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Abstract 

Background:  Due to the increasing demands of energy and depletion of fossil fuel, bamboo is considered to be one 
of the most important renewable biological resources on the basis of its advantages of rapid growth ability and rich 
reserves. Cellulose, hemicellulose, and lignin are the three most important constituents in moso bamboo. Their con-
centrations and, especially, their microscopic distributions greatly affect their utilization efficiency and other physical 
properties as a biomass resource. However, no studies have achieved a quantitative visualization of the distribution of 
lignocellulose concentrations in transverse sections of bamboo. Therefore, this study proposed the use of quantita-
tive multivariate spectral analysis to reveal the micro-chemical distribution of lignocelluloses in bamboo based on an 
integration of FTIR macro- and micro-spectroscopic imaging techniques.

Results:  Multivariate calibration models for the quantitative determination of lignocelluloses of bamboo were 
developed based on FTIR macro-spectroscopy, and the quantitative calibration models based on the FTIR character-
istic bands showed an excellent performance with determination coefficients of 0.933, 0.878, and 0.912 for cellulose, 
hemicellulose, and lignin, respectively. These quantitative models were then utilized to the FTIR micro-spectroscopy 
of bamboo transverse sections which were corrected using a direct standardization algorithm. Subsequently, the 
micro-chemical distributions of cellulose, hemicellulose, and lignin were obtained based on the integration of the 
multivariate calibration models and corrected FTIR micro-spectroscopy. The combination of the multivariate calibra-
tion models and calibration transfer algorithm resulted in a final quantitative visualization of the chemical distribu-
tions of lignocelluloses in moso bamboos.

Conclusions:  Integration of the FTIR macro- and micro-spectroscopic imaging techniques can provide compre-
hensive information that can be used to exploit the resource of moso bamboo to develop biofuels and biosynthetic 
materials.

Keywords:  Moso bamboo, FTIR microscopic imaging, Lignocelluloses, Calibration transfer, Multivariate quantitative 
calibration

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/
publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Open Access

Biotechnology for Biofuels

*Correspondence:  heyong1963@zju.edu.cn; yhe@zju.edu.cn 
1 College of Biosystems Engineering and Food Science, Zhejiang 
University, 866 Yuhangtang Road, Hangzhou 310058, China
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-5682-6907
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13068-018-1251-4&domain=pdf


Page 2 of 16Li et al. Biotechnol Biofuels  (2018) 11:263 

Background
With the merits of rapid growth, high productivity, rich 
germplasm resources, and low ash content and alkali 
index, bamboo has been considered to be one of the most 
important renewable biological resources [1]. Moso bam-
boo is the most widely cultivated bamboo in China, with 
approximately 65% of the total area of bamboo forest [2]. 
The carbon absorbed by moso bamboo is mainly stored 
in three important types of biomass, namely, cellulose, 
hemicellulose, and lignin, which make up over 90% of the 
total dry mass [3]. Understanding the unique multilayer 
structure and fine-compositional distribution of these 
components of bamboo would provide very important 
information on its function. As sustainable materials in 
biomass energy, lignocelluloses, and their microscopic 
crosslinking structure have very important effects on 
the biomass utilization with respect to processes such as 
chemical and enzymatic pretreatment, hydrolysis, and 
fermentation [4]. Imaging of lignocellulose distribution 
within the micro-multilayer structure is, therefore, not 
only helpful for understanding the growth mechanism of 
bamboo from the perspective of accumulation of the bio-
mass, but also has significance as an important guide in 
the study of biological energy transformation [5]. There 
is enormous diversity in the lignocellulosic components 
and their microscopic structure among bamboo sam-
ples obtained from different locations or physiological 
ages [6], as well as among the various physiological parts 
within an individual bamboo culm. Hence, the real-time 
monitoring of lignocelluloses is of great importance for 
the optimization of biomass treatment [7]. Nevertheless, 
no research regarding the quantitative visualization of 
lignocellulosic content of bamboo at microscopic view 
has been reported so far.

The FTIR micro-spectroscopic imaging technique is 
an excellent monitoring method that has been used to 
examine the lignocellulose micro-distribution in the crop 
stalk [8], the chemical distribution of the composition of 
the adaxial surface of Ginkgo biloba leaves [9], the chemi-
cal composition of calcified deposits of prostatic calculi 
and calcific tendonitis [10], molecular structure of wood 
[11], the carbohydrate excipients in granules of tradi-
tional Chinese medicines [12], and the effects of three 
heat treatments on cotyledon tissues [13].

However, most of these studies examined the chemi-
cal compositional distribution by mapping integrated 
areas or the intensity of a diagnostic spectral band of the 
compound. This strategy is based on two assumptions: 
(1) the concentration of the compound is the only factor 
that determines the intensity of the well-defined spectral 
band associated with the compound [14] and (2) there is 
a significant and completely linear relationship between 
the concentration of compound and the spectral intensity 

at diagnostic band. However, these two assumptions are 
often invalid when the well-defined band overlaps with 
those of other compounds or when the bands broaden or 
shift in response to a chemical change. Moreover, these 
assumptions mean that the strategy is sensitive to inter-
ferences induced by discrepancies of spectral collection 
condition, sample preparation, and spectral pretreat-
ment. In other words, because only the intensity of a 
diagnostic band is monitored, broadening and shifts are 
easily interpreted as intensity changes.

Therefore, more reliable results could be achieved uti-
lizing a set of bands, i.e., the concentration of a compli-
cated compound would be determined by a synergistic 
combination of multiple diagnostic bands. However, 
it is challenging to describe the quantitative relation-
ship between a set of FTIR micro-spectral bands and 
the concentration of compounds. Because FTIR micro-
spectroscopy involves micro-spatially resolved spectral 
response profiles and the concentration of compound at 
each pixel cannot realistically be measured using tradi-
tional analytical chemistry [15], there is not a practical 
method to establish quantitative relationship between 
FTIR micro-spectroscopy and concentration of a com-
pound at each pixel at the micro-level. However, it is 
worth noting that a quantitative relationship between 
FTIR macro-spectroscopy and the concentration of the 
compounds can be developed, because the concentration 
of compound at macro-level can be obtained through 
homogenization of the tissue [16]. Therefore, the quanti-
tative relationship between the FTIR spectroscopic char-
acteristics and compounds of interest may be expanded 
by transferring the calibration from a master instrument 
(FTIR macro-spectroscopy) to a slave instrument (FTIR 
micro-spectroscopy).

Calibration transfer is one of the most commonly 
applied means of compensating for spectral variations, 
which may be caused by many factors such as the surface 
texture, granularity, and change or aging of instruments 
[17]. The multivariate transfer calibration technology of 
direct standardization (DS) has been successfully applied 
to the quantitative analysis of creatinine in serum sam-
ples by transferring the calibrations of two image analysis 
instruments [18] and spectral matching and combining 
of nuclear magnetic resonance spectral data set from 
different instruments [19, 20]. Multivariate calibration 
transfer has also been used to transform NIR spectral 
and instrumental artifacts to reduce the prediction error 
[21] and to correct the NIR spectral measurement vari-
ation between one dispersive instrument and one Fou-
rier transform (FT) instrument for quantitative analysis 
of fish meal mixed with soybean meal [22]. Calibration 
transfer from the reflectance mode data from a conven-
tional Fourier transform infrared (FTIR) spectrometer to 
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a portable FTIR spectrometer in transmission mode has 
been realized by adopting the simple strategy of DS for 
the prediction of quality parameters of diesel/biodiesel 
blends [23]. The above studies have proven the feasibility 
of calibration transfer to eliminate the spectral measure-
ment variability among different spectral instruments.

Based on the above discussion, we created a novel 
scheme to achieve the quantitative visualization of the 
lignocellulosic content of bamboo at the microscopic 
level. Specifically, we first established the determination 
models for lignocellulosic components based on FTIR 
macro-spectroscopy, and then, a DS algorithm was per-
formed to correct the spectral variation between FTIR 
micro-spectroscopy and FTIR macro-spectroscopy. After 
that, the determination models based on macro-spectros-
copy were applied to the corrected FTIR micro-spectros-
copy. Consequently, the quantitative visualization of the 
lignocellulosic content of transverse sections was finally 
achieved. To the best of our knowledge, this scheme for 
quantitative visualization at microscopic view has not yet 
appeared in the previous literature.

Methods
Sample preparation
The moso bamboo samples were collected from three 
sites: Maoyang (MY) Village (E: 119.394, N: 27.727), Jin-
gning County, Zhejiang Province; Baitanao (BT) Village 
(E: 119.330, N: 27.827), Jingning County, Zhejiang Prov-
ince; Daishi (DSH) village (E: 106.670, N: 30.415), Guan-
gan County, Sichuan Province. For each site, three culms 
of bamboo with each physiological age were collected: 
accordingly, a total of 15 culms of five physiological ages 
(1–5  years) were obtained. In addition, four positions 
from each culm including base, middle, top, and middle 
node sections were sampled. Thus, 3 (sites) × 5 (ages) × 4 
(parts) × 3 (replicates) = 180 samples were obtained for 
analysis.

The samples were prepared using various treatment 
methods for the macro-lignocellulosic content measure-
ment and microstructure chemical imaging of lignocellu-
loses of bamboo. The specific treatment procedures are 
described below.

For macro-lignocellulosic content analysis, all of the 
collected moso bamboo samples were first air-dried. 
Then, a series of sections were cut from the culms of 
bamboo, and these sections were subsequently cut 
into small pieces. Next, these pieces were ground with 
a grinder (Tissuelyser-48, Shanghai Jingxin Industrial 
Development Corporation, China) to obtain the moso 
bamboo powder. To ensure the accuracy of chemi-
cal measurement and spectra collection [24–26], the 
powder was sequentially sifted through a 380 μm mesh 
screen and a 250 μm mesh screen. Finally, the powder 

with particle size between 250 and 380  μm was col-
lected for FTIR spectral acquisition and reference 
chemical measurement.

For the microstructure chemical imaging analysis, the 
middle internodes of the moso bamboo samples from 
the three sites at the second physiological age were 
selected. The middle internodes of the culms were cut 
into strips, and then, the strips were sliced into 15 μm 
transverse sections using a rotary microtome (KD-
1508A, Zhejiang Jinhua Kedi Instrumental Equipment 
Corporation, China). Transverse sections without frag-
mentation and curling were selected.

FTIR macro‑ and micro‑spectroscopy acquisition
For the FTIR macro-spectroscopic analysis, the bamboo 
powder was mixed with a KBr pellet (spectral purity, SP, 
Sinopharm Chemical Reagent Corporation, China) at 
a ratio of 1  to 49 and then ground sufficiently to allow 
the formation of tablets using a pressure machine (FY-
15, Tianhe Machinery Equipment Corporation, Shang-
hai, China) with 15 MPa pressure and 30 s duration. The 
FTIR spectra of these tablets were then collected using 
an FTIR spectrometer (FTIR 4100, JASCO Corporation, 
Japan) in transmittance mode with a spectral range of 
350–7800 cm−1 and spectral resolution of 4 cm−1. Dur-
ing the spectral collection, the repetition scan times for 
each sample were set to 32, and the background signal 
sampling interval was set to 45 min.

For the FTIR micro-spectroscopy collection, the pre-
pared transverse sections were first examined using a 
microscope (CX31, Olympus Corporation, Japan) to 
evaluate the quality of slices. The qualified slices that 
demonstrated better tissue integrity with vascular bun-
dle and parenchyma features [8] were then selected and 
scanned using an FTIR microscopic imager (Nicolet 
iN10, Thermo Fisher Scientific, US), as shown in Fig. 1. 
When scanning the transverse section, a liquid nitro-
gen-cooled mercury cadmium telluride detector was 
chosen to capture the FTIR micro-spectroscopy with 
the range of 675–4000  cm−1 in transmittance mode. 
Based on the information richness, scanning speed, 
and instrument performance, the spectral and spa-
tial resolution were set to 8 cm−1 and 10 μm × 10 μm, 
respectively. To maximize the signal-to-noise ratio, the 
repetition scanning times were set to 256. To reduce 
the interference caused by background changing, a 
background spectrum was collected every 45 min. For 
each transverse section, the central area of the ground 
tissue including fiber strands, parenchymal cell, and 
their boundary regions with area of 210  μm × 210  μm 
was scanned. Accordingly, 441 spectra with 21 × 21 
pixels were obtained.
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Chemical measurement
The concentrations of hemicellulose, cellulose, and 
lignin were measured according to Van Soest method 
[27]. Before measurement, 0.5 g powder was accurately 
weighed for each sample [28]. Then, the quantified 
powder was subjected to four main steps: neutral deter-
gent washing, acid detergent washing, 72% sulfuric 
acid washing, and ashing in a muffle furnace. At each 
step, the samples were weighed at least three times to 
ensure the relative error is lower than 5%. All reagents 
used for the chemical measurement were at least grade 
of analytical reagent (AR). Specifically, the main rea-
gents used in this experiment were as follows: sodium 
dodecyl sulfate (AR), anhydrous sodium dihydro-
gen phosphate (AR), concentrated sulfuric acid (AR), 
cetyltrimethyl-ammonium bromide (AR), and acetone 
(AR) were obtained from Sinopharm Chemical Rea-
gent Corporation (Shanghai, China), and decalin (AR), 
sodium sulfite (guaranteed reagent, GR), and edathamil 
disodium (GR) were obtained from Alfa Aesar Corpo-
ration (Ward Hill, MA, US). To ensure the accuracy 
of the experimental results as far as possible, a water 
purification system (EPED-E2-10TJ, Yipuyida Science 
and Technology Development Corporation, Nanjing, 
China) was used to produce the ultra-pure water for 
solution preparation.

Chemometrics
Multivariate calibration analysis
Sample allocation and  abnormal sample elimina-
tion  Partial least-squares regression (PLSR), one of the 
most widely used multivariate calibration methods [29], 
was used to establish the quantitative determination 
model of lignocelluloses. Before modeling, all samples 
were divided into a calibration set and a prediction set. 
Specifically, all of the samples were first sorted in ascend-
ing order on the basis of their chemical concentration. 
Second, each three consecutive samples were treated as a 
subset. From each subset, the median sample was taken to 
form prediction set, and the remaining samples were used 
as calibration samples.

Sample and measurement abnormalities always have 
a serious negative impact on building models. There-
fore, it is necessary to detect and remove the abnormal 
samples. Monte Carlo sampling (MCS) method [30] was 
adopted to detect abnormal samples in this study. This 
method is based on the sensitivity of the prediction error 
to abnormal samples. The spectral and the concentration 
information are used for this purpose, and the specific 
algorithm was as follows: first, the best number of latent 
variables for the PLSR was calculated; second, the pro-
portion of calibration set to validation set and the cycle 
index for sampling were set; third, the PLSR model was 

Fig. 1  Scanning area maps of transverse sections from various product sites, with a microscopy in ×40 objective lens. MY, BT, and DSH indicate the 
specific growth sites Maoyang, Baitanao, and Daishi (similarly hereinafter)



Page 5 of 16Li et al. Biotechnol Biofuels  (2018) 11:263 

established to predict the validation set, in which the 
prediction error distribution of each sample is predicted 
through multiple cycles; and fourth, the mean and stand-
ard deviation (STD) of predicted residual for each sample 
were determined. The abnormal samples can be detected 
by inspection of the mean and STD distribution diagram.

Quantitative determination of lignocelluloses with charac-
teristic bands  The information provided by FTIR spec-
troscopy is rich. However, the information often includes 
redundancy. The information redundancy reduces the 
model stability and increases the computational complex-
ity. To reduce the information redundancy, two strategies 
were utilized in succession. The first strategy was to select 
spectral regions using the interval partial least-squares 
(iPLS) method. The second strategy was to select spectral 
bands from the characteristic range using the competitive 
adaptive reweighted sampling (CARS) algorithm.

The iPLS aims to extract important spectral regions 
and eliminate interferences from other regions by estab-
lishing a set of local PLSR models on equidistant subin-
tervals of the full-spectrum region [31]. Thereafter, a 
model with the lowest root mean square error of cross 
validation (RMSEV) is selected as the optimal spectral 
region. Furthermore, different combinations of regions 
are also used to develop PLSR model, and the optimal 
combination is the one with the lowest RMSEV [32].

The selection of spectral bands based on the CARS 
algorithm [33] includes four main steps: first, samples 
were randomly selected based on the MCS method to 
constitute the calibration and validation sets according to 
a certain proportion, and a PLSR model was built subse-
quently for each loop; second, bands with relatively small 
absolute values of the regression coefficients as indi-
cated by the exponential decay function for each cycle 
were removed; third, the bands were further screened by 
evaluating their weights; and fourth, the RMSEVs of the 
band subsets generated from each cycle were compared, 
and the band subset with the lowest RMSEV is the final 
result.

Spectra transfer
Spectral matching and interpolation  For model transfer, 
the spectra acquired by the Jasco spectrometer (treated as 
the master instrument) were trimmed to 675–4000 cm−1 
to match the spectral range of the Nicolet micro-spec-
trometer (treated as the slave instrument). Then, a cubic 
spline interpolation was performed to define the fitting 
values for the spectra captured by the slave instrument to 
form the same spectral interval as the master instrument. 
Thus, through trimming and interpolation, 2800 spectral 
variables per spectrum were obtained for transfer in the 

range of 675–4000 cm−1 for both master and slave instru-
ments [34].

Spectral transfer by  direct standardization  The direct 
standardization (DS) algorithm is a well-accepted means 
to eliminate spectral variation and compute the transfer 
parameters between master and slave instruments by esti-
mating the difference between the detection processes. 
This involves a straightforward strategy to perform the 
transfer of the parameters from the slave instrument to 
the master instrument. According to the research of Bou-
veresse and Massart [35], it is important to choose rep-
resentative samples to define the differences between the 
master and slave instruments. In this study, the samples 
from the middle part of the 2 year physiological age subset 
from the three sites were collected, using three samples 
for each site. For the spectra acquired by master instru-
ment, the mean spectrum of the samples from a site was 
taken as a representative spectrum, so three representa-
tive spectra were prepared from the master instrument. 
For the slave instrument, the micro-spectroscopic hyper-
cubes of the transverse slices corresponding to the three 
sites were averaged to generate three representative spec-
tra. The representative spectra of master and slave instru-
ments was adopted to compute the DS transfer model.

The parameters for DS transfer model can be expressed 
through the following formula (1):

In the formula, Xmaster means the spectral matrix of 
the standardization samples from the master instru-
ment, which corresponds to the macro-average spectra 
acquired by Jasco FTIR spectrometer. Xslave denotes the 
spectral matrix from the slave instrument, which spe-
cifically refers to the micro average spectra obtained by 
Nicolet FTIR micro-spectrometer aforementioned. E 
simply indicates the transfer matrix from slave instru-
ment to master instrument. B represents the residual for 
model compensation.

Infrared micro‑spectroscopic imaging of lignocelluloses
After a quantitative relationship between the FTIR spec-
troscopy and lignocelluloses of bamboo was defined 
based on the multivariate calibration analysis, the 
quantitative determination model was imported to the 
corrected FTIR micro-spectroscopy using the direct 
standardization (DS) method. Subsequently, the concen-
tration of lignocelluloses at each pixel can be generated 
based on this integration of the multivariate calibration 
model and calibration transfer. Finally, lignocellulose dis-
tribution maps of the bamboo transverse sections can be 
obtained.

(1)Xmaster = Xslave ∗ E + B.
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Results and discussion
Overview of the lignocelluloses of moso bamboos
To explore the distribution characteristics of the lignocel-
luloses of samples from the various sites, ages, and parts, 
the lignocellulose concentration values for the middle 
parts of samples from three sites and five ages are shown 
in Fig.  2. Furthermore, all 180 moso bamboo samples 
were analyzed by a multivariate analysis of variance.

For cellulose, the p values for the sites, years, and 
parts were 0.000, 0.000, and 0.000, respectively, and all 
of which were less than 0.05. These values indicated that 
there were significant differences in the cellulose con-
tent for the various sites, years, and parts. In addition, 
Duncan’s multiple range test (MRT) was used to further 
study the differences in the cellulose content among 
the different sites. It was found that the contents of cel-
lulose in MY, BT, and DSH were significantly different 
from each other, and the cellulose content from high to 
low was in the order of DSH, BT, and MY. Duncan’s MRT 
was also used to analyze the influence of growing years 
on cellulose content. The content of cellulose in 1-year-
old moso bamboo was significantly higher than that in 
the 2nd–5th years, whereas the content of cellulose was 
not significantly different among 2nd, 3rd, 4th, and 5th 
years. To analyze the differences in the cellulose content 
among the base, middle, top, and node, Duncan’s MRT 
was used to analyze the influence of part on cellulose 
content. It was found that the nodes had a significantly 
lower cellulose content than the bases, middles, and tops. 
Furthermore, the cellulose content of top was signifi-
cantly different from those in the base, middle, and node 
and was higher than that of node. A graphical display of 
the cellulose contents among different sites and years is 
shown in Fig. 2a.

For hemicellulose, the p values for the sites, years, and 
parts were 0.000, 0.000, and 0.028, respectively, and all 
of which were less than 0.05. These values indicated that 
there were significant differences in the hemicellulose 
content for the different sites, years, and parts. In addi-
tion, Duncan’s new MRT was used to further study the 
differences in the hemicellulose content among the vari-
ous production areas. It was found that the content of 
hemicellulose for the DSH samples was significantly dif-
ferent from those of MY and BT, among which the con-
tent of hemicellulose in DSH was the lowest, whereas 
the difference between MY and BT was not significant. 
Duncan’s MRT was also used to analyze the influence 
of growing years on hemicellulose content. The content 
of hemicellulose in 1-year-old moso bamboo was sig-
nificantly lower than that in 2nd–5th years, whereas the 
content of hemicellulose was not significantly different 
among 2nd, 3rd, 4th, and 5th years. To analyze the dif-
ference of hemicellulose content among the bases, mid-
dles, tops, and nodes, Duncan’s MRT was used to analyze 
the influence of position on hemicellulose content. It was 
found that the hemicellulose content of the nodes was 
significantly higher than those in the bases, middles, and 
tops. A graphical display of the hemicellulose contents 
among different sites and years is shown in Fig. 2b.

In terms of lignin, the p values for sites, years, and parts 
were 0.349, 0.000, and 0.000, respectively. These values 
indicated that there were significant differences in the 
lignin content in different years and parts, whereas the 
lignin content in different sites was not significantly dif-
ferent. Duncan’s MRT was also used to analyze the influ-
ence of growing years on lignin content. The content of 
cellulose in 1-year-old moso bamboo was significantly 
lower than that in 2nd–5th years, whereas the content 

Fig. 2  Cobweb maps for the cellulose, hemicellulose, and lignin concentrations in different product sites and ages. In this figure, the numbers ‘1’ to 
‘5’ arrayed around the cobweb map refer to the age; the growth sites were denoted by the lines with different colors, and the numbers along the 
vertical radius represent the percentages of lignocellulosic content
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of lignin was not significantly different among 2nd, 3rd, 
4th, and 5th years. To analyze the differences in the lignin 
content among the bases, middles, tops, and nodes, Dun-
can’s MRT was used to analyze the influence of part on 
lignin content. It was found that the lignin content of the 
nodes was significantly higher than those in the bases, 
middles, and tops. An graphical display of the lignin con-
tents among different sites and years is shown in Fig. 2c.

Statistical analysis of lignocellulosic components veri-
fied the existence of differences in growth areas, ages, 
and parts. It is, therefore, necessary to consider these 
factors when utilizing bamboo as biomass resources. 
Furthermore, the statistical analysis also highlights the 
importance of quantitative visualization for lignocel-
lulosic components, because it provides an ideal way to 
illustrate the differences in a visual manner.

Analysis of FTIR spectroscopy of bamboo in macroscale
The average spectra ± STD of the samples from different 
sites are shown in Fig.  3. These results show that noise 
can be observed easily in the front and rear regions of IR 
spectroscopy, so the wavelength range of 881–3581 cm−1 
was selected as the effective range for further analy-
sis. Figure  3 also shows that the spectral profiles of the 

various samples were basically consistent. A gradient 
trend in the absorbance was observed, which indicated 
that the internal composition of these samples was 
almost identical, but there were differences in the specific 
content. This fact provided the premise for establishment 
of spectral quantitative determination model of the inter-
nal composition.

With respect to a more detailed analysis of the spec-
troscopy, the absorption peak at 3449  cm−1 (between 
3200 and 3650  cm−1) mainly reflects the –OH-stretch-
ing vibration [36]. The absorption peak at 2946  cm−1 
(between 2500 and 3200  cm−1) is mainly caused by 
the stretching vibration of C–H [37]. For the 2000–
2500 cm−1 range, the peaks at 2397, 2377, and 2363 cm−1 
are the result of CO2 that was not fully deducted from 
the background of the air [38]. Regarding the 1500–
2000 cm−1 range, the peaks at 1592, 1639, and 1735 cm−1 
correspond to in-plane C=C aromatic vibration, O–H 
bending of absorbed water, and C=O stretching in ester 
groups, respectively [39]. This region is the most impor-
tant carbonyl absorption region. In the interval of 1300–
1500  cm−1, the peaks at 1364 and 1455  cm−1 mainly 
provide information on the C–H-bending vibrations [40, 
41]. All of the single bond-stretching vibration frequen-
cies and vibration frequencies of the molecular skeleton 
are in the 910–1300 cm−1 region [42].

Quantitative determination of lignocelluloses based 
on multivariate calibration analysis
Sample division and preliminary modeling analysis
Through the allocation method mentioned in “Sample 
allocation and abnormal sample elimination”, a calibra-
tion set with 120 samples and a prediction set with 60 
samples were obtained. The statistical results of the con-
centration values are shown in Table 1.

Table 1 shows that the concentration ranges of the cali-
bration set covered those of the prediction set. The aver-
age values and STD of the prediction and calibration sets 

Fig. 3  Average spectra ± STD of the samples from the different sites. 
The line with dark color represents the average spectra. The upper 
and lower boundaries of the translucent areas represent ± STD

Table 1  Statistical results for lignocellulose concentrations

The numbers in the columns of maximum, minimum, average, and STD represent the percentages of lignocellulosic content

Constituent Set Number Maximum Minimum Average STD

Hemicellulose Calibration 120 0.282 0.177 0.237 0.025

Prediction 60 0.282 0.179 0.237 0.025

Total 180 0.282 0.177 0.237 0.025

Cellulose Calibration 120 0.538 0.380 0.446 0.029

Prediction 60 0.537 0.381 0.446 0.029

Total 180 0.538 0.380 0.446 0.029

Lignin Calibration 120 0.239 0.138 0.204 0.019

Prediction 60 0.236 0.145 0.204 0.019

Total 180 0.239 0.138 0.204 0.019
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were very close for hemicellulose, cellulose, and lignin, 
which indicated that the allocation method was suitable.

After sample allocation, three PLSR models were 
built with the full-range (881–3581  cm−1) spectroscopy 
for hemicellulose, cellulose, and lignin, and the perfor-
mances of these models are shown in Table 2.

The results in Table 2 show that there was a strong cor-
relation between the IR spectroscopy and the concentra-
tion of lignocellulose, but the performance was not fully 
optimized, so further analysis was needed to determine 
whether there were any other interferences.

Elimination of abnormal samples
Because many factors such as unstable instrument status 
and imperfect operation would produce abnormal sam-
ples, the MCS method was performed to detect abnormal 
samples. When executing the MCS method, the number 
of cyclic sampling was set to 5000 times, and the propor-
tion between calibration and validation was set to 4:1. 
After execution, the scatter plot of the prediction residual 
mean values versus STD is shown in Fig. 4.

The outlier points can be considered to be abnor-
mal samples, because they were not stable or applicable 
for the models built based on the rest of the samples. 

According to the MCS evaluation, samples 51, 148, 
and 150 were removed for the modeling of hemicellu-
lose and cellulose, and samples 79, 81, 82, 160, and 161 
were removed for lignin. After elimination of the outlier 
samples, PLSR models were built based on the rest of 
the samples for hemicellulose, cellulose, and lignin. The 
results are shown in Table 3. Compared with Table 2, the 
performances of the models were improved for all the 
three lignocelluloses, especially for lignin. This phenom-
enon indicated that the MCS method effectively detected 
the abnormal samples.

Selection of characteristic FTIR spectral bands
FTIR spectroscopy produces rich information, but this 
also results in a problem of redundancy. To reduce the 
interference of the unrelated intervals for modeling, an 
iPLS method with a window width of 99 was performed 
to select the important spectral regions. The correspond-
ing selected sections for the three lignocelluloses are 
shown in Fig. 5. In addition, the PLSR models based on 
selected regions were subsequently established, and the 
results of these models are shown in Table 4.

Table 4 shows that the performances of the PLSR mod-
els have been improved compared with those in Table 3 

Table 2  Performances of PLSR regression models based on full bands

LVs means the number of latent variables, RC
2 and RP

2 indicate the determination coefficients for the calibration and prediction, respectively, RMSEC and RMSEP 
represent the root mean square errors for the calibration and prediction, respectively, and RPD denotes the ratio of performance to deviation (similarly hereinafter)

Constituent LVs RC
2 RMSEC RP

2 RMSEP RPD

Hemicellulose 16 0.850 0.010 0.780 0.012 2.131

Cellulose 17 0.918 0.008 0.836 0.012 2.466

Lignin 17 0.906 0.006 0.802 0.008 2.248

Fig. 4  Prediction residual mean values versus STD for all samples through MCS method. a Cellulose, b hemicellulose, and c lignin. In each 
subgraph, the abscissa and the ordinate represent the mean and STD of prediction residual, respectively. The number on the right of each point 
denotes the serial number of each sample
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with approximately 75% reduction in the dimensions of 
independent variables (spectral bands). Although the 
improvement was small, this reduction of dimension 
greatly reduced the complexity of the models.

It is worth noting that the selected ranges for ligno-
celluloses were continuous, there was still a problem of 
collinearity among the spectral variables. To solve this 
problem, a CARS algorithm was adopted to select char-
acteristic spectral bands from the ranges. The selected 
characteristic spectral bands are shown in Fig. 6.

Figure  6 shows that many of the selected characteris-
tic bands of lignocelluloses overlap, especially for those 
of cellulose and hemicellulose at 1369, 1408, 1415, 1430, 

1457, 1595, 1634, 1667, 1696, 1820, 1829, and 1883 cm−1. 
Specifically, the selected band 1369  cm−1 for cellulose 
is very close to the 1368  cm−1 selected for hemicellu-
lose, which corresponds to a CH3 symmetrical angular 
vibration of cellulose and hemicellulose [43]. The over-
lapping bands of 1415 and 1412  cm−1 were assigned to 
the symmetrically stretching vibration of COOH. The 
selected band of 1430 cm−1 for cellulose and hemicellu-
lose is closed related to the bending vibration of CH2 in 
olefin, and the selected bands of 1457 cm−1 correspond 
to a CH3 asymmetrical angular vibration in cellulose and 
a CH2-bending vibration in hemicellulose. The selected 
bands of 1529, 1609, 1610, 1633, and 1689 cm−1 for lignin 
overlapped with those of hemicellulose. In particular, the 
band at 1610 cm−1 was attributed to the stretching vibra-
tion of C=C plus the asymmetric-stretching vibration of 
COOH in the aromatic ring that is associated with cel-
lulose, hemicellulose, and lignin. The above results indi-
cate that the overlapping of lignocellulose characteristic 
bands is a phenomenon that is common with infrared 
band assignment [44].

The assignments of the other important feature bands 
to the structural constituents were as follows: 1373 cm−1 
is associated with C–H deformation in cellulose and 
hemicelluloses [45], 1425  cm−1 represents CH2 scissor 
vibration in cellulose and hemicellulose [46], 1504 cm−1 
is a diagnostic band for C=C-stretching vibration of the 
aromatic rings in lignin [47], 1508 and 1605  cm−1 are 
attributed to aromatic skeleton vibration in cellulose [8, 
48], and 1735 cm−1 reflects the C=O-stretching vibration 
of carboxyl and acetyl groups in hemicellulose [49–51]. 
For the band of 1735  cm−1, the lignocellulosic compo-
nent it contributes to establish regression model does not 
conform with its actual assignment. Because the priority 
of CARS algorithm is to select the optimal feature bands 

Table 3  Performances of PLSR regression models after elimination of abnormal samples

Constituent LVs RC
2 RMSEC RP

2 RMSEP RPD

Hemicellulose 17 0.896 0.008 0.789 0.012 2.178

Cellulose 18 0.936 0.007 0.852 0.011 2.599

Lignin 16 0.932 0.004 0.913 0.005 3.392

Fig. 5  Important spectral sections for lignocellulose modeling based 
on iPLS. a Hemicellulose and cellulose, b lignin

Table 4  Performance of PLSR models based on characteristic spectral ranges

Component Range LVs RC
2 RMSEC RP

2 RMSEP RPD

Hemicellulose 1363–1893 16 0.863 0.009 0.814 0.011 2.316

Cellulose 1363–1893 15 0.892 0.010 0.864 0.011 2.709

Lignin 1315–1941 12 0.934 0.004 0.915 0.005 3.422



Page 10 of 16Li et al. Biotechnol Biofuels  (2018) 11:263 

combination to establish the regression model with 
minimal root mean square error of cross validation, the 
selected characteristic band just has correlation with the 
lignocellulosic component, instead of reflects the func-
tional group of the lignocellulosic component exactly. 
These band assignments are summarized in Table 5.

After selection of characteristic spectral bands, a 
series of PLSR models were developed based on these 
bands, and the related results are shown in Fig. 7. Com-
paring Fig.  7 with Table  4 demonstrates that an obvi-
ous improvement was achieved by models based on the 
selected bands, and the dimension of independent vari-
ables (spectral bands) has been reduced to less than 5% 
of the full-range spectroscopy. It can be concluded that 
these selected spectral bands represented fingerprints 
characteristic of lignocellulose determination.

Fig. 6  Characteristic spectral bands of lignocelluloses. For the 
different components, the characteristic bands were marked with 
different symbols. The square, triangle, and pentagon correspond to 
hemicellulose, cellulose, and lignin, respectively

Table 5  FTIR-band assignments for the lignocellulosic components

Wavenumbers (cm−1) Functional group Polymer

1157 C–O–C asymmetrical-stretching vibration Cellulose and hemicellulose

1369 CH3 symmetrical angular vibration Cellulose and hemicellulose

1373 C–H deformation Cellulose and hemicelluloses

1415 COOH groups symmetrically stretching vibration Cellulose and hemicellulose

1425 CH2 scissor vibration Cellulose and hemicellulose

1430 CH2 bending vibration in olefin Cellulose and hemicellulose

1457 CH3 asymmetrical angular vibration
CH2 bending vibration

Cellulose and hemicellulose

1504 C=C-stretching vibration in aromatic rings Lignin

1508, 1605 Aromatic skeleton vibration Cellulose

1610 C=C-stretching vibration
COOH groups stretching vibration in aromatic ring

Cellulose, hemicellulose and lignin

1735 C=O-stretching vibration in ester groups Hemicellulose

Fig. 7  Scatter plots of the reference concentrations versus the prediction concentrations. a Cellulose, b hemicellulose, c lignin. Samples of different 
sets were marked with different symbols: the square and triangle denote the calibration set and prediction set, respectively
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Spectral transfer and chemical imaging analysis 
of microstructure
Spectral transfer
The representative spectra derived from master and 
slave instruments are illustrated in Fig.  8a, b, respec-
tively. Although similar absorption peaks are observed 
in the overall spectral curves from the two instruments, 
differences of spectral responses in some regions can 
be easily observed. These differences may result from 
factors such as variations in the sample surface tex-
ture, granularity, spectral resolution, lateral resolution, 
and the area of illumination. For example, the samples 
for the FTIR macro-spectra measurement are powders 
with size between 250 and 380  μm [24–26], whereas 
the FTIR micro-spectra were acquired from transverse 
sections of tissues with vascular bundle and paren-
chyma cell with spatial resolution of 10  μm. To over-
come the barriers between different intruments,  the 
representative spectra (Fig.  8a, b)  obtained according 
to the method in section “Spectral transfer by direct 
standardization” were adopted to calculate the transfer 

matrix based on the DS algorithm, and then, the origi-
nal FTIR micro-spectra acquired by slave instrument 
shown in Fig.  8c could be transferred via multiplica-
tion with the transfer matrix. Compared with the origi-
nal micro-spectra, the signal-to-noise ratio of the 
transferred FTIR micro-spectra (Fig.  8d) is obviously 
improved, which indicates that model transfer can 
improve the low SNR caused by high lateral resolution 
in FTIR micro-spectral measurement [35].

Chemical imaging analysis of microstructure
After model transfer, the developed PLSR models were 
applied to the transferred FTIR micro-hypercubes in a 
pixelwise manner to generate the lignocellulose distribu-
tion maps of the bamboo transverse sections.

To evaluate the performance of the chemical imaging 
of lignocelluloses based on multivariate calibration analy-
sis coupled with calibration transfer, chemical dyeing and 
single-intensity chemical imaging methods were applied, 
and the imaging results of the three methods are shown 
in Fig. 9. To achieve satisfactory dyeing effect, small cubes 

Fig. 8  Corresponding spectra for DS transfer. a Representative of macro-spectra, b representative of micro-spectra, c original micro-spectra, d 
transferred micro-spectra based on DS algorithm
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of moso bamboo were fixed, dehydrated, and embedded 
in paraffin, after which, sections with thickness of 2 μm 
were obtained by a rotary ultramicrotome (11800 Pyram-
itome, LKB Bromma, Sweden). For chemical images 
at single bands, 1157  cm−1 for the C–O–C vibration in 
cellulose and hemicellulose, 1504  cm−1 for aromatic 
skeleton in lignin [52], and 1734 cm−1 for unconjugated 
C=O in hemicelluloses were selected to map the ligno-
cellulose distributions in bamboo transverse sections, as 
shown in Fig.  9d–f. Comparing the imaging results for 
cellulose in the first column, the distributions of cellu-
lose in Fig. 9a, g are very similar, whereas the distribution 
region and content of cellulose in Fig.  9a are obviously 
smaller than shown in Fig.  9d, which shows the total 

distribution of cellulose and hemicellulose with chemi-
cal image at 1157  cm−1. It can be concluded that the 
chemical imaging method for cellulose based on multi-
variate calibration is more effective, and it can also avoid 
the interference of overlapping functional groups in the 
single-band imaging. It is worth noting that the chemical 
images of lignocelluloses (Fig. 9a, b) based on multivari-
ate calibration analysis can provide quantitative concen-
trations of lignocelluloses in each pixel, as shown in the 
color legend on the right side of the figure, rather than 
the semi-quantitative analysis by chemical dyeing and 
single-intensity chemical imaging methods. In terms of 
lignin in the second column, the distributions of lignin 
in Fig.  9b, h maps are very similar, and the distribution 

Fig. 9  Results of the three chemical imaging methods. The first row shows the chemical images based on multivariate calibration model coupled 
with calibration transfer (a–c), and the color legend on the right side of the figure represents the concentration of lignocellulose; the second row 
shows the chemical images with single band (d–f) and the color legend represents the spectral intensity at well-defined characteristic band; and 
the third row shows the result of chemical dyeing method (g, h). The slice in g is dyed with methylene blue (AR, Sinopharm Chemical Reagent 
Corporation, China), and the slice in h is dyed with phloroglucinol (AR, Sinopharm Chemical Reagent Corporation, China). The first column shows 
the distribution of cellulose (a, d, g); the second column shows the distribution of lignin (b, e, h); and the third column shows the distribution 
of hemicellulose (c, f). For the pseudo-color maps in the first row, the numbers on the right side of the color bar indicate the percentages of 
lignocellulosic content; for the pseudo-color maps in the second row, the numbers on the right side of the color bar indicate the absorbance 
intensity
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region and content of lignin in Fig.  9b are obviously 
smaller than shown in Fig.  9e at 1504  cm−1, which is 
assigned to the aromatic skeleton to map lignin. This may 
be because the chemical image based on the selection of 
1504  cm−1 for the aromatic skeleton contains not only 
lignin, but also other aromatic substances in bamboo. It 
can be concluded that the chemical imaging method of 
lignin based on multivariate calibration is more effective. 
Finally, the chemical imaging of hemicellulose, Fig. 9c, is 
compared with Fig. 9f, which is the spectral image for the 
peak at 1734 cm−1. This peak was selected for the ester 
group-stretching vibration in hemicelluloses [53–55]. It is 
worth noting that this band of 1734 cm−1 is also detected 
in dioxane lignin of spruce (G) and eucalyptus (G, S) [56]. 
It is observed that the content of lignin shown in Fig. 9f is 
obviously higher than that for the visualization of lignin 
in Fig.  9c, especially in the fiber strand. However, the 
chemical image in Fig.  9f is very similar with the lignin 
distribution in Fig.  9e, which indicates that the chemi-
cal imaging at 1734  cm−1 displays the total distribution 
of hemicellulose and lignin. To ascertain the difference 
of imaging performance based on the different methods, 
analysis of variance for the significance of the regression 
model versus a single band was performed. When con-
ducting the analysis, a factor with two levels was set up 
with nine replicates at each level. Specifically, the two 
levels corresponded to the types of chemical imaging 
data, namely, the fitting values of the regression model 
and the absorbance intensity of single band, and the nine 
replicates refer to 3 sites 3× components. The obtained p 
value of 0 demonstrates that the imaging performance via 
regression model is completely different from that of the 
single band.

It can be concluded that it is difficult to obtain ideal 
chemical distributions of the components of inter-
est using single-intensity chemical imaging methods, 
because the well-defined bands overlap those of other 
compounds. In contrast, the chemical imaging method 
based on the multivariate calibration model coupled with 
calibration transfer could provide a more powerful mean 
of detecting the chemical micro-distribution of the com-
ponents of interest.

It is worth noting that there is an obvious distribution 
difference between cellulose and hemicellulose in the 
chemical imaging of bamboo transverse section based 
on multivariate calibration model coupled with model 
transfer (Fig.  9a, c). This difference is not shown in the 
single-band chemical imaging (Fig. 9d, f ) of cellulose and 
hemicellulose, because their characteristic FTIR peaks 
often overlap, which results in very similar chemical 
images. It can be concluded that the chemical imaging 
strategy proposed in the present study could effectively 
reveal the difference in the distributions of cellulose 

and hemicellulose by mapping a set of the characteristic 
peaks of cellulose and hemicellulose that were derived 
from the multivariate calibration model. Moreover, this 
chemical imaging strategy can effectively reduce biases 
due to interferences in the single-band patterns com-
pared to the single-intensity maps.

The white light images of three transverse sections 
show the anatomical structures of the bamboo transverse 
sections, including the fiber strand, parenchymal cells, 
and their boundary regions. Figure  10d–f shows that 
cellulose is mainly concentrated in the fiber strand and 
appears to decline in the transition region from the fiber 
strand to parenchymal cells. In the fiber strand, most of 
the fibers are thick-walled fibers with small cell cavities. 
The thick cell wall of fiber strand is mainly composed 
of cellulose, whereas the periphery of parenchymal cells 
consists of uniformly distributed cellulose. The spatial 
distribution of lignin is shown in Fig. 10g–i, which shows 
that lignin is mainly concentrated in the fiber strand, 
with less throughout the parenchymal cells. This is to be 
expected, because the fiber strand is the main support 
structure of bamboo, and high lignification can improve 
the mechanical strength of bamboo. Figure  10j–l shows 
the spatial distribution of hemicellulose and shows that in 
contrast to cellulose and lignin, hemicellulose is distrib-
uted relatively uniformly throughout the tissue. In gen-
eral, the distributions of lignin and cellulose are higher 
than that of hemicellulose in the fiber strand, whereas the 
relative content of hemicellulose is higher in the paren-
chyma cells than in the fiber strand.

Conclusion
This study proposed a new method for quantitative 
FTIR micro-chemical imaging of lignocelluloses. The 
method combines quantitative multivariate calibration 
analysis with model transfer based on the FTIR micro-
spectroscopic technique. By correcting the difference 
between the FTIR macro- and micro-spectroscopic data 
using the DS transfer algorithm, a quantitative lignocel-
lulosic model that was developed from the FTIR macro-
spectroscopy could be introduced to the corrected FTIR 
micro-spectroscopic hypercube in a pixelwise manner to 
generate a quantitative microspatial distribution of the 
lignocellulosic constituents of bamboo. This approach 
could achieve a quantitative visualization of the micro-
structure of a specific chemical index, rather than semi-
quantitative analysis based on mapping of single band. 
Furthermore, this approach could avoid a catastrophic 
problem that results from the spectral overlap between 
different absorption bands and, to a certain extent, 
reduce the fatal interference of random errors such as 
band shift, baseline correction error, and spectral arti-
facts in single-band chemical imaging.
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Fig. 10  Results of the chemical imaging method based on multivariate calibration model coupled with calibration transfer. White light images of 
three transverse sections corresponding to MY, BT, and DSH (a–c, respectively); cellulose distribution images corresponding to MY, BT, and DSH (d–f, 
respectively); lignin distribution images corresponding to MY, BT, and DSH (g–i, respectively); and hemicellulose distribution images corresponding 
to MY, BT, and DSH (j–l, respectively). The numbers on the right of the color bar indicate the percentages of the lignocellulosic content
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FTIR micro-spectroscopic imaging coupled with 
multivariate calibration analysis has the ability to reveal 
the quantitative distribution of lignocellulosic com-
pounds in the tissue structure of transverse sections of 
bamboo. The chemical images show that the thick cell 
wall of the fiber strand is mainly composed of cellu-
lose, followed by lignin, which differs from the compo-
nents of the parenchyma cells. In contrast to cellulose 
and lignin, hemicellulose is distributed relatively uni-
formly throughout the tissue. The integration of FTIR 
macro- and micro-spectroscopic imaging techniques 
can provide comprehensive information for the use of 
the moso bamboo resource, such as developing biofuels 
and biosynthetic materials.

This is the first publication to bridge the macro quanti-
tative homogeneity determination with the micro-tissue 
compositional heterogeneity associated with the anatom-
ical structures through an effective integration of FTIR 
macro- and micro-spectroscopic imaging techniques. 
With the merits of quantitative determination and micro-
distribution visualization, this new chemical imaging 
technique should be helpful in the optimization of the 
use of other types of biomass fuel and materials, such as 
lipid accumulation in microalgae [57].
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