
Sun et al. Biotechnol Biofuels  (2018) 11:272  
https://doi.org/10.1186/s13068-018-1275-9

REVIEW

Microalgae for the production of lipid 
and carotenoids: a review with focus on stress 
regulation and adaptation
Xiao‑Man Sun1, Lu‑Jing Ren1,4*, Quan‑Yu Zhao2, Xiao‑Jun Ji1,4 and He Huang2,3,4

Abstract 

Microalgae have drawn great attention as promising sustainable source of lipids and carotenoids. Their lipid and 
carotenoids accumulation machinery can be trigged by the stress conditions such as nutrient limitation or exposure 
to the damaging physical factors. However, stressful conditions often adversely affect microalgal growth and cause 
oxidative damage to the cells, which can eventually reduce the yield of the desired products. To overcome these 
limitations, two-stage cultivation strategies and supplementation of growth-promoting agents have traditionally 
been utilized, but developing new highly adapted strains is theoretically the simplest strategy. In addition to genetic 
engineering, adaptive laboratory evolution (ALE) is frequently used to develop beneficial phenotypes in industrial 
microorganisms during long-term selection under specific stress conditions. In recent years, many studies have gradu‑
ally introduced ALE as a powerful tool to improve the biological properties of microalgae, especially for improving the 
production of lipid and carotenoids. In this review, strategies for the manipulation of stress in microalgal lipids and 
carotenoids production are summarized and discussed. Furthermore, this review summarizes the overall state of ALE 
technology, including available selection pressures, methods, and their applications in microalgae for the improved 
production of lipids and carotenoids.
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Background
With the increase of world population and energy 
demand, the search for renewable energy resources has 
become a critical issue. Microalgae have been recognized 
as a potential source of livestock feed, pharmaceuticals, 
and alternative fuels [1, 2]. Microalgae can utilize one or 
more of their three major metabolic modes, photoauto-
trophy, heterotrophy, and mixotrophy, depending on light 
conditions and carbon availability [3, 4]. In any of these 
modes, microalgae can provide an abundance of value-
added products, and more recently, interest has focused 
on lipids and carotenoids. The lipid content of microalgae 
is usually in the range of 20–50% of the cell dry weight, 

and can be as high as 80% under certain conditions [5]. 
Microalgal lipids are classified into two groups according 
to their carbon number. Fatty acids having 14–20 carbons 
were used for the production of biodiesel, and polyun-
saturated fatty acids (PUFAs) with more than 20 carbon 
atoms were used as health food supplements especially 
docosahexaenoic acid (DHA) and eicosapentaenoic acid 
(EPA). In addition, microalgae are also known to pro-
duce carotenoids, which are responsible for light harvest-
ing in photosynthetic metabolism. The absorbed energy 
can be transferred to chlorophylls by primary carotenoid 
like lutein, thus expanding the light-absorbing spectrum 
of microalgae [6]. Moreover, due to their anti-oxidant 
properties, carotenoids play an important role in allevi-
ating certain cancers, premature aging, cardiovascular 
diseases, and arthritis [7, 8]. Furthermore, carotenoids 
are also often used as coloring agents and dyes because 
of their intrinsic color [9, 10]. Among the well-known 
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microalgal carotenoids, β-carotene, astaxanthin and 
lutein have the highest current market potential.

Microalgae can overproduce lipids or carotenoids 
under stress condition such as high salt, high light, or 
nutrient limitation [11, 12]. For instance, lipid accumula-
tion in Dunaliella sp. and Chlorella vulgaris was signifi-
cantly increased under high-salinity stress, reaching 70% 
and 21.1%, respectively [13, 14]. Similarly, when salt con-
centration was increased from 4 to 9%, β-carotene yield 
of Dunaliella salina was increased by 30-fold [15]. How-
ever, stress-based strategies usually influence cell growth 
in an adverse way and also decrease the yield of desired 
products. Furthermore, the formation of reactive oxygen 
species (ROS) serves as an important component of the 
cellular responses to the stress condition. Consequently, 
an increase of biomass by two-stage processes and reduc-
tion of oxidative stress using phytohormones or antioxi-
dants were developed to mitigate the negative aspects of 
stress-based strategies [16, 17]. Since such two-stage pro-
cesses require complex control strategies, at least in the-
ory, it would be easier to develop new production strains 
that are genetically capable of optimal growth under the 
inducing stress conditions. Accordingly, transcription 
factor engineering was actively developed to improve 
the production of lipids or carotenoids [18–20]. Moreo-
ver, a guideline was proposed for stress-driven adaptive 
evolution experiments. ALE has been widely utilized in 
bacteria and fungi to enhance their metabolic pheno-
types or their tolerance to particular stress conditions 
[21, 22]. By the same token, the ALE studies enjoy many 
advantages offered by the microalgae cells: (1) the major-
ity of the microalgae have simple nutrient requirement; 
(2) it is easy to cultivate them in the laboratory and (3) 
it take shorter time for the microalgae cells to grow and 
their cultivation can span several generations in several 
months or weeks. In addition, compared to the random 
mutagenesis methods, ALE having sequential serial pas-
sages serves as a comparatively easy approach for the 
identification of the major mutations relevant with the 
improvement due to its low mutation frequency. Thus, it 
has recently been proven as an innovative and effective 
tool to improve the strain properties of the microalgae, 
and this field still is certainly open to innovations in the 
future.

The existing literature mainly focused on emphasizing 
the effect of various stresses on the production of lipids 
or carotenoids, or discussed the advantages of metabolic 
engineering for the improvement of microalgae strain 
[23–25]. However, in this review, we summarize recent 
works on manipulation of stress factors, including cul-
tivation models and the development of novel stress-
tolerant microalgae strains, which is mainly focused on 
overcoming the negative effects of stress-based strategies. 

More interestingly, we review the basics of ALE, includ-
ing selection pressures and methods, and based on 
this, we summarize the practicability of different ALE 
approaches for optimizing the production of lipids and 
carotenoids in microalgae. In addition, the challenges 
and future perspective of stress regulation and -adapta-
tion strategies were summarized.

Manipulation of stresses by different cultivation 
modes
Lower biomass and suffering oxidative injury serve as 
the two major consequences of cellular responses to the 
stress-based strategies. It has been well established that 
ROS can react instantaneously and nonspecifically with 
essential biological molecules, resulting in the altera-
tion of cellular functions by leading to lipid peroxidation, 
protein oxidation, and DNA damage (Fig.  1). Therefore, 
increasing the biomass and maintaining ROS detoxifica-
tion under stress conditions is paramount for the eco-
nomically viable production of lipids or pigments.

Two‑stage cultivation strategies
Abiotic stresses
To resolve the conflict between cell growth and the pro-
duction of valuable molecules, a general countermeasure 
is two-stage cultivation strategy, dedicating the first stage 
with optimum growth conditions to gain the maximum 
biomass production, while reserving the second process 
for the accumulation of lipids or carotenoids under vari-
ous stress conditions (Fig.  2). In general, lipids can be 
over-produced by microalgae by introducing stress at the 
second cultivation stage, for instance nitrogen depletion 
[26], light intensity [27], temperature [28], salt concentra-
tion [29], or iron concentration in the second stage [30]. 
In one approach, microalgae were grown under red LEDs 
(660 nm) in the first phase to obtain the maximum bio-
mass production, and stressed in the second phase using 
green LEDs (520  nm) to stimulate lipid accumulation 
[31]. Similarly, a two-stage culture strategy was imple-
mented to increase the biomass of Isochrysis galbana 
under sufficient nutrients, followed by cultivation under 
low-salt stress, which increased the lipid content from 24 
to 47% [32]. In Nannochloropsis oculata, the lipid yield 
obtained in a two-stage process was 2.82-times over that 
being generated through the conventional single-stage 
batch cultivation [33].

Compared to lipids, the algae-based production of 
pigments is well established at a large scale. Two-stage 
processes can be more readily scaled up and are ame-
nable to outdoor production [30]. High-light stress is 
the best induction technique for the overproduction of 
carotenoids in a number of species. Increasing the light 
intensity resulted in an enhanced lutein productivity of 
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Fig. 1  Oxidative damage under stress conditions and manipulation of stresses by transcriptional engineering. GSH glutathione, ER endoplasmic 
reticulum

Fig. 2  Effects of typical nutrient- and environmental stresses on the production of lipid and carotenoids in microalgae, and the resulting two-stage 
cultivation strategies used to overcome the biomass limitation imposed by the stress conditions
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3.6 mg L−1 day−1 in Desmodesmus sp., as well as a maxi-
mum β-carotene production of 30  pg  cell−1  day−1 in D. 
salina [34, 35]. The two-stage strategy with light stress 
has been successfully performed for carotenoids produc-
tion, but it is most commonly applied in the production 
of astaxanthin. A richer astaxanthin product (4% of dry 
biomass) was yielded through a two-stage cultivation 
system in conjunction with light stress, among which a 
final astaxanthin productivity of 11.5 mg L−1 day−1 was 
obtained [36]. Such sequential manufacturing system 
is also applied for the manufacturing of the astaxanthin 
through the microalga Haematococcus pluvialis [37, 38]. 
Similarly, a two-stage process with a switch in light inten-
sity was also applied to enhance the lutein productivity 
of Scenedesmus obliquus [39]. In a recent study, an inno-
vative staged cultivation method was proposed to over-
come the limiting factors associated with the growth of 
H. pluvialis, which resulted in a 1.16-fold increase in bio-
mass concentration [40]. Moreover, temperature also has 
strong effect on carotenoids production by influencing 
the enzymes involved in carotenoids biosynthesis. It has 
been reported that high temperatures led to an increase 
of lutein accumulation in Muriellopsis sp. and Scenedes-
mus almeriensis. The effects of day- and night-time tem-
perature on H. pluvialis were studied, and the results 
indicated that raising the day- or night-time temperature 
could stimulate accumulation of astaxanthin during the 
night up to a temperature of 28 °C [41]. However, insuf-
ficient work has been done on carotenoids production 
using two-stage process combined with high-tempera-
ture stress.

Autotrophy/heterotrophy regimes
Interestingly, a novel sequential heterotrophy–dilution–
photoinduction process was developed to prevent the 
reduction of biomass. In this approach, microalgae are 
grown heterotrophically first to obtain a high cell den-
sity, after which the culture medium is diluted to a suit-
able concentration. Subsequently, it was transferred to 
a brightly lit environment for photoinduction. A novel 
approach called “sequential heterotrophy–dilution–pho-
toinduction” was developed, in which the lipid content 
of Chlorella vulgaris, Chlorella pyrenoidosa and Chlo-
rella ellipsoidea was increased by 84.57%, 70.65%, and 
121.59%, respectively [42]. Similarly, a maximum lipid 
content of 50.5% (of dry weight) was achieved using het-
erotrophy–photoinduction cultivation regime, represent-
ing a 69.3% increase over that of single heterotrophic 
cultivation [43]. More importantly, proteomic analysis 
revealed that ATP synthase and acyl-CoA dehydrogenase 
were down-regulated, while glucose-1-phosphate adeny-
lyltransferase and malate dehydrogenase were markedly 
up-regulated [43]. Furthermore, this system has been 

utilized for biomass and astaxanthin production in H. 
pluvialis [44]. Recently, using a two-stage heterotrophy/
photoinduction culture strategy, the lutein productiv-
ity of Scenedesmus incrassatulus was improved by 60% 
in comparison with the autotrophic fed-batch culture 
[45]. The productivity of total metabolites and lipids 
can be increased using these strategies in the same bio-
mass obtained at the end of the growth cycle. However, 
such two-stage cultivation strategies can consume more 
energy than comparable one-stage systems, especially if 
harvesting the biomass is essential for entry into the sec-
ond fermentation stage [46]. Moreover, it is difficult to 
determine the timepoint of fermentation exactly, which 
results in the instability of the production.

Supplementation of growth‑promoting agents
Regulating biosynthetic pathways
In addition to two-stage cultivation strategies, phyto-
hormones are also able to induce the production of lipid 
or pigments in microalgae by adjusting the internal bio-
chemical pathways [16], which serves as growth-pro-
moting agents within the single-stage cultivation process 
(Table  1). Auxins play an important role in the growth 
of plants and microalgae by regulating cell division and 
expansion [47]. In S. obliquus, the biomass yield was 
increased by 1.9–2.5-folds through addition of 10−5  M 
Indole-3-acetic acid (IAA) and diethyl aminoethyl hex-
anoate (DAH), respectively, whereby the lipid content of 
microalgae grew to 100 mg/g-DCW due to the impact of 
both phytohormones [48]. Moreover, improved growth 
and lipid accumulation under the impact of the IAA and 
corresponding analogs has also been reported in C. vul-
garis [49], C. pyrenoidosa and Scenedesmus quadricauda 
[50].

Moreover, auxin treatments combined with stress con-
ditions can further stimulate cell growth and the lipid 
production of microalgae [51]. Recently, under stress 
induced by a 50% nitrogen limitation, the highest bio-
mass concentration and lipid productivity were achieved 
by treating Chlorella sorokiniana with IAA [52]. Fur-
thermore, the up-regulated expression of rbcL (ribulose 
1, 5-bisphosphate carboxylase/oxygenase) and accD 
(acetyl-CoA carboxylase) genes suggested that IAA can 
regulate the certain metabolic pathways related to carbon 
fixation and lipid biosynthesis [50]. In another study, Liu 
et al. [53] founded that 1-naphthaleneacetic acid (NAA) 
exhibited a more pronounced promoting effect on cell 
growth and lipid productivity of C. vulgaris than absci-
sic acid (ABA) and 2,4-dichlorophenoxyacetic acid (2,4-
D), and further analysis showed that NAA treatment 
can up-regulate the KAS1 and SAD genes expression 
which regulated fatty acids biosynthesis in microalgae. 
It has been reported that the stimulated effect of IAA 
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on microalgae growth was more obvious under nitrogen 
limitation condition [54]. A novel stepwise strategy was 
developed to improve both growth and lipid production 
in Dunaliella tertiolecta, in which 2, 4-D addition at the 
first phase improved biomass productivity by 40%, and 
then salt stress was applied to increase lipid content from 
24 to 70% [55]. ABA can enlarge cell diameter and pro-
mote cell division to alleviate growth limitation caused 
by stress condition, although it forces microalgae cell to 
enter the resting phase earlier. For example, exogenous 
addition of abscisic acid (ABA) increased the biomass 
and SFA content of S. quadricauda up to 2.1-fold and 
11.17% compared to nitrogen-deficient cells, respectively 
[56], whereby exogenous ABA also improved the cells’ 
tolerance to higher salinity and osmotic stress [57, 58].

Similarity, phytohormones also can enhance carot-
enoids production by working as metabolism enhancers. 
After treatment with methyl jasmonate and gibberel-
lin A3, H. pluvialis cells accumulated more astaxanthin 
than the control, which might be due to the up-regula-
tion of β-carotene ketolase genes [59]. Gao et al. [60, 61] 
reported that the astaxanthin productivity of H. plu-
vialis can be increased by supplementing 25 or 50 mg/L 
jasmonic acid (JA) and salicylic acid (SA), and further 
analysis found that the promoting mechanisms were dose 
dependent. For instance, 25 mg/L JA treatment exhibited 
greater effect on the expression of pds, crtR-B and lyc 
genes, while 50 mg/L JA impacted the expression of ipi-
1, ipi-2, psy, crtR-B and crtO genes more significantly. In 
addition, under 5 mg/L fulvic acid induction, the astax-
anthin content of H. pluvialis was increased by 86.89%, 
in which the transcription levels of phytoene desatu-
rase (PDS), lycopene cyclase gene (LCY) and β-carotene 
hydroxylase (CHY) genes was increased by 69.3-, 1.2-, 

and 18.1-fold, respectively [62]. In conclusion, addition of 
phytohormones strategy is a sustainable and economical 
strategy, and it can easily be applied for large-scale pro-
duction of lipids or carotenoids.

Alleviating oxidative stress
It is worth mentioning that increasing experimental evi-
dence links phytohormones to a reduction of oxidative 
stress. ROS are unavoidable by-products of many meta-
bolic pathways that are active under stress conditions 
[63]. The cellular ROS of the highest importance include 
the hydrogen peroxide (H2O2), superoxide anion (O2

−), 
peroxyl radicals (LOO−), lipid hydroperoxides (LOOH), 
and hydroxyl radical (−OH) [64]. To scavenge ROS, 
microalgae have evolved enzymatic (SOD superoxide dis-
mutase, CAT​ catalase, APX ascorbate peroxidase) as well 
as non-enzymatic (ascorbate, glutathione) antioxidant 
defense mechanisms (Fig. 1). Nevertheless, when cells are 
exposed to stress, balance between the ROS production 
and elimination is disturbed. This results in the damage 
via the oxidation of cellular components, i.e., “oxidative 
stress” [65].

Increasing evidences suggested that phytohormones 
can regulate the oxidative stress response of microal-
gae [66 换一个新的]. For example, the activities of CAT 
and APX were markedly increased in response to oxida-
tive stress in ABA-treated Chlamydomonas reinhardtii 
[67]. Likewise, addition of ABA can enhance the gene 
expression of the APX and CAT for mitigating oxida-
tive stress generated by osmotic and salt stresses [58]. 
Chokshi et  al. [68] and Wu et  al. [69] showed that the 
phytohormone content was significantly higher in nitro-
gen-depleted microalgae cells than in nitrogen-replete 
condition, likely because intracellular oxidative species 

Table 1  Manipulation of stress factors by phytohormones

Species Phytohormones Stress Performance References

Scenedesmus quadricauda ABA Nitrogen-deficient stress The dry biomass yield was increased up to 2.1 fold [56]

Chlorella sorokiniana IAA, DA-6 Nitrogen-limited stress Growth and lipid accumulation were both promoted 
and phytohormones enhances CAT and SOD enzyme 
activities

[52]

Nannochloropsis oceanica ABA, CKs Nitrogen-depletion stress Exogenous CKs stimulate cell-cycle progression, but 
ABA acts as both an algal growth repressor and a 
positive regulator in response to stresses

[70]

Chlamydomonas reinhardtii IAA, GA3, KIN, TRIA, ABA Nitrogen-limited stress All five of the tested phytohormones significantly 
increased microalgal growth, particularly in nitrogen-
limited media

[54]

Chlamydomonas reinhardtii ABA Osmotic and salt stresses ABA treatment markedly reduced ROS generation 
and enhanced gene expression of the antioxidant 
enzymes

[58]

Chlorella vulgaris IAA, PAA, IBA, NAA Oxidative stress All auxins can suppress lipid peroxidation and hydro‑
gen peroxide accumulation

[49]

Chlamydomonas reinhardtii ABA Oxidative stress Addition of ABA improve the growth of this alga [67]
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and phytohormones interact with each other to fine-tune 
the oxidative stress response. In the oleaginous microalga 
Nannochloropsis oceanica, Lu et  al. [70] also found that 
the key genes involved in the ABA biosynthesis pathway 
were up-regulated in nitrogen-starved cells, indicating 
the function of the ABA on the release of the stress dam-
age. Moreover, phytohormones are often associated with 
the signaling induced by ROS. For instance, the H2O2 and 
auxin create the antagonistic impacts over the gene acti-
vation and cell cycle [71]. H2O2 treatment can suppress 
the expression of auxin-responsive genes via mitogen-
activated protein kinase activation [72]. Recently, Kha-
sin et al. [73] suggested that ABA can participate in ROS 
signaling pathways and alter ROS production and scav-
enging, which is a potential new mechanism for the regu-
lation of oxidative stress.

In fact, antioxidants have been used more extensively 
than phytohormones to promote the scavenging of intra-
cellular ROS in microalgae. But almost, all of such stud-
ies were focused on PUFAs production, which might 
be for the reason that the unsaturated double bonds in 
PUFAs are chemically more prone to oxidation. For 
instance, DHA productivity of Crypthecodinium cohnii 
was increased from 20 to 44% by adding the sesamol [74]. 
Additionally, Gaffney et al. [75] enhanced the antioxidant 
ability of the microalgae Schizochytrium sp.  through the 
facilitations of the flaxseed oil. Moreover, with the treat-
ment of ascorbic acid, DHA yield of Schizochytrium sp. 
was increased from 26.5 to 38.3 g/L, which accompanied 
with the lower ROS levels and higher antioxidant capac-
ity [17]. Supplementing butylated hydroxytoluene or pro-
pyl into the media led to the increase of lipid and biomass 
levels in the thraustochytrids, with propyl gallate being 
the more effective of the two antioxidants [76]. There-
fore, the combination of antioxidants and stress-based 
strategies appears to be a practical cultivation mode to 
improve the growth of microalgae.

Co‑cultivation of microalgae with the growth‑promoting 
bacterium
For the reduction of the production cost and improve-
ment of lipid productivity, microalgae should be simulta-
neously cultivated in low-cost cultivation systems, such 
as co-cultivations [77]. In the mixed culture, microalgae 
could act as an oxygen generator for the bacteria while 
the bacteria provided CO2 to microalgae [77]. Moreover, 
certain class of bacteria can stimulate microalgae growth 
by producing growth-promoting factors, including trace 
metals, vitamins, phytohormones, and chelators [77]. Do 
Nascimento et al. [78] showed that inoculation with the 
bacterium Rhizobium strain resulted in increments of up 
to 30% in lipids accumulation of the oleaginous microal-
gae Ankistrodesmus sp., and this stimulation effect was 

apparently related to indol 3-acetic acid and/or vitamin 
B12 produced by the bacterium. Many studies reported 
that the growth of C. vulgaris was significantly enhanced 
in the presence of Azospirillum brasilense that a bacte-
rium can produce the plant hormone indole-3-acetic acid 
[79, 80]. When microalgae Chlorella sp. was co-cultured 
with the growth-promoting bacterium Azospirillum sp., 
the lipid content was greatly increased from 6.76% under 
monoculture to 32.94% under co-culture system [81]. 
However, although microalgae–bacteria co-cultivation 
has been comprehensively described, the positive effects 
of bacterial on lipid production are mostly speculative. In 
the future, it is needed to select and characterize more 
growth-promoting bacteria for improving microalgae 
cultivation.

Countering the negative effects of stress 
via transcription factor engineering
Transcription factors (TFs) are global regulators of bio-
logical pathways that act by up- or downregulating target 
genes, which have been widely used to construct robust 
microalgal strains (Table 2). Compared to directed modi-
fication of specific enzymes, TFs engineering can provide 
more substantial metabolic modification by controlling 
multiple steps in a pathway [82]. In fact, diverse “omics” 
technologies, including genomics, transcriptomics, lipid-
omics, proteomics, and metabolomics, are powerful tools 
to identify stress-response genetic targets under stress 
condition [83–85]. For example, using a combined omics 
(transcriptomic, proteomic and metabolomic) analysis, 
about 70 TFs genes were identified in C. reinhardtii that 
are involved in controlling nitrogen-deprivation process 
[86]. In recent years, an increasing number of TFs func-
tion have been confirmed by direct genetic experiments 
(Fig. 1).

Dof-type transcription factor was suggested to regu-
late the transcription of many genes involved in lipid 
biosynthesis via directly interacting with DNA in their 
promoter regions. Overexpression of a Dof-type TF 
(GmDof4) greatly increased lipid production of Arabi-
dopsis, and authors found that the acetyl-coenzyme A 
carboxylase (ACCase) gene was up-regulated in trans-
genic plants [87]. ACCase is responsible for transforming 
acetyl-CoA into malonyl-CoA, which is the first and rate-
limiting step for the biosynthesis of fatty acids. When 
overexpressed a Dof-type TF, the total lipid production of 
C. reinhardtii CC-137 was also increased by twofold [88]. 
In transgenic strain, the expression of the enoyl-ACP-
reductase (ENR1) and the sulfolipid synthase (SQD2) 
genes was greatly up-regulated, which is a key gene 
related to fatty acid synthase (FAS) and the glycerolipid 
biosynthesis, respectively [88]. Furthermore, Salas-Mont-
antes et al. [89] investigated the feasibility for improving 
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lipid accumulation of C. reinhardtii under nutrient defi-
ciency stress by overexpression of a Dof-type TF (Dof11), 
and results showed that the lipid content and the propor-
tion of specific fatty acids were all increased. Similarly, a 
combination of the overexpression of GmDof4 and mixo-
trophic culture condition was investigated in microalgae 
Chlorella ellipsoidea, and results showed that the lipid 
content was increased from 46.4 to 52.9% with no impact 
over the growth rate [90]. Furthermore, analysis results 
indicated that the expression of 754 genes was up-regu-
lated and that of 322 genes was down-regulated in trans-
genic C. ellipsoidea, which suggested that GmDof4 may 
regulate genes related to fatty acid, lipid, carbohydrate 
metabolism, and protein [90].

A MYB-type transcription factors, Pi Starvation 
Response1 (PSR1), was found to regulate phosphate star-
vation signaling by up-regulating phosphatases and Pi 
transporters. Under P starvation, PSR1 mutation of C. 
reinhardtii not only inhibited lipid biosynthesis but also 
abolished starch production induced by starvation [91]. 
Furthermore, Bajhaiya et al. [92] examined the metabolic 
regulatory role of PSR1 under P starvation, and found 
that its overexpression increased starch biosynthesis of C. 
reinhardtii, which correlated with a higher expression of 
specific starch metabolism genes such as starch synthase 
(SSS1) and phosphorylases (SP1). In author study, PSR1 
has also been identified as a regulator of TAG biosynthe-
sis in response to nitrogen starvation in C. reinhardtii, 
and its overexpression increased TAG accumulation 
without inhibiting growth [93]. However, that study did 

not examine the expression level of downstream target 
genes and the potential mechanism of PSR1 under P star-
vation. Moreover, it was reported that MYB-type TF also 
play a role in CO2-responsive genes in C. reinhardtii and 
salt tolerance in Dunaliella bardawil, but lack confirma-
tion by direct genetic experiments [94, 95].

A significant landmark was the identification of nitro-
gen response regulator NRR1 in Chlamydomonas. Inser-
tional mutant NRR1 resulted in a reduction of TAG 
accumulation by 50%, and its expression was unaffected 
by other nutrient deficiencies, indicating that this regula-
tor was exclusive to nitrogen-deprivation condition [96]. 
However, the role of NRR1 in other oleaginous microal-
gae has not been recapitulated. An intriguing alternative 
approach to overcome growth limitation under nutrient 
starvation involves controlling cell quiescence. CHT7 
is a transcription factor that regulates quiescence and 
proliferation under nutrient-starved and -replete condi-
tions, and C. reinhardtii mutations of CHT7 can promote 
starvation-induced TAG accumulation without limiting 
the biomass yield [97]. Another study identified the regu-
lator TAR1 that has pleiotropic function in response to 
nitrogen deficiency by regulating cell growth and photo-
synthesis repression [98]. Compared with the wild type, 
the TAR1-defective C. reinhardtii mutant exhibited more 
pronounced arrest of cell division, resulting in a 10% 
higher TAG yield [98]. In Nannochloropsis salina, overex-
pression of the transcription factor NsbHLH2 increased 
biomass productivity by 36% and FAME productiv-
ity by 33% under nitrogen-limitation stress [99]. As for 

Table 2  Transcription factors involved in stresses

Species Transcription 
factors

Stresses Performances References

Chlamydomonas reinhardtii PHR1 Phosphate starvation PHR1 acts downstream in the phosphate starvation signaling 
pathway via binding the promoter of phosphate starvation 
responsive structural genes

[83]

Chlamydomonas reinhardtii LCR1 CO2-limiting stress LCR1 transmits the low CO2 signal to at least three 
CO2-responsive genes and then fully induces carbon-concen‑
trating mechanism

[94]

Dunaliella bardawil WRKY Salt stress All the carotenogenic genes can be recognized by WRKY tran‑
scription factors

[95]

Chlamydomonas NRR1 Nitrogen starvation NRR1, a putative SQUAMOSA promoter binding protein-type 
transcription factor, was proved to be a regulator of N-induced 
TAG biosynthesis

[86]

Chlamydomonas reinhardtii PSR1 Nitrogen starvation PSR1 is a pivotal switch that triggers cytosolic lipid accumulation [93]

Chlamydomonas reinhardtii PSR1 Phosphorus starvation PSR1 gene is an important determinant of lipid and starch 
accumulation in response to phosphorus starvation but not 
nitrogen starvation

[92]

Chlorella ellipsoidea GmDof4 Nitrogen starvation Increase of lipid content without growth limitation [90]

Nannochloropsis salina NsbHLH2 Nitrogen limitation Biomass and FAME productivity was increased by 36% and 33%, 
respectively

[99]

Nannochloropsis gaditana ZnCys Nitrogen starvation Lipid is doubled by attenuation of ZnCys expression [100]
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knockout of TF, the lipid accumulation regulator ZnCys 
in Nannochloropsis gaditana was knockout by Cas9-
mediated insertional attenuation, and results showed that 
the lipid productivity was doubled without a concomi-
tant growth limitation under nutrient-replete conditions 
[100]. However, the availability of these TFs needs to be 
further proven in more oleaginous microalgae.

Additionally, there is a chance of manipulating the 
stress-responsive promoters for the increased lipid accu-
mulation. To improve lipid biosynthesis under P depri-
vation in C. reinhardtii, Iwai et  al. [101] established an 
overexpression depending on P deprivation construct of 
a Chlamydomonas type-2 diacylglycerol acyl-CoA acyl-
transferase (DGTT4), where a P starvation-inducible 
promoter was introduced. Furthermore, the introduction 
of this heterologous promoter into Nannochloropsis sp. 
also enhanced the lipid accumulation under P starvation 
[102]. Taken together, transcription factor engineering is 
a promising methodology to be included in the microal-
gal biotechnology toolkit, but much additional research 
and development are necessary to further understand 
and validate the use of these tools, especially in relation 
to secondary metabolism.

Adaptive laboratory evolution
Microorganisms have the ability to adapt rapidly to 
changing environments. Under severe stress, adapta-
tion can occur via acquisition of beneficial phenotypes 
by random genomic mutations and subsequent positive 
selection [103, 104]. It is, therefore, not surprising that 
this plasticity of microorganisms has been harnessed for 
improving growth under stress conditions [21]. In con-
trast to the directed modification of particular enzymes 
and the rational engineering strategies, ALE enjoys the 
advantage of making the non-intuitive beneficial muta-
tions take place within various regulatory regions and 
genes in parallel [105]. Moreover, engineering microalgae 
strains for overproduction of carotenoids or lipids usu-
ally requires the extensive genetic modifications, which 
often result in a great reduction of cellular fitness. On the 
contrary, ALE allows the phenotypic changes to be obvi-
ously connected with specific growth environment that 
results in the selection of the traits, which can not only 
overcome such negative effect but also lead to improve-
ments in the physiological fitness of the strains. ALE has 
been widely utilized to change phenotypic and biological 
functions of many model organisms, such as Escherichia 
coli and Saccharomyces cerevisiae [105–107].

Choice of stress conditions and equipment
During microbial ALE, a microorganism is cultivated 
under clearly defined conditions for prolonged periods 
of time, in the range of weeks to years, which allows the 

selection of improved phenotype. The selective stress 
serves as the first and also the foremost step for the suc-
cess of ALE. It can be classified into two major categories, 
including the environmental stress and the nutrient stress 
[108]. In Chlorococcum littorale, ALE experiments were 
done using two different cycles: repeated long starvation 
(13  days of N = 0) lasting for 75  days and also repeated 
short starvation (6  days of N = 0) over a total period of 
72 days. However, there was no difference shown in the 
production of biomass and lipid by the longer or shorter 
periods of starvation, suggesting that C. littorale might 
not fit the induction of the changes through ALE using 
nitrogen starvation as a stress factor [109]. If aiming to 
stimulate the growth performance of C. littorale, people 
should consider that ALE experiments are conducted 
under intensive selective pressure such as high light or 
high temperature. By contrast, ALE with nitrogen-star-
vation stress successfully improved the cell growth and 
lipid accumulation of C. reinhardtii [110], indicating the 
response to repeated stress is highly strain dependent. In 
this regard, one should pay attention to which stress con-
dition can most potentially affect one’s working strain.

Another important parameter that affects the outcome 
of ALE experiment is the passage size, which decides how 
much of the population is permitted to propagate to each 
subsequent batch culture. If there is a beneficial muta-
tion but is lost due to the population size bottlenecks, 
then  the evaluation rate would be halted or slowed. It 
has been shown from the evolution experiments that the 
mutator hitchhiking can be seriously delayed among the 
smaller population bottlenecks [111]. However, enhanc-
ing the passage size would enhance the possibility of real-
izing the beneficial mutation, but also lead to increase in 
the resources needed to sustain. Due to this, the passage 
size is often determined by an individual’s schedule. For 
the microalgae, the impact of the passage size on the ALE 
experiment has not been systematic explored.

In addition to the choice of selection pressure, ALE 
methods depend on culture equipment. In general, it 
is relatively easy to establish the ALE experiments. The 
common approaches usually include serial transfer, col-
ony transfer or chemostat culture (Fig. 3). Serial transfer 
from a liquid medium and colony transfer from a solid 
medium were used for the sequential transfer of cells 
in repetitive cultures [112]. Put simply, an aliquot of 
the culture is transferred to a new flask or culture dish 
with fresh medium for an additional round of growth 
at regular intervals. Clearly, these easy setups have the 
advantage of cheap equipment and ease of massive paral-
lel culture. By contrast, the central principle of the che-
mostat is that a stable equilibrium is achieved through 
the continuous addition of medium and simultaneous 
removal of culture broth [113]. In this constant steady 
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state, defined nutrient- and environmental stresses can 
be finely tuned, and the growth rate of the cells can be 
experimentally controlled by modulating the rate of cul-
ture dilution. Although chemostat culture requires com-
plex procedures that come with a higher cost, the larger 
cell population of the chemostat provides more genetic 
diversity than the smaller population of transfer tech-
niques. Moreover, continuous selection using the chemo-
stat technique can result in shorter times of ALE, which 
in turn can reduce the overall project cost.

Development of stress‑tolerant strains by adaptive 
laboratory evolution
In recent years, there were many ALE experiments being 
conducted successfully and applied to enhance the pro-
duction of lipid or other high value-added products in 
microalgae (Table  3). Here, we summarized the most 
important workers regarding the ALE strategies with 
the aim of improving the stress tolerance of microalgae 
strains, as well as the production of lipid and carotenoids. 
The most common stress factors used for improving the 
performance of microalgae can also be divided into the 
categories of nutrient stress, environmental stress, oxida-
tive stress, and natural selection stress.

Nutrient stresses
The efficiency of nutrient utilization is an important 
aspect of microbial growth, and for industrial purposes, 
it may be governed by factors such as substrate costs or 
increased bioconversion rates. Although previous stud-
ies demonstrated that glucose is comparatively better 
compared with other carbon sources in stimulating DHA 
accumulation in C. cohnii, high glucose concentrations 
remain inhibiting cell growth and lipid accumulation 
[114]. To stimulate the high cell growth and release the 
substrate inhibition, ALE was performed for 650  days 
with gradually enhanced glucose concentration. Com-
pared to the parent strain, glucose-tolerant C. cohnii 
strain yielded 15.49% more lipid accumulation [115]. 
The following metabolomics analysis suggested that the 
increased glucose tolerance was mediated by a positive 
regulation of glycerol, glutamic acid, succinic acid, and 
malonic acid, and negative regulation of tyrosine, lyxose, 
and fructose [115].

In addition to glucose, glycerol, the cheap by-product 
of biodiesel production, is also a potentially attractive 
substrate for the production of high value-added mate-
rials by fermentation. However, an engineered strain of 
Rhodococcus opacus MITXM-61 did not produce TAG 
on glycerol and grew poorly. Subsequently, an adaptive 

Fig. 3  Adaptive laboratory evolution (ALE) can be performed in the laboratory using three broad approaches. A Serial transfer can be performed 
in shake flasks with liquid medium where nutrients will not be limited, and an aliquot of the culture is transferred to a new flask with fresh medium 
for an additional round of growth at regular intervals. B Colony transfer is similar to serial transfer, but is performed on plates with solid medium. C 
A chemostat comprises a culture vessel in which the population grows under continuous agitation and aeration. Fresh medium is added into the 
vessel at a defined rate and culture broth is harvested continuously during the process. The figures a, b, and c illustrate the number of cells that 
grew during ALE the processes shown in A, B, and C, respectively (This figure was modified from Jeong et al. [112])
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evolution strategy was applied by gradually adding glyc-
erol into glucose/xylose medium, and the conversion 
of glycerol into TAG was improved successfully [116]. 
However, the genetic constitution of evolved strain was 
not unidentified. Surprisingly, Yoneda et al. [117] adap-
tively evolved R. opacus over 40 passages using phenol 
as sole carbon source. The endpoint strains showed 
higher phenol consumption rates and twofold higher 
lipid production from phenol than the wild-type strain. 
Whole-genome sequencing and comparative transcrip-
tomics identified highly upregulated genes such as 
phenol monooxygenase reductase and shikimate trans-
porter gene, implying that increased phenol import is 
more important than export in phenol tolerance in R. 
opacus. Moreover, lipid biosynthesis genes, including 
fatty acid synthesis gene (FAS) and desaturase genes, 
were also greatly up-regulated in evolved strain, which 
is consistent with the increase of lipid production.

In a somewhat different approach, C. reinhardtii was 
subjected to nitrogen limitation stress over 50  days to 
enhance the lipid production. After adaptive evolution, 
wild-type strain CC124 and starch-less mutant cells 
showed a 50% and 175% increase, respectively [110]. 
Furthermore, proteomics analyses showed that the 
key control protein [periplasmic l-amino acid oxidase 
(LAO1)] of carbon–nitrogen integration was specifi-
cally overexpressed. Moreover, the enzymes involved 
in lipid metabolism and lipid body-associated proteins 
(glutathione-S-transferases and esterase), were also 
induced during adaptive evolution [110]. When C. rein-
hardtii was conducted ALE combined with nitrogen-
starvation stress for 84 days, the lipid productivity was 
increased by 2.36 times [118].

Environmental stresses
Among environmental stresses, adaptation of microal-
gae to unfavorable light conditions was investigated in 
the largest number of studies. The biomass productivity 
of microalgae is a key limiting factor of economic feasi-
bility, especially in photosynthetic processes. A process 
spanning 114 days of ALE was used to improve the bio-
mass productivity and cell density of C. vulgaris grown 
under less expensive lighting by 660 nm LEDs instead of 
the traditional but more expensive 680-nm LEDs [119]. 
In addition, ALE with light stress was also linked to 
increased carotenoids production. For example, Fu et al. 
[120] applied ALE to obtain mutants of D. salina (HI 
001) with grown carotenoids accumulation, including the 
lutein and β-carotene under the combined red- and blue-
light stress. Wild-type D. salina strains are not suitable 
for industrial production of lutein since they are sensitive 
to red light and unable to grow fast at high light inten-
sities. By contrast, the ALE-derived strain D. salina (HI 
001) can withstand high light stress, and therefore holds 
promise as an industrial lutein producer. Subsequently, 
the authors selected light quality, osmotic stress and 
nitrate concentration as three representative stressors to 
again enhance the lutein production in D. salina (HI 001) 
[121]. Similarly, in the marine diatom Phaeodactylum tri-
cornutum, ALE with combined red- and blue-light stress 
also led to the increase of biomass production and fucox-
anthin accumulation [122].

Moreover, to enhance the CO2 fixation ability of Chlo-
rella sp., ALE was proposed under 10% CO2 condition 
to improve its CO2 tolerance, which led to increased 
accumulation of chlorophylls and carotenoids [123]. 
Nevertheless, this study did not investigate the physi-
ological parameters and gene expression. Furthermore, a 

Table 3  Typical adaptive laboratory evolution experiments with microalgae

Microalgal species Selection pressure Selection time Performance References

Chlamydomonas reinhardtii Nitrogen limitation 50 days The numbers of intracellular lipid bodies was mas‑
sively increased

[110]

Crypthecodinium cohnii Inhibitory concentration of glucose 650 days High biomass and lipid accumulation was achieved [115]

Rhodococcus opacus High glycerol concentration 22 days The conversion of glycerol into TAG was improved [116]

Rhodococcus opacus Phenol as sole carbon source 40 passages The lipid production was increased by twofold [117]

Chlamydomonas reinhardtii Nitrogen starvation 84 days Lipid productivity was increased by 2.36 times [118]

Chlorella vulgaris 660 nm LEDs 114 days Maximum biomass density was achieved [119]

Dunaliella salina Combined blue and red light 80 days Increase of accumulation of carotenoids under com‑
bined blue and red light

[110]

Phaeodactylum tricornutum Combined blue and red light 60 days Increase of biomass production and fucoxanthin 
accumulation

[122]

Chlorella sp. 10% and 20% CO2 97 days Enhanced CO2 fixation capability and carotenoids 
accumulation

[123]

Schizochytrium sp. Agitation at 230 rpm 40 days Maximum cell dry weight and DHA yield were 
observed

[131]
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gradient-based adaptive evolution method was developed 
to increase the CO2 tolerance of H. pluvialis using 15% 
CO2 as selection stress. After 10 generations, the biomass 
and astaxanthin yields of the domesticated mutant in an 
atmosphere comprising 15% CO2 were 1.3 times and 6 
times higher than in normal air, which might be attrib-
uted to the up-regulation expression of photosynthetic 
enzymes such as ATP synthase and RuBisCO genes [124].

In most of the microalgae, high-salt stress is beneficial 
to lipid accumulation, but itusually led to the decrease 
of photosynthetic pigments and oxidative damage. To 
obtain salt stress-tolerant microalgae, 1255 generations 
of ALE towards high-salt stress (200  mM NaCl) were 
performed in the green alga C. reinhardtii, and then 
yielded strains could grow as rapidly in high salt medium 
as the progenitor strain under normal conditions. Upon 
nitrogen depletion, the evolved cells were able to accu-
mulate comparable amounts of lipid to those of the 
progenitor strain [125], which accompanied with sig-
nificant up-regulation of calmodulin protein and down-
regulation of glycerol/phospholipid acyltransferase and 
transporters. Similarly, this phenomenon was in agree-
ment with an earlier study [126]. Recently, salt-resistant 
Chlamydomonas sp. strains were bred using a combined 
ALE and mutation strategy, which showed that the bio-
mass production under high salinity was dramatically 
improved in the salt-resistant strains, but the lipid accu-
mulation was decreased [127]. By contrast, when an 
ALE strategy combined with 30  g/L NaCl was applied 
in marine microalgae Schizochytrium sp., evolved strain 
exhibited a maximum biomass of 134.5  g/L and lipid 
yield of 80.14 g/L, resulting a 32.7% and 53.31% increase 
over the parental strain, respectively [128]. Despite of 
several benefits, the main limitation of ALE strategy is 
that most of the results are microalgae specific and its 
outcome may be different from strain to strain.

Oxidative stress
Apart from light, temperature and salt stress, oxida-
tive stress also plays a vital role in cell proliferation 
and lipid accumulation in microalgae. Polyunsaturated 
fatty acids (PUFAs) imbue the cells with strong oxida-
tion resistance [129, 130], and a high-oxygen stimu-
lus might, therefore, induce the cells to produce more 
PUFA to protect themselves from oxidative injury. 
Based on this, ALE under continuous high oxygen was 
successfully applied to enhance the DHA production 
of Schizochytrium sp. [131]. It has been reported that 
microalgae with higher tolerance to oxidative stress 
are better suited for biofuel production [132]. In this 
regard, our recent study developed an innovative ALE 
strategy composed by cooperative two factors on the 

basis of the concomitant high salinity and low tempera-
ture to generate a stable improved Schizochytrium sp. 
strain that efficiently produce the lipid rich in PUFA. In 
this strategy, high salinity was used to trigger the lipid 
accumulation and promote the anti-oxidative defense 
systems of Schizochytrium sp., and low-temperature 
stress aimed to improve the PUFA content [133].

Natural selection stress
Compared to intentional adaptive evolution, natural 
adaptive evolution of strains possesses a greater prob-
ability for the culture to maintain the desired traits, 
although it is less likely to obtain a strain with desired 
characteristics. Using this strategy, Shin et  al. [134] 
isolated and characterized a novel derivative of C. 
reinhardtii, which accumulated 116% and 66% more 
lipid under nitrogen- and sulfur-depleted conditions, 
respectively, than the ancestral strain. After evolution 
for 1880 generations in liquid medium under con-
tinuous light, the final C. reinhardtii strain had a 35% 
greater growth rate than the progenitor population, 
which was beneficial for lipid production [135].

Notably, the increasing application of ALE during 
recent years can be attributed to the ease of the access 
and decreasing costs of genome sequencing. Decreas-
ing sequencing costs have led to increased inves-
tigation of “omics” technologies over the course of 
evolution, facilitating the study of fundamental stress-
response mechanisms of microalgae. For example, an 
ALE approach was developed to evolve a strain of the 
microalga Synechocystis sp. with an improved growth 
performance under acid stress at pH 5.5. A subsequent 
whole-genome sequence analysis suggested that SNPs 
in certain genes are involved in acid stress tolerance 
[136]. Similarity, heat-tolerant strains of Synechocys-
tis sp. were obtained by ALE, and the affected genes 
were identified by whole-genome sequencing [137]. 
Transcriptome analysis of salt-tolerant C. reinhardtii 
revealed gene expression differences between long-
term and short-term acclimation [125]. Metabolomics 
and comparative transcriptomics have been used to 
elucidate the mechanism of butanol and phenol toler-
ance of evolved Synechocystis sp. and R. opacus, respec-
tively [117, 138]. Genome-scale tools can identify the 
stress-responsive genetic elements responsible for an 
evolved phenotype. Furthermore, for a comprehen-
sive and in-depth application of ALE strategy, genetic 
engineering and synthetic biology approaches should 
be developed to reintroduce point- or combined muta-
tions into the parental strains in order to determine 
their specific phenotypic consequences.
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Challenges and future perspective
Microalgae have received a great amount of attention 
as potential cell factories for the production of bioac-
tive compounds such as fatty acids and carotenoids. To 
overcome the negative effect of stress-based strategies, 
two-stage cultivation processes and the external addition 
of phytohormones or antioxidants can solve the conflicts 
between the accumulation of biomass and target product 
yields. However, the majority of these reports was con-
ducted on the basis of laboratory-scale investigations and 
only were proven in minority microalgae species. Large-
scale trials and economic feasibility studies of these strat-
egies are still needed to verify their application. When 
moving from the lab production unit to a large scale, 
there are some relevant variables including large-scale 
photobioreactor, carbon dioxide availability, energy sup-
ply, as well as nutrient availability. Before, the behavior of 
photobioreactor has been discussed by Singh et al. [139], 
but they did not provide final direction. Therefore, above 
variables should be considered in the large-scale trials of 
these strategies.

ALE has become a proven powerful tool for the devel-
opment robust stress-tolerant strains for improved pro-
duction of lipid and carotenoids. However, there are no 
standardized procedures available for designing and 
performing ALE experiments. With the availability of 
computer simulations and automation, it is time to build 
new evolutionary model that simulates the dynamics of 
ALE experiment. Not only that, there are other prob-
lems hindering the development of ALE, such as the 
gene instability of evolved strain, longer operation time, 
and lower mutation rate evolution. To prevent degrada-
tion of strain performance, single colonies selected after 
ALE should be strictly performed. Periodical adaptive 
evolution is also a choice to strengthen gene stability of 
evolved strain. In  the further, genetic engineering could 
be applied to regulate enzymes that involved in maintain-
ing a high fidelity of DNA replication and repair, then 
the mutation rates in ALE process could be increased.

While a large number of studies focused on improv-
ing growth, only few studies were devoted to alleviate 
oxidative stress. Therefore, obtaining optimized micro-
algal strains with strong antioxidant potential is the key 
factor for stable and sustainable cultivation of microal-
gae, which is extremely important for industrial appli-
cations. In this regard, ALE could be applied to increase 
the oxidative stress tolerance of microalgae. Moreover, 
genetic engineering efforts need to be directed towards 
enhancing the antioxidant systems of microalgae. This 
can be done by overexpressing antioxidant enzymes and 
expressing stress tolerance genes from other organisms. 
In a recent study, overexpression of SOD in microal-
gae Schizochytrium sp. successfully alleviated oxidative 

stress and increased the lipid content [140]. It is antici-
pated that the dramatic progress of innovative technolo-
gies will offer more chances for unraveling the regulatory 
networks responsible for the cellular reactions to oxida-
tive stress, which might offer guidance for the improved 
microbial lipid and carotenoids overproduction.
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