that its growth will 
be maximized. While this assumption is likely correct for 
certain microorganisms, it is not universally applicable 
[70]. For example, under nutrient-deficient conditions 
the objective of a cell might not be biomass produc-
tion, but rather the optimization of the production rate 
of storage compounds for later use. In a similar way, we 
know that phenotypic states vary in accordance with the 
growth phase or environmental conditions (Fig. 2), espe-
cially those that exhibit a dynamic biomass composition, 
such as phototrophs [71–73] and yeast [74]. Thus, time-
specific biomass compositions are needed for light–dark 
cycles, considering degradation of storage pools during 
dark periods. This is of particular interest for the pro-
duction of biofuel precursors. Furthermore, maximiza-
tion of carbon uptake rate as CO2 has been proposed as 
a suitable objective function for autotrophic modeling 
during the light period [32]. FBA has proven to be use-
ful and to reproduce overall experimental behavior in sil-
ico, although a true steady state is hardly encountered in 
experimental settings [58]. Its versatility and the accurate 
reproducibility of experimental results under several cul-
ture conditions make FBA one of the most widely used 
methods for metabolic modeling [75].

(2)[S]v = 0

Biomass objective function
The biomass objective function (BOF) is a broadly 
used modeling reaction, which drives the supple-
mented resources across the metabolic network to 
produce all known cellular components in the model 
(such as amino acids, nucleotides, fatty acids, carbo-
hydrates, vitamins, ions, and cofactors). Maximizing 
the BOF allows simulating growth rate and the yield 
of carbon source to biomass (henceforth referred to as 
biomass yield). The BOF can be determined from the 
genome sequence [59] or through experimentation. 
Both approaches have been successfully applied, espe-
cially for prokaryotic microorganisms. However, when 
microorganisms have been subjected to non-optimal 
conditions, such as extreme temperatures, pH, or lim-
ited nutrient concentrations, a single BOF is often not 
suitable to predict experimental data successfully [70, 
76]. For these cases, auxiliary objective functions have 
been proven necessary, such as minimization of ATP 
production, substrate uptake rate, or redox potential 
production rate [70].

There are several levels of refinement of the BOF 
[77], but it generally consists in the definition of a set 
of metabolites which compose the biomass. The set can 
be composed of just one reaction yielding a hypotheti-
cal compound called “biomass” or could otherwise be 
refined up to building blocks or biomass components 
(carbohydrates, lipids, proteins, DNA, RNA, pigments, 
etc.) [78]. The BOF of manually curated metabolic mod-
els of oleaginous microorganisms often accounts for 
hundreds of metabolites as part of the lipid metabolism, 
because of lipids being the primary target for biofuel pro-
duction in these organisms. Lipid chain fatty acids (14:0, 
16:1, 18:1, 16:2) are usually summarized as triacylglycer-
ols (TAG), monogalactosyldiacylglycerols (MGDG), etc., 
representing the entirety off all lipids in the organism. 
Accurate BOF composition has enabled the improved 
prediction of phenotypic states. It has been claimed that 
constrained BOF furthers the predictability of experi-
mental nutrient- and light-limited conditions [33]. In 
some cases, the BOF has been complemented by a two-
step optimization approach with minimization of uptake 
rates. In autotrophic growth conditions, minimization 
of light uptake (photons) has been employed but no sig-
nificant improvement of the growth rate prediction has 
been obtained [23, 39]. In the same way, minimization of 
carbon source substrate uptake rate has been utilized for 
heterotrophic growth [25, 47]. As alternatives, minimiza-
tion of flux magnitudes across the network was used for 
P. tricornutum [51, 54], maximization of ATP yield [28], 
and minimization of ATP demand [24] for C. reinhardtii, 
and maximization of hydrogen production rate for both 
C. reinhardtii [25] and Synechocystis sp. [40].

Fig. 2  Changing biomass composition (Chlorella vulgaris) in 
response to nitrogen depletion determined over time. While available 
nitrogen (red line) decreases and optical density (OD, green line) 
increases over a growth course, the microalga accumulates storage 
compounds. Accumulation of storage compounds, such as lipids and 
carbohydrates, leads to a reduction of total protein. Data collected 
from [32]
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Dynamic FBA
Overcoming the steady-state assumption of standard 
FBA is vital for the modeling of highly dynamic systems, 
which are characteristic of photosynthetic microorgan-
isms [33, 37, 79]. These organisms have evolved under 
cyclic light/dark conditions, which require switching 
between different phenotypic states. During light peri-
ods, inorganic carbon is fixed into storage carbon com-
pounds, such as carbohydrates and lipids, which are 
consumed in the dark period to accommodate vital cell 
functions. The storing-for-later behavior results in a 
dynamic biomass composition that can change during 
the light period (hours) or along the course of growth 
(days). In the case of C. vulgaris and other phototrophs, 
it has been shown that the biomass composition is also 
dependent on nitrogen availability (Fig. 2). Since FBA is 
used under a steady-state assumption, it is virtually dis-
qualified for its use in the aforementioned cases. On the 
other hand, not including this assumption would add 
a set of ordinary differential equations to the problem, 
yielding a differential–algebraic system. To solve this, 
a dynamic FBA approach was proposed using either a 
dynamic optimization approach (DOA) or a static opti-
mization approach (SOA) [80].

The DOA calculates the time profiles of fluxes and 
metabolite concentrations by solving the optimization 
problem over the entire time span of interest, running 
the calculation only once. The dynamic system is trans-
formed into a non-linear programming problem (NLP) 
by parameterizing the differential equations through the 
method of orthogonal collocation on finite elements, 
described by Cuthrell and Biegler [81]. The BOF is then 
rewritten as a weighted average of the instantaneous 
and the terminal objective functions and is subjected to 
the system of differential equations along with the con-
straints. The SOA approach, on the other hand, solves the 
optimization problem multiple times, once for each time 
interval. At the end, an integration of the set of instanta-
neous rates of change over the interval is carried out for 
the calculation of metabolite concentrations.

Experiment-based BOF constraints are an alternative 
method to simulate dynamic metabolic behavior [33]. 
Changes in the BOF influence the state of the meta-
bolic network, thus directly affecting predictions. This 
approach improved the accuracy of flux prediction by 
considering measurements over the course of growth 
under autotrophic and heterotrophic conditions in Chlo-
rella vulgaris. The time series flux distributions accu-
rately simulate 75% of expression and proteomics data 
collected over the course of growth, including allosteric 
reactions and multi-subunit enzymes. This approach also 
enabled the determination of the net content of nitro-
gen pools at each condition [33]. When an experimental 

determination of metabolites constituting the BOF is not 
feasible, unsteady-state methods, such as unsteady-state 
FBA (uFBA), can be applied. These unsteady-state meth-
ods operate with a limited number of measured metabo-
lites. uFBA was recently developed and applied to study 
heterotrophic microorganisms [86], but uFBA would be 
a promising approach for the analysis of photosynthetic 
microorganisms.

Unsteady‑state FBA
The aim of uFBA is to calculate internal flux distributions 
from existing time-course data, e.g., target metabolomics 
data. These datasets typically contain information about 
several (five to ten) metabolites such as glycerol, etha-
nol, and acetate. It is necessary to determine the rate of 
change of these metabolites from the experimental data 
and to include these rates in the system of equations [82]. 
Ideally, all rates of change would be known and the uFBA 
could be run as a series of standard FBA methods. Since 
this is often not feasible, all immeasurable variables are 
assumed to be, initially, under steady-state conditions as 
well as under a closed system assumption, i.e., with no 
possibility of transport inside or outside the cell. Elimina-
tion of this amount of transport reactions can often over-
determine the system and requires further conditioning. 
A “metabolite node relaxation” algorithm has been 
deployed that assigns sink reactions to unmeasured vari-
ables to allow for their accumulation or depletion. The 
algorithm is based on optimizations that find the mini-
mum number of sink reactions that are necessary while 
keeping the model computable [86].

Metabolic flux analysis (MFA)
MFA is an alternative to FBA which also assumes a 
steady-state mass balance [83]. When working with small 
enough metabolic networks, it is possible to measure or 
define enough numbers of internal or external fluxes to 
determine the algebraic equation system. For this strat-
egy, Eq.  (2) is rewritten by decomposing the matrix and 
the vector into the measurable (known) and the immeas-
urable (unknown) fluxes, as shown in Eq. (3).

The larger the metabolic network, the more the fluxes 
are necessary to measure for system determination. 
Therefore, metabolic networks of several hundred reac-
tions require measurements of internal fluxes for most of 
the fluxes, e.g. by 13C labeling [22, 31, 42].

Elementary modes (EM)
EM is based on the calculation of all the solutions of the 
system in Eq.  (2) in the allowable flux space, restrict-
ing the solution with a thermodynamic constraint and a 

(3)[S]uvu + [S]mvm = 0
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non-decomposability constraint [84]. The latter renders 
each solution an elementary flux mode, which means it is 
a unique and minimal set of reactions. These sets can be 
rewritten into macroscopic reactions, thus reducing the 
degrees of freedom exhibited formerly by Eq. (2). Often, 
EM is combined with core genome-scale metabolic mod-
els to provide energetic efficiencies and optimal flux 
distributions [84, 85]. The use of EM analysis (Fig.  1c) 
has declined over the last years, in part due to the rapid 
development of omic tools applied to sequencing, which 
enables generating genome-scale metabolic network 
reconstructions based on complete genome sequences.

Lessons learned from metabolic modeling 
of oleaginous phototrophs
Advances in modeling of microalgae are in part due to 
the availability of extensive omic datasets. Having full 
genome sequences available was crucial for generat-
ing the initial genome-scale metabolic models for the 
microalgae Chlamydomonas [23, 26] and opened the 
possibilities of creating additional algae models based 
on homology [32]. Fluxomic data has played a major role 
in elucidating central carbon metabolism of microal-
gae (e.g., C. protothecoides [34], C. reinhardtii [22], and 
Synechocystis sp. [42]). This tool has also served as a vali-
dation tool for GSM models [30]. In addition, metabo-
lomics or transcriptomics have been used in context of 
the model to study and optimize biochemical pathways 
of industrial interest [86]. In this section, we describe dif-
ferent approaches to reconstruct and simulate metabolic 
models for oleaginous microalgae to increase growth and 
lipid content and improve bioproduction.

Growth conditions
Several microalgae are able to grow as autotrophs, het-
erotrophs, or mixotrophs. Some metabolic pathways are 
only active under certain growth modes, including the 
oxidative/reductive pentose phosphate pathway [22, 23, 
27, 39, 40], Calvin cycle, and presumably the glyoxylate 
shunt [39]. Hence, differential mathematical models are 
necessary for correct prediction for each growth condi-
tion, requiring unique stoichiometric matrices and bio-
mass formation equations. The study and prediction of 
phenotypes dependent on growth conditions is perhaps 
the most studied aspect regarding in oleaginous micro-
algae. Currently, the models accurately predict growth 
with hundreds of different nitrogen and carbon sources 
[30, 32]. Furthermore, most models are able to repro-
duce more than one growth mode, including mixotrophy 
in the models iCZ843 [32], iCZ946 [33], iRJ1321 [38], 
iRC1080 [26], AlgaGEM [25], iNS934 [37], iLB1027 [53], 
and a model for Nannochloropsis sp. [36].

Experimentally, highest biomass yields have been 
reported for autotrophic conditions, while lowest were 
obtained under heterotrophic growth in P. tricornutum 
[53], Synechocystis sp. [39], C. reinhardtii [23], and Chlo-
rella sp. [79]. Mixotrophic growth, as a kind of hybrid 
condition, has shown biomass yields falling between 
ones observed for autotrophic and heterotrophic. How-
ever, an exception is the study of Navarro et  al. [40], in 
which a mixotrophic biomass yield (92%) higher than 
the autotrophic one (60%) was predicted as reported 
for Synechocystis sp. The constraints regarding growth 
conditions directly affect the way carbon is distributed 
across the metabolic network, and thus the biomass yield 
and production rate. So, it is crucial to determine and 
adjust these constraints if needed for each growth con-
dition. For example, under autotrophic growth the bio-
mass yields have been reported to be close to 100%, since 
no carbon is lost in the process [23, 39, 44, 53, 79], thus 
experimental measurements can be used directly. On the 
other hand, under heterotrophic growth conditions a sig-
nificant carbon loss as CO2 in oleaginous microalgae has 
been reported to vary between 37% [39] to 40% for Syn-
echocystis sp. [40], 50% for C. reinhardtii [23] and 50.5% 
for Chlorella sp. [79] as a result of the carbon input flux 
being lost as CO2 due to energy production through the 
TCA cycle and the oxidative pentose phosphate pathway 
(PPP) [23, 39, 44, 53, 79]. Mixotrophic biomass yields 
tend to be higher than under heterotrophy, since part of 
the released CO2 is fixed once again [39]. Reported net 
biomass yields are therefore around 92% (Synechocystis 
sp.), 100% (C. reinhardtii) and 80% (Chlorella sp.) assum-
ing a closed system.

Light conditions
Since light directly impacts microalgae growth and 
behavior, efforts have been made to define the quality 
and quantity of light constraints in metabolic models [29, 
37]. Models can be significantly improved by considering 
a more realistic light uptake mechanism, since correctly 
defined constraints regarding light-driven reactions allow 
for the assessment of light influence on carbon allocation. 
Chang et al. [26] proposed dividing the total light spec-
trum into effective spectral bandwidths, each of which 
had an associated effective bandwidth coefficient. These 
coefficients, along with the activity spectra of light-driven 
reactions, allowed for the correct calculation of flux dis-
tribution along these reactions, taking into account that 
phototrophic organisms are strongly affected by the 
nature of the incoming light. Manually curated mod-
els account for reactions to simulate light sources, such 
as solar, incandescent, fluorescent, metal halide, high-
pressure sodium, red and white LED. High-resolution 
light phenomena in the model enables to determine the 
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most suitable irradiance conditions for increased growth 
and lipid productivities. However, it has been shown that 
the bandwidth coefficient varies from microorganism to 
microorganism, as well as with culture size and growth 
vessels used, for example flasks, pilot, or industrial-scale 
vessels. Therefore, microorganism-specific refining for 
light uptake modeling in the GSM models will be needed 
for further improvement [39].

Intracellular pools
Although metabolic modeling has focused on simulat-
ing the intracellular environment of a cell under steady 
state, allowing the accumulation of certain metabolites in 
pools has proven necessary for the correct prediction of 
phenotypic states [60, 87]. Metabolite pools can play an 
important role in the regulation of reactions, since differ-
ent pathways find themselves interconnected by common 
metabolite collections. Target metabolomics data have 
been used successfully to constrain the metabolic model 
of Chlorella and determine the pool size of nitrogen [33]. 
The determination of the pool size was achieved by scan-
ning the nitrogen uptake rate while fixing experimentally 
determined biomass compositions over the course of 
growth. Thereafter, nitrogen pool concentrations were 
computed by integrating the predicted nitrogen uptake 
rates necessary to meet the required biomass compo-
sition each time. Other target examples are energy-
dependent and energy-replenishing processes which are 
coordinated by the ATP, ADP and AMP pools [87] as well 
as nitrogen and chrysolaminarin pools in P. tricornutum 
[54].

Compartmentalization
Eukaryotic microalgae contain different organelles (e.g., 
cytosol, mitochondria, nucleus, endoplasmic reticulum, 
glyoxysome, chloroplast, Golgi apparatus, vacuole, thyla-
koid, eye spot, and the cell wall). The exact compartmen-
talization is species dependent. Accurate annotation of 
proteins and compartmentalization in the model is nec-
essary for maximizing information content and gaining 
detailed knowledge about microalgae metabolism. Flux 
distributions highly depend on the model’s capability for 
metabolic exchange prediction between organelles. Care-
ful manual curation of these models and delimitation of 
capabilities while adding reactions and reconstructing 
eukaryotic models in an automatic matter is thus crucial 
to achieve maximal predictability [63].

The example of nicotinamide adenine dinucleotide 
phosphate (NADPH) production in eukaryotic micro-
algae highlights the importance of compartmentali-
zation. The PPP plays the role of producing NADPH 
in the cytosol, while the electron transport chain 
(ETC) is in charge of producing it in the chloroplast. 

Non-compartmentalized models can predict that the 
entire NADPH demand is supplied by the ETC, rather 
than PPP supplying NADPH demand outside the chlo-
roplast. This issue was encountered in the first metabolic 
model of an oleaginous microalgae C. pyrenoidosa [35]. 
While the model can simulate central carbon metabolism 
in general, it cannot predict detailed engineering targets 
since information about where fluxes take place is not 
available.

Early metabolic models were focused on the recon-
struction of core algae models, which were later 
expanded to include genome-scale information (Table 1) 
[19, 20, 35, 49, 50]. The least compartmentalized model 
included only the chloroplast and cytosol, to uncouple 
the NADPH consumption/production of the Calvin cycle 
and the PPP [28]. More refined models now account for 
the mitochondria, thylakoid lumen, glyoxysome (peroxi-
some), extracellular environment, nucleus, Golgi appa-
ratus, endoplasmic reticulum, vacuoles, and the cell wall 
[21, 24, 26, 30, 36, 37].

Modeling lipid production
Phototrophs produce several different kinds of lipids, 
including tri- and diglycerides, phospho- and glycolipids 
and hydrocarbons [14]. More specifically, lipid produc-
tion in oleaginous microalgae includes triacylglycerol 
(TAG), phosphatidylglycerol, phosphatidylinositol, 
phosphatidylethanolamine, sulfoquinovosyldiglycerol, 
MGDG, digalactosyldiglycerol, and phosphatidylcho-
line. TAG alone can accumulate from 20 to 60% of dry 
cell weight in some species like C. vulgaris [32]. Modeling 
and gaining insight into the increased lipid content of 
microalgae has been the object of several studies. Most 
of these studies have investigated the effect of nitrogen 
depletion [21, 33, 34, 37, 38, 42, 48, 54], while others have 
studied the influence of low CO2 and low light [54] on 
increasing overall lipid content. A study of Nannochloro-
psis gaditana reported increased lipid productivity under 
mixotrophic growth conditions [38].

When microalgae are subjected to nitrogen depletion 
conditions, carbon flux is drawn away from photosyn-
thetic pathways as cells shift into the stationary phase and 
begin to store carbon as starch and lipids. This phenom-
enon and its effect on biomass composition are displayed 
in Fig. 2, in which a general trend of biomass composition 
evolution as a function of time and nitrogen availability is 
presented. Under these non-optimal culture conditions, 
microalgae shift the central carbon flux from biomass 
production to the production of storage compounds. As 
a result, the growth rate is decreased because carbohy-
drates and/or lipid are accumulated under stress condi-
tions [40]. C. protothecoides was reported to redirect 81% 
of the input carbon flux toward fatty acid synthesis, but 
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as a consequence decreased its growth rate by 30% [34]. 
In a similar way, C. reinhardtii was found to accumulate 
TAG when faced with nutrient limitation, but its growth 
halted after 8  h of cultivation [22]. Interestingly, Lim 
et al. [47] reported downregulation of TAG biosynthesis 
for Tetraselmis sp. after 24 h, though TAG accumulation 
continued after this time point. The authors claimed this 
to be a result of decreased lipid degradation rather than 
lipid production.

New insights into the central carbon metabolism 
of microalgae
Most studies on oleaginous microalgae have focused on 
the central carbon metabolism and revealed new find-
ings about glycolysis, PPP, TCA cycle, and the Calvin 
cycle. Figure  3 shows the most important metabolic 
pathways in microalgae and how they are linked to lipid 
metabolism. FBA has been used to study genome-wide 
fluxes through the metabolic network under mixotro-
phy, heterotrophy, and autotrophy. While most studies 
coincide in their assessment of functionality and fluxes 
in central carbon pathways, other pathways such as the 
glyoxylate and ornithine shunt are still not well under-
stood, and modeling results are often not consistent 
between different studies and organisms [22, 23, 25, 31, 
34, 39, 40, 42, 79]. As a general rule, significant carbon 
flow through the TCA cycle has been reported under 

heterotrophic conditions, which demand catabolism 
of external organic compounds, contributing to the 
reduction of flux through the electron transport chain 
(ETC) and the Calvin cycle [23, 32, 35, 38]. During het-
erotrophic growth, most microalgae prefer glucose as 
carbon and energy source (Fig.  3). Other microalgae, 
such as C. reinhardtii, are only capable of assimilat-
ing two-carbon organic compounds, like acetate [22]. 
When glucose enters the cytosol, its fate can either be 
oxidation via glycolysis to pyruvate, oxidation via PPP 
to ribose 5-phosphate or transformation into storage 
compounds (lipids, glycogen and starch) [88]. In micro-
algae, acetate coming from the extracellular environ-
ment can be converted in the glyoxysome to succinate 
through the glyoxylate shunt, which can be considered 
as a variation of the TCA cycle. Succinate, an impor-
tant biosynthetic precursor that can be converted into 
oxaloacetate, from which phosphoenolpyruvate (PEP) 
can be synthesized by the enzyme PEP carboxykinase, 
and enter gluconeogenesis for carbohydrate or lipid 
synthesis [17]. Under autotrophic growth, the carbon 
source is inorganic (CO2) and the energy source is 
light. In the thylakoid lumen of eukaryotic microalgae, 
the ETC takes advantage of protons from light to store 
its energy in the form of ATP and NADPH, which are 
subsequently used to reduce CO2 molecules into triose 
phosphates (G3P) in the Calvin cycle. G3P can then 

Fig. 3  Central metabolism in eukaryotic microalgae. The main compartments of active metabolism are shown, i.e., the chloroplast (h), thylakoid 
lumen (t), vacuole (v), mitochondrium (m), glyoxysome (g), and cytosol (c)
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be converted into glucose 6-phosphate (G6P), sucrose, 
starch and other sugars in the chloroplast.

Tricarboxylic acid cycle
The TCA accounts for the highest carbon fluxes and 
number of active reactions under heterotrophic growth 
conditions [32, 35]. Under this mode, the percentage 
of the total carbon input flux into the TCA cycle was 
reported to be 35.6% in C. reinhardtii grown with acetate 
[22] and 18.7% in C. protothecoides grown with glucose. 
However, under autotrophic and mixotrophic conditions, 
only half of the activity has been reported [79], with only 

8–10 out of 22 reactions carrying flux for both micro-
organisms [32]. The role of the TCA under these condi-
tions shifts to the production of biosynthetic precursors 
rather than energy production. Figure 4 shows complete 
and possible bypass variations of the TCA cycle observed 
in different photosynthetic microorganisms. Cogne et al. 
[27] reported that under autotrophic growth the TCA 
cycle in C. reinhardtii was operating as two branches 
with production of 2-oxoglutarate on one end, and 
malate on the other, with an input through oxaloacetate 
via the anaplerotic activity of the phosphoenolpyruvate 
carboxylase (Fig.  4). Zero flux was found through the 

Fig. 4  Variations of the TCA cycle in photosynthetic microorganisms. a Complete and fully functional TCA cycle. b TCA cycle observed in 
microalgae, such as Synechococcus sp., which lacks the enzymes α-ketoglutarate dehydrogenase and succinyl-CoA synthetase (enzymes 
highlighted in red). A bypass via succinate-semialdehyde dehydrogenase, as observed in Synechocystis sp., is shown in blue. c Split TCA cycle as 
reported for C. reinhardtii [30]. The two branches producing 2-oxoglutarate and malate for downstream biosynthesis. Oxaloacetate is provided via 
anaplerotic activity of phosphoenolpyruvate carboxylase in this split TCA cycle [46]
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enzymes 2-oxoglutarate dehydrogenase, succinyl-CoA 
synthetase, and succinate dehydrogenase, since energy 
demands can be supplied by the PPP and the glyoxylate 
shunt. Other studies have also reported such similarities 
between prokaryotic and eukaryotic organisms [89, 90], 
in which prokaryotic microalgae, such as Synechocystis 
sp. and Synechococcus elongatus, do not possess a com-
plete TCA cycle. These bacteria lack the α-ketoglutarate 
(2-oxoglutarate) dehydrogenase and succinyl CoA syn-
thetase [17, 78]. Knoop et al. [41] have claimed a bypass 
via the succinate-semialdehyde dehydrogenase to com-
pensate for the lack of 2-oxoglutarate dehydrogenase as 
shown in Fig.  4. The bypass replenishes intermediaries 
in the TCA cycle linked to lipids biosynthesis such as 
acetyl-CoA.

Reductive/oxidative pentose phosphate pathway
The oxidative and reductive phases of the PPP serve dif-
ferent purposes. While the oxidative phase serves as a 
catabolic pathway for NADPH production from the oxi-
dation of G6P, the reductive phase represents an anabolic 
pathway of biosynthesis of 5-carbon carbohydrates for 
synthesis of nucleic acid, coenzyme A, ATP, and other 
biomass and lipids biosynthetic precursors [79]. High 
flux through the oxidative PPP means that energy pro-
duction is being used for maintenance rather than growth 
[35]. It has been reported that depending on the growth 
conditions, either one phase can appear active. How-
ever, for the diatom P. tricornutum a low flux through the 
whole PPP pathway was determined. The reduced flux is 
explained with this organisms’ ability to obtain 5-carbon 
carbohydrates via phosphopentose epimerase [53].

As a general result for non-compartmentalized mod-
els, energy-yielding oxidative PPP appears inactive dur-
ing autotrophic growth, since the model predicts energy 
comes from the ETC in the form of NADPH rather than 
the dissimilatory pathways [35, 39]. As stated above, 
NADPH demand outside the chloroplast should be sup-
plied by the PPP rather than the ETC. However, the com-
partmentalized models of Cogne et  al. [27] and Boyle 
and Morgan [23] predicted inactivation of the oxidative 
PPP for C. reinhardtii under autotrophic conditions. In 
the latter study, cells were found to prefer indirect energy 
transport by taking G3P from the chloroplast to the mito-
chondria and degrading it to 3-phosphoglycerate (3PG), 
releasing both ATP and NADH [23]. Furthermore, the 
fact that C. reinhardtii uses acetate as a carbon source 
instead of glucose greatly affects its phenotypic behavior 
and flux distribution under heterotrophy. Since the input 
to the PPP is G6P, incoming acetate would have to be 
transformed through several reactions in the glyoxylate 
shunt to oxaloacetate and then to G6P (Fig.  3). For this 
reason, NADPH production in C. reinhardtii preferably 

takes place via the ETC under autotrophic growth, while 
it is produced mainly through the glyoxylate shunt under 
heterotrophic growth [22, 23, 31, 34, 35, 39–41, 79]. Lim-
itation in the transport or consumption of G6P or 3PG 
can result in metabolite accumulation, leading to the 
synthesis of certain types of lipids. For example, C. rein-
hardtii produces mainly triglyceride lipids.

Apart from growth conditions, other external factors 
have been reported to alter the flux distribution through 
the PPP. Wu et al. [31] found that increased oxygen avail-
ability in C. protothecoides decreases the flux through the 
PPP and instead enhances flux through the TCA cycle, 
thus producing more energy and yielding more CO2. 
Moreover, increased synthesis of storage compounds 
under nitrogen-depletion conditions was shown to 
increase PPP fluxes due to increased demand of NADPH 
for biosynthesis [34].

Glyoxylate shunt
The ability of the glyoxylate shunt of transforming 
acetyl-CoA into succinate for biosynthetic purposes 
renders it vital for the metabolism of acetate independ-
ent of its source, i.e. extracellular environment. How-
ever, the glyoxylate shunt has been found to be inactive 
under heterotrophic [31, 34, 79], autotrophic [39, 40, 
79], or mixotrophic growth conditions [42] for vari-
ous organisms, e.g., Synechococcus sp. In C. reinhardtii 
and P. tricornutum; however, the glyoxylate shunt has 
been reported to be active for all tested heterotrophic 
conditions [22, 23, 25]. The inactive glyoxylate shunt 
under autotrophic growth can be explained by the cell 
not taking up acetate from the environment, but rather 
synthesizing storage compounds, such as lipids and car-
bohydrates, that represent desirable bioproducts [40, 80].

Calvin cycle
Reducing equivalents and ATP formed in the ETC under 
autotrophic conditions are used later in the Calvin cycle 
to produce triose phosphates (G3P) for further synthesis 
of carbohydrates, which can be assimilated or turned into 
backbone structures of lipids. During autotrophic growth 
conditions, the entire anabolic activity relies on the Cal-
vin cycle. G3P is transformed into higher carbohydrate 
molecules, such as pentoses and hexoses, through the 
PPP and gluconeogenesis, respectively. Moreover, lipid 
and amino acid anabolism is dependent on pyruvate 
produced from the G3P [88]. It has been reported in 
green algae that the Calvin cycle fixes CO2 in the form 
of 3PG, which gets converted to dihydroxyacetone phos-
phate (DHAP) subsequently [79]. Naturally, the Calvin 
cycle is inactive in the dark. When microalgae are sub-
jected to mixotrophic conditions, carbohydrate demand 
poses a competition between uptake of external organic 
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carbon sources and the Calvin cycle (i.e., inorganic car-
bon uptake). In C. reinhardtii the majority of carbon flux 
was found to be directed toward the Calvin cycle, rather 
than glycolysis and TCA under mixotrophic growth [23]. 
The cyanobacterium Synechocystis sp. however, was 
found to be dominated completely by the organic carbon 
uptake before a specific threshold of light intensity was 
surpassed. After this verge of irradiance, rubisco-depend-
ent carboxylation and oxygenation were increased imme-
diately and all Calvin cycle reactions were activated [41].

Conclusions
Great advances have been made in constraint-based 
modeling of photosynthetic microorganisms over the 
last two decades. Metabolic modeling has been proven 
critical for our understanding of complex metabolism 
in microalgae. Model-driven approaches have helped 
to identify boundaries for light and nutrient conditions 
as well as suitable genetic targets to increase lipid pro-
ductivity. Metabolic models have progressed from core 
models to genome-scale metabolic models, which now 
include detailed compartmentalization and light uptake. 
Furthermore, the dynamic behavior and rapidly chang-
ing phenotypes due to changing environmental param-
eters are important traits of these organisms and have 
now been included in model simulations. Those recent 
extensions and improvements allow elucidating pheno-
typic behavior under different growth and culture condi-
tions over time. In addition, these new models provide a 
high-quality standard for the improvements of existing 
metabolic models as well as for future reconstructions. 
Despite extensive efforts on refinement and manual cura-
tion of metabolic models, there are still open questions 
regarding the central metabolism and dynamic biomass 
composition in microalgae. Coupling metabolic mod-
eling with fluxomic experiments can improve our knowl-
edge of the activity of the glyoxylate shunt and ornithine 
shunt. Furthermore, time course-dependent expression 
datasets are needed to constrain and validate the mod-
els and to gain insight into the dynamics of metabolism. 
These datasets will enable to broaden the scope of the 
models and to elucidate missing transport reactions. 
Multi-omics dataset can also increase the predictabil-
ity of carbon exchange and storage within the cell and 
guide improved production of desirable compounds in 
microalgae.
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	56.	 C̆uperlović-Culf M. Dynamic metabolic profiling and metabolite network 
and pathways modeling. In: Nakamura K, editor. NMR metabolomics in 
cancer research. Oxford: Woodhead Publishing; 2013. p. 365–83.

	57.	 Tan J, Zuñiga C, Zengler K. Unraveling interactions in microbial communi‑
ties—from co-cultures to microbiomes. J Microbiol. 2015;53:295–305.

	58.	 Orth JD, Thiele I, Palsson BØ. What is flux balance analysis? Nat Biotechnol. 
2010;28:245–8.

	59.	 Thiele I, Palsson BØ. A protocol for generating a high-quality genome-
scale metabolic reconstruction. Nat Protoc. 2010;5:93–121.

	60.	 Feist AM, Palsson BØ. The growing scope of application of genome-
scale metabolic reconstructions: the case of E. coli. Nat Biotechnol. 
2008;26:659–67.

	61.	 Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang HY, Cohoon M, 
et al. The subsystems approach to genome annotation and its use in the 
project to annotate 1000 genomes. Nucleic Acids Res. 2005;33:5691–702.

	62.	 Snyder EE, Kampanya N, Lu J, Nordberg EK, Karur HR, Shukla M, et al. 
PATRIC: the VBI PathoSystems resource integration center. Nucleic Acids 
Res. 2007;35:D401–6.

	63.	 Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. The RAST 
server: rapid annotations using subsystems technology. BMC Genomics. 
2008;9:75.

	64.	 Fritzemeier CJ, Hartleb D, Szappanos B, Papp B, Lercher MJ. Erroneous 
energy-generating cycles in published genome scale metabolic net‑
works: identification and removal. PLoS Comput Biol. 2017;13:1–14.

	65.	 Terzer M, Maynard ND, Covert MW, Stelling J. Genome-scale metabolic 
networks. Wiley Interdiscip Rev Biol Med. 2009;1:285–97.

	66.	 Villadsen J, Nielsen J, Lidén G. Biochemical reaction networks. In: Nielsen 
J, Villadsen J, editors. Bioreaction engineering principles. 3rd ed. Berlin: 
Springer; 2011. p. 151–214.

	67.	 Price ND, Papin JA, Schilling CH, Palsson BO. Genome-scale microbial 
in silico models: the constraints-based approach. Trends Biotechnol. 
2003;21:162–9.

	68.	 Chen K, Gao Y, Mih N, O’Brien EJ, Yang L, Palsson BO. Thermosensitivity of 
growth is determined by chaperone-mediated proteome reallocation. 
Proc Natl Acad Sci. 2017;114:11548–53.

	69.	 Levering J, Dupont CL, Allen AE, Palsson BO, Zengler K. Integrated 
regulatory and metabolic networks of the marine diatom Phaeodac-
tylum tricornutum predict the response to rising CO2 levels. mSystems. 
2017;2:e00142–216.

	70.	 Takahashi O, Park Y-I, Nakamura Y. Biotechnology of microalgae, based on 
molecular biology and biochemistry of eukaryotic algae and cyanobacte‑
ria. FEBS Lett. 2009;583:3882–90.

	71.	 Wan MX, Wang RM, Xia JL, Rosenberg JN, Nie ZY, Kobayashi N, et al. Physi‑
ological evaluation of a new Chlorella sorokiniana isolate for its biomass 
production and lipid accumulation in photoautotrophic and hetero‑
trophic cultures. Biotechnol Bioeng. 2012;109:1958–64.

	72.	 Toledo-Cervantes A, Garduño Solórzano G, Campos JE, Martínez-
García M, Morales M. Characterization of Scenedesmus obtusiusculus 
AT-UAM for high-energy molecules accumulation: deeper insight into 

biotechnological potential of strains of the same species. Biotechnol Rep. 
2018;17:16–23.

	73.	 Cabello J, Morales M, Revah S. Dynamic photosynthetic response of the 
microalga Scenedesmus obtusiusculus to light intensity perturbations. 
Chem Eng J. 2014;252:104–11.

	74.	 Dikicioglu D, Kırdar B, Oliver SG. Biomass composition: the “elephant in 
the room” of metabolic modelling. Metabolomics. 2015;11:1690–701.

	75.	 García Sánchez CE, Torres Sáez RG. Comparison and analysis of objective 
functions in flux balance analysis. Biotechnol Prog. 2014;30:985–91.

	76.	 Serrano-Bermúdez LM, González Barrios AF, Maranas CD, Montoya D. 
Clostridium butyricum maximizes growth while minimizing enzyme usage 
and ATP production: metabolic flux distribution of a strain cultured in 
glycerol. BMC Syst Biol. 2017;11:1–13.

	77.	 Feist AM, Palsson BO. The biomass objective function. Curr Opin Micro‑
biol. 2010;13:344–9.

	78.	 Broddrick JT, Rubin BE, Welkie DG, Du N, Mih N, Diamond S, et al. Unique 
attributes of cyanobacterial metabolism revealed by improved genome-
scale metabolic modeling and essential gene analysis. Proc Natl Acad Sci. 
2016;113:E8344–53.

	79.	 Muthuraj M, Palabhanvi B, Misra S, Kumar V, Sivalingavasu K, Das D. Flux 
balance analysis of Chlorella sp. FC2 IITG under photoautotrophic and 
heterotrophic growth conditions. Photosynth Res. 2013;118:167–79.

	80.	 Mahadevan R, Edwards JS, Doyle FJ. Dynamic flux balance analysis of 
diauxic growth in Escherichia coli. Biophys J. 2002;83:1331–40.

	81.	 Cuthrell JE, Biegler LT. On the optimization of differential-algebraic pro‑
cess systems. AIChE J. 1987;33:1257–70.

	82.	 Bordbar A, Yurkovich JT, Paglia G, Rolfsson O, Sigurjónsson ÓE, Palsson BO. 
Elucidating dynamic metabolic physiology through network integration 
of quantitative time-course metabolomics. Sci Rep. 2017;7:1–12.

	83.	 Wiechert W. 13C metabolic flux analysis. Metab Eng. 2001;3:195–206.
	84.	 Trinh CT, Wlaschin A, Srienc F. Elementary mode analysis: a useful meta‑

bolic pathway analysis tool for characterizing cellular metabolism. Appl 
Microbiol Biotechnol. 2009;81:813–26.

	85.	 Baroukh C, Muñoz-Tamayo R, Bernard O, Steyer JP. Mathematical mod‑
eling of unicellular microalgae and cyanobacteria metabolism for biofuel 
production. Curr Opin Biotechnol. 2015;33:198–205.

	86.	 De Bhowmick G, Koduru L, Sen R. Metabolic pathway engineering 
towards enhancing microalgal lipid biosynthesis for biofuel application—
a review. Renew Sustain Energy Rev. 2015;50:1239–53.

	87.	 Nikolaev EV, Burgard AP, Maranas CD. Elucidation and structural analysis 
of conserved pools for genome-scale metabolic reconstructions. Biophys 
J. 2005;88:37–49.

	88.	 Nelson DL, Cox MM. Glycolysis, gluconeogenesis, and the pentose 
phosphate pathway. In: Freeman WH, editor. Lehninger principles of 
biochemistry. 4th ed. New York: Cox Publisher; 2008. p. 521–60.

	89.	 Coronil T, Lara C, Guerrero MG. Shift in carbon flow and stimulation of 
amino-acid turnover induced by nitrate and ammonium assimilation in 
Anacystis nidulans. Planta. 1993;189:461–7.

	90.	 Rai AK. Symbiotic systems with cyanobacteria-cyanobioses. In: Rai AK, 
editor. Cyanobacterial nitrogen metabolism and environmental biotech‑
nology. Chennai: Narosa Pub House; 1997. p. 299.

	91.	 Juneja A, Chaplen FWR, Murthy GS. Genome scale metabolic reconstruc‑
tion of Chlorella variabilis for exploring its metabolic potential for biofuels. 
Bioresour Technol. 2015;213:103–10.

	92.	 Hamilton JJ, Reed JL. Identification of functional differences in metabolic 
networks using comparative genomics and constraint-based models. 
PLoS ONE. 2012;7:e34670.

	93.	 Vu TT, Hill EA, Kucek LA, Konopka AE, Beliaev AS, Reed JL. Computational 
evaluation of Synechococcus sp. PCC 7002 metabolism for chemical 
production. Biotechnol J. 2013;8:619–30.

	94.	 Qian X, Kim MK, Kumaraswamy GK, Agarwal A, Lun DS, Dismukes GC. 
Flux balance analysis of photoautotrophic metabolism: uncovering new 
biological details of subsystems involved in cyanobacterial photosynthe‑
sis. Biochim Biophys Acta Bioenerg. 2016;1858:276–87.

	95.	 Hendry JI, Prasannan CB, Joshi A, Dasgupta S, Wangikar PP. Metabolic 
model of Synechococcus sp. PCC 7002: prediction of flux distribution 
and network modification for enhanced biofuel production. Bioresour 
Technol. 2016;213:190–7.

	96.	 Yang C. Metabolic flux analysis in Synechocystis using isotope distribution 
from 13C-labeled glucose. Metab Eng. 2002;4:202–16.


	Advances in metabolic modeling of oleaginous microalgae
	Abstract 
	Background
	Oleaginous photosynthetic microorganisms
	Metabolic modeling
	Flux balance analysis (FBA)
	Biomass objective function
	Dynamic FBA
	Unsteady-state FBA
	Metabolic flux analysis (MFA)
	Elementary modes (EM)

	Lessons learned from metabolic modeling of oleaginous phototrophs
	Growth conditions
	Light conditions
	Intracellular pools
	Compartmentalization
	Modeling lipid production

	New insights into the central carbon metabolism of microalgae
	Tricarboxylic acid cycle
	Reductiveoxidative pentose phosphate pathway
	Glyoxylate shunt
	Calvin cycle

	Conclusions
	Authors’ contributions
	References




