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Abstract 

Background:  Layered double hydroxides (LDHs) have received widespread attention for their potential applications 
in catalysis, polymer nanocomposites, pharmaceuticals, and sensors. Here, the mechanism underlying the physiologi-
cal effects of Mg–Fe layered double hydroxide nanoparticles on the marine bacterial species Arthrobacter oxidans 
KQ11 was investigated.

Results:  Increased yields of marine dextranase (Aodex) were obtained by exposing A. oxidans KQ11 to Mg–Fe layered 
double hydroxide nanoparticles (Mg–Fe-LDH NPs). Furthermore, the potential effects of Mg–Fe-LDH NPs on bacterial 
growth and Aodex production were preliminarily investigated. A. oxidans KQ11 growth was not affected by exposure 
to the Mg–Fe-LDH NPs. In contrast, a U-shaped trend of Aodex production was observed after exposure to NPs at a 
concentration of 10 μg/L–100 mg/L, which was due to competition between Mg–Fe-LDH NP adsorption on Aodex 
and the promotion of Aodex expression by the NPs. The mechanism underling the effects of Mg–Fe-LDH NPs on A. 
oxidans KQ11 was investigated using a combination of physiological characterization, genomics, and transcriptomics. 
Exposure to 100 mg/L of Mg–Fe-LDH NPs led to NP adsorption onto Aodex, increased expression of Aodex, and gener-
ation of a new Shine-Dalgarno sequence (GGGAG) and sRNAs that both influenced the expression of Aodex. Moreo-
ver, the expressions of transcripts related to ferric iron metabolic functions were significantly influenced by treatment.

Conclusions:  These results provide valuable information for further investigation of the A. oxidans KQ11 response to 
Mg–Fe-LDH NPs and will aid in achieving improved marine dextranase production, and even improve such activities 
in other marine microorganisms.
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Background
Nanotechnology is a transformative tool that can be used 
to develop and enhance high-value products from renew-
able and biocompatible raw materials [1]. Nanoparticles 
(NPs) have attracted considerable interest due to their 
unique optical, electronic, and magnetic characteristics 
relative to their bulk counterparts [2]. Moreover, NPs are 
widely used in commercial products owing to their ver-
satile properties, including surface areas, particle sizes, 
and quantum effects [3]. Layered double hydroxide (LDH) 
NPs, also known as anionic clay or hydrotalcite, are a fam-
ily of inorganic lamellar materials with positively charged 
brucite-like layers comprising mixed metal hydroxides 
that are defined by the general formula [M1−X

IIMX
III(OH)2]X

+(An−)X/n·mH2O. Here, MII is a divalent cation, MIII is a 
trivalent metal cation, x is the molar ratio of the trivalent 
cation [MIII/(MIII + MII)], and An− is a gallery anion with 
charge n [4–6]. LDHs have received widespread atten-
tion in diverse applications, including in catalysis [7], 
polymer nanocomposites [8], pharmaceuticals [9, 10], 
and sensors [11]. Concomitantly, environmental pollu-
tion has emerged as an important problem over the last 
couple of decades, and interest is growing in using LDHs 
to remove environmental contaminants (e.g., heavy met-
als, pesticides, and polycyclic aromatic hydrocarbons) 
[12–15]. The large surface areas of LDHs play a vital role 
in enhancing the kinetics of electrochemical reactions and 
providing a large number of active sites for desired elec-
trochemical reactivities [16].

In addition to the above, the investigation of LDH 
NP interactions with bacteria is of increasing interest. 
Numerous studies have shown that NPs can improve 
antimicrobial, anticorrosion, and antitumor functionali-
ties through silver NPs [17], copper NPs [1, 18], and LDH 
NPs [19]. Moreover, other studies have shown that NPs 
can improve the growth of bacterial cells and their pro-
duction of metabolites [20–22]. Specifically, NP aggre-
gates can attach to and/or entrap cells, thereby impacting 
their cellular functions. It should also be noted that 
variation exists in the metabolite production by differ-
ent microorganisms, including Escherichia coli, Bacil-
lus, Bacillus subtilis, and Nocardiopsis sp., as indicated 
by their different production capacities and qualities [20, 
23]. Al-Zn-LDH and Mg–Al-LDH [18, 24] LDHs have 
been intensively studied recently, while Mg–Fe-LDH has 
been much less investigated [6]. However, Mg–Fe-LDH 
NPs, which have been trademarked as Alpharen and Fer-
magate, have been intensively investigated in animal and 
clinical trials in the treatment of hyperphosphatemia in 
hemodialysis patients. Such studies have provided strong 
evidence of their high phosphate removal efficiency and 
biocompatibility [25, 26]. Moreover, increasing evidence 
indicates that Al can exert neurological, skeletal, and 

hematological toxicity. Consequently, the development of 
Al-free LDHs capable of maintaining highly efficient gene 
delivery has become increasingly desirable [26].

Few investigations have been conducted to evaluate the 
influence of LDHs on marine microorganisms. Indeed, 
investigation of LDH toxicity to microorganisms has 
been almost entirely conducted on terrestrial microor-
ganisms, including Pseudomonas aeruginosa, Staphylo-
coccus aureus, B. subtilis, and others [27–29]. However, 
most of the toxicities involved cell damage after analysis, 
which is likely resultant from low salinity tolerance of ter-
restrial microorganisms relative to marine microorgan-
isms. It is well documented that marine microorganisms 
have high salt tolerance, hyperthermostability, barophi-
licity, alkali resistance, and low optimal growth tempera-
tures. In addition, the intercalated molybdate anion can 
slowly diffuse out of the inner structure of LDHs in a 
controlled manner, resulting in relatively long-lived cor-
rosion inhibition effects in marine anticorrosion applica-
tions [18].

Dextranases have drawn considerable attention due 
to their high potential for application in various fields, 
including in medical, dental, and sugar industries [30–
36]. Dextranases (α-1,6-D-glucan 6-glucanohydrolase; 
EC 3.2.1.11) hydrolyze dextran to oligosaccharides at the 
α-1,6 glucosidic bond and are members of the glycoside 
hydrolase families (GH) 49 and 66 based on amino acid 
sequence homology [32, 37–39]. A. oxidans KQ11 was 
previously isolated by our research group from the Yel-
low Sea in the Lianyungang coastal region of China and 
produces dextranase (Aodex, Protein Data Bank code 
6NZS) [36]. Here, we present a systematic study of the 
effects of repetitive dosing of various concentrations of 
Mg–Fe-LDH NPs on the marine bacterium A. oxidans 
KQ11 and its ability to produce Aodex. Transcriptional 
regulation is the mechanistic basis for bacterial growth 
and metabolism, and genome-wide transcriptional pro-
filing can improve our understanding of the mechanisms 
underlying physiological changes [40, 41]. Consequently, 
transcriptional and genomic profiling was used to evalu-
ate the mechanisms underlying variation in Aodex pro-
duction following Mg–Fe-LDH NP exposure.

Results
Bacterial growth and Aodex production by A. oxidans 
in the presence of Mg–Fe‑LDH NPs
To determine the influence of Mg–Fe-LDH NPs on A. 
oxidans KQ11 growth and Aodex production, these 
properties were analyzed in the presence of varying 
concentrations of Mg–Fe-LDH NPs. When Mg–Fe-
LDH NPs were added to bacterial cultures, statistically 
different levels of bacterial growth were not observed 
after 32 h (Fig. 1). This result was evident even at higher 
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Mg–Fe-LDH NP concentrations (100  mg/L), implying 
that Mg–Fe-LDH NPs (at concentrations ≤ 100 mg/L) did 
not result in obvious growth effects on A. oxidans KQ11.

In contrast, enzyme production by A. oxidans 
KQ11 changed as a result of exposure to Mg–Fe-LDH 
NPs (Fig.  2A). Specifically, when exposed to 10  μg/L 

Mg–Fe-LDH NPs over 32  h, Aodex production was 
similar to that of the control and peak enzyme produc-
tion occurred at 28 h, which was consistent with previ-
ous results [37]. The activities of Aodex upon exposure to 
10 μg/L Mg–Fe-LDH NPs and the control were 3.69 U/
mL and 4.03 U/mL, respectively. Exposure to increasing 
Mg–Fe-LDH NPs concentrations in the range of 10 μg/L 
to 1 mg/L resulted in decreased enzyme production, with 
Aodex production exhibiting the lowest activity after 
exposure to 1 mg/L Mg–Fe-LDH NPs. Peak enzyme pro-
duction after exposure to Mg–Fe-LDH NPs at concentra-
tions of 10 μg/L, 100 μg/L, and 1 mg/L was 3.69 U/mL at 
28 h, 3.45 U/mL at 30 h, and 2.36 U/mL at 28 h, respec-
tively. As increasing exposure to Mg–Fe-LDH NPs con-
centrations occurred beyond 1  mg/L, the overall trend 
of enzyme production began to rapidly increase. Indeed, 
enzyme production after exposure to 10  mg/L Mg–Fe-
LDH NPs was similar to that after exposure to 100 μg/L 
Mg–Fe-LDH NPs, with a peak enzyme production of 
3.43 U/mL at 30  h. Moreover, enzyme production was 
highest over the examined concentration range (10 μg/L 
to 100 mg/L) when exposed to an Mg–Fe-LDH NP con-
centration of 100 mg/L. Specifically, enzyme production 
in this treatment was 4.88 U/mL at 30 h, which was about 
21.1% higher than the control, although peak enzyme 
production was delayed 2  h. Enzyme production after 
exposure to different Mg–Fe-LDH NP concentrations 
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for 30 h was separately analyzed in order to directly com-
pare enzyme production results (Fig.  2B), which also 
confirmed the above results. Briefly, enzyme production 
after exposure to Mg–Fe-LDH NPs concentrations in 
the range of 10 μg/L to 1 mg/L gradually declined, while 
enzyme production after exposure to Mg–Fe-LDH NPs 
concentrations in the range of 1 mg/L to 100 mg/L rap-
idly rebounded. The U-shaped trend of Aodex produc-
tion resulted from the competition between Mg–Fe-LDH 
NP adsorption and the promotion of Aodex expres-
sion after exposure to NP treatment concentrations of 
10 μg/L–100 mg/L.

Characterization of bacterial cell morphology 
after exposure to Mg–Fe‑LDH NPs
To gain further insight into the possible effects of Mg–
Fe-LDH NPs on A. oxidans KQ11 cells, SEM, TEM, EDS, 
and EDS microscopy were used to examine A. oxidans 
KQ11 cells after exposure to 100  mg/L of Mg–Fe-LDH 
NPs. SEM (Fig.  3A, B) and TEM (Fig.  3C, D) images 
revealed that Mg–Fe-LDH NPs adhered to cellular mem-
branes of A. oxidans KQ11 after washing cells three 
times, as noted by visible structures on the surface of A. 
oxidans KQ11 cells. However, alterations in A. oxidans 
KQ11 cell walls were not observed after exposure to 
100  mg/L Mg–Fe-LDH NPs including a lack of surface 
disruptions, shrinkages, and irregularities.

To further determine the nature of the substances 
adsorbed on cell surfaces, the elemental composition of 
cell surfaces was investigated using EDS (Fig. 3E). These 
analyses indicated the presence of magnesium, but a lack 
of an iron signal, which may be due to the magnetic prop-
erties of iron and the low concentration used in these 
experiments that would render it difficult to detect using 
EDS. Consequently, EDS mapping was used to further 
detect the elements associated with cellular surfaces and 
further evaluate the presence of iron in association with 
cells (Fig.  3F). EDS mapping indicated the presence of 
phosphorus (Fig. 3G; green), magnesium (Fig. 3H; pink), 
and iron (Fig.  3I; yellow), thereby confirming that Mg 
and Fe were adhered to the surface of bacterial cells and 
implying that the structures on the surface of A. oxidans 
KQ11 were Mg–Fe-LDH NPs. The Aodex production 
experiments indicated that exposure to 100  mg/L of 
Mg–Fe-LDH NPs may influence cell membrane perme-
ability, metabolite production, and/or gene expression in 
A. oxidans KQ11 cells, which would interact with cellu-
lar components to alter cellular processes. Mg–Fe-LDH 
NPs can likely penetrate cell membranes and reach cyto-
solic compartments due to their ability to dissolve slowly 
while releasing Mg2+ and Fe3+ ions. Nevertheless, under-
standing the exact mechanism by which Mg–Fe-LDH 

NPs improved Aodex production by A. oxidans KQ11 
required further investigation.

Characterization of Mg–Fe‑LDH NP endocytosis by A. 
oxidans KQ11
As described above, the primary influence of Mg–Fe-
LDH NPs on enzyme production by A. oxidans KQ11 
cells was through physical interactions with cells, and/
or exposure to metal ions released from Mg–Fe-LDH. 
Thus, ICP-AES was used to measure the total intracel-
lular metal ion content within A. oxidans KQ11 cells in 
order to identify the contribution of metal ions to the 
physiological influence of Mg–Fe-LDH NPs. The relative 
distribution and concentration of heavy metals within A. 
oxidans KQ11 cells of the Mg–Fe-LDH NP-treated bac-
terial cultures are shown in Fig. 4. Mg and Fe concentra-
tions were all higher within A. oxidans KQ11 cells when 
exposed to Mg–Fe-LDH NP concentrations in the range 
of 10 μg/L to 100 mg/L. Furthermore, the concentration 
of Fe was significantly higher within A. oxidans KQ11 
cells when exposed to 100  mg/L of Mg–Fe-LDH NPs 
than in cells of other treatment groups or the control 
group.

Transcriptional profiling of the A. oxidans KQ11 response 
to Mg–Fe‑LDH NP exposure
The transcriptional response of A. oxidans KQ11 cells 
in response to Mg–Fe-LDH NPs was investigated with 
RNA-seq sequencing on the Illumina HiSeq platform. A 
total of 16.2 GBp of clean sequence read data were gen-
erated from the control and treatment samples. Specifi-
cally, gene-mapped transcript reads were generated three 
control (Control1, Control2, and Control3) and three 
Mg–Fe-LDH treatment (Mg–Fe-LDH1, Mg–Fe-LDH2, 
and Mg–Fe-LDH3) libraries, respectively (Additional 
file 1: Table S2). All unigenes were annotated using sev-
eral databases including the CAZy, COG, GO, KEGG, 
NR, PFAM, and SwissProt databases (Additional file  1: 
Table S3). Non-redundant genes were obtained from all 
experimental samples and used as a transcriptome data-
base to identify differentially expressed genes (DEGs, 
fold change > 2, p < 0.05) between controls samples and 
Mg–Fe-LDH-treated samples. These analyses indicated 
that 23 DEGs were up-regulated and 47 were down-reg-
ulated due to Mg–Fe-LDH exposure (Additional file  1: 
Table S4).

Discussion
Dextranases hydrolyze dextran to oligosaccharides at the 
α-1,6 glucosidic bond resulting in the production of iso-
maltose, isomaltotriose, small amounts of d-glucose, and 
traces of large oligomers as the primary products of the 
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hydrolysis reaction. Previously, we isolated a dextranase 
from the marine bacterium A. oxidans KQ11 (Aodex; 
NCBI-n: JX481352.1) that was collected from Yellow Sea 
sediments near Lianyungang, China [37]. Aodex is active 
at low temperatures, is rapidly produced, and is stabile 

under alkaline conditions [37]. In addition, this enzyme 
derived from marine organisms has a characteristically 
high salinity tolerance and a low ideal temperature, con-
ferring better application potential than homologous 
enzymes from terrestrial counterparts.

A B 

C D 

E

Control 100 mg/L Mg Fe LDH NPs

Control 100 mg/L Mg Fe LDH NPs

Fig. 3  Characterization of A. oxidans KQ11 cell structure after exposure to 100 mg/L of Mg–Fe-LDH NPs for 30 h using SEM (A, B), TEM (C, D), EDS 
(E), and EDS mapping (D–I). The yellow arrows show Mg–Fe-LDH NPs attached to cell surfaces (for interpretation of the color references to color in 
this figure legend, the reader is referred to the web version of this article)
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In this study, the growth of A. oxidans KQ11 after 
exposure to different concentrations of Mg–Fe-LDH NPs 
was not significantly influenced, while Aodex production 
was completely different among treatments. Specifically, 
enzyme production after exposure to Mg–Fe-LDH NPs 
at concentrations in the range of 10 μg/L to 1 mg/L grad-
ually decreased with increasing concentration exposures. 
However, enzyme productions after exposure to Mg–
Fe-LDH NPs concentrations in the range of 1  mg/L to 
100  mg/L rapidly rebounded. To clarify the mechanism 
of Mg–Fe-LDH NP influence on A. oxidans KQ11 physi-
ology, morphological and ultrastructural changes of cells 
were examined. These results indicated that Mg–Fe-LDH 
NPs could adhere to A. oxidans KQ11 cell membranes, 
but alterations in A. oxidans KQ11 cell walls were not 
observed, including a lack of surface disruptions, shrink-
ages, and irregularities after exposure to Mg–Fe-LDH 
NPs. Most marine microorganisms have unique physi-
ological properties due to their unique environments 
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compared to their terrestrial counterparts including high 
salt tolerance, hyperthermostability, barophilicity, alkali-
resistance, and low optimum growth temperatures. Such 
characteristics could explain why A. oxidans KQ11 cell 
damage was not observed after exposures to such high 
concentration of Mg–Fe-LDH NPs. Concomitant to 
Aodex production rapidly increasing after exposure to 
100  mg/L Mg–Fe-LDH, intracellular Fe concentrations 
were significantly higher in A. oxidans KQ11 after expo-
sure to 100  mg/L Mg–Fe-LDH NPs when compared to 
the other treatment and control groups.

We previously described the structure of Mg–Fe-LDH 
NPs and their adsorption onto dextranase [6, 26]. Con-
sidering the gradual decrease in Aodex enzyme produc-
tion after exposure to Mg–Fe-LDH NPs concentrations 
in the range of 10 μg/L to 1 mg/L, XRD (Additional file 1: 
Figure S1A) and FTIR (Additional file 1: Figure S1B) were 
used to investigate the adsorption onto Aodex by Mg–
Fe-LDH NPs. The XRD spectra pattern of the Aodex/
Mg–Fe-LDH biohybrid displayed characteristic diffrac-
tion peaks, with peak broadening and decreased inten-
sity indicative of reduced crystallinity characteristics of 
the biohybrid. The FTIR spectra of the Mg–Fe-LDH NPs, 
Aodex, and Aodex/Mg–Fe-LDH NPs are shown in Addi-
tional file 1: Figure S1. The spectra exhibited broad and 
intense bands between 3900 and 2700/cm that were asso-
ciated with the stretching of hydrogen-bonded hydroxyl 
groups from both the hydroxide layers and interlayered 
water molecules [24]. The shoulder located at about 
3000/cm can be attributed to hydrogen bonding between 
water and anions located in the interlayer spacing includ-
ing C–H, C–O–C, and C–O stretching bands [24, 42]. 
The bands at about 1650 and 1550/cm were assigned to 
the amide groups of amino acids, including C=O and 
N–H stretching bands. These results confirmed that 
Aodex was adsorbed on the surface of the Mg–Fe-LDH 
NPs, while also suggesting that the protein retained its 
secondary structure and did not denature. Thus, Aodex 
can adsorb on the surface of Mg–Fe-LDH NPs. Such 
characteristics provide a foundation for further utiliza-
tion of Aodex, and especially in sugar industry applica-
tions, owing to the ease of release and effective removal 
of dextran generated during the production process. 
Previous studies have reported that LDHs can effectively 
immobilize numerous biomolecules or enzymes on their 
structures including laccase [43], polyphenol oxidase 
[44], urease [45], acid phosphatase–polyphenol oxidase 
[46], cytochrome c nitrite reductase [47], and horseradish 
peroxidase [48]. These characteristics enable their appli-
cation in environmental pollutant monitoring including 
of cyanide, phenol derivatives, urea, azides, As (V), fluo-
ride, nitrite, and H2O2.

While Mg–Fe-LDH NPs adsorbed the Aodex, Mg–Fe-
LDH NPs also released Fe ions that could regulate Aodex 
production of A. oxidans KQ11. Thus, Mg–Fe-LDH NPs 
could contribute to more straightforward Aodex pro-
duction via the above mechanism. Furthermore, this 
interaction could explain why Aodex production rapidly 
rebounded after exposure to 100  mg/L. To investigate 
the molecular mechanism underlying the regulation 
of Aodex productions by Mg–Fe-LDH, transcriptional 
profiling was conducted. A total of 4563 genes were 
expressed, and the expected number of Fragments Per 
Kilobase of transcript sequence per Millions base pairs 
sequenced (FPKM) was used to identify genes that were 
differentially expressed. Using the criteria of a twofold 
change in expression and an FDR p value < 0.005, a total 
of 70 differentially expressed genes were identified. Of 
these, 23 genes were up-regulated and 47 were down-reg-
ulated in A. oxidans KQ11 after exposure to Mg–Fe-LDH 
NPs. The most important genes among those that were 
down-regulated included those that encoded siderophore 
synthetase components, iron complex transport system 
permease proteins, iron complex transport system ATP-
binding proteins, NADPH-dependent ferric siderophore 
reductases, Fe-S cluster assembly ATP-binding proteins, 
and the Fe-S cluster assembly protein SufD, which are all 
directly related to inorganic ion transport and metabo-
lism. The most important genes among those that were 
up-regulated included those that encoded N-acetylglu-
cosamine-6-phosphate deacetylases, phosphotransferase 
system IIC components, ATPase components, predicted 
arabinose efflux permeases, sarcosine oxidase gamma 
subunits, 2,4-dienoyl-CoA reductases, formyltetrahy-
drofolate hydrolases, phosphotransferase system IIB 
components, 6-phosphogluconolactonase/glucosamine-
6-phosphate isomerase/deaminases, sugar lactone lacto-
nases, and malate synthases, which are all directly related 
to materials (carbohydrates, amino acids, and nucleo-
tide) transport, metabolism, energy production and 
conversion, and signal transduction. The overall pattern 
of differential expression of transcription factor genes is 
shown in Fig. 5.

GO analysis was also performed on the DEGs (Fig. 6). 
The DEGs all belonged to several categories, including 
cellular components, molecular functions, and bio-
logical processes. The majority of DEGs classified into 
the molecular function category were represented by 
those involved in catalysis, binding, and transporta-
tion activities. Among the DEGs classified into the cel-
lular components category, membranes, cell parts, and 
membrane parts were prominently represented. Of the 
DEGs classified within the biological processes cat-
egory, the vast majority were related to metabolic pro-
cesses, cellular processes, localization, single-organism 
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processes, cellular component organization or biogen-
esis, and biological regulation. The number of DEGs 
categorized as being involved in cellular components 
was lower than that of DEGs involved in molecular 
functions and biological processes (Fig.  6), which was 
consistent with the lack of observed cell damage in 
the experiments. Notably, 195 DEGs were classified as 
being involved in catalytic activity, while 70 were anno-
tated as being involved in response to exposure, and 13 
were annotated as being involved in ferric iron metabo-
lism functions (particularly Fe3+ transport systems). 
These results provide a valuable framework for future 
studies of the response of A. oxidans KQ11 to Mg–Fe-
LDH NP exposure.

The metabolic pathways coinciding with the DEGs 
were identified and analyzed using the KEGG database. 
The 16 most enriched pathways are shown in Fig. 7 and 
Table 1. Among the identified metabolic pathways, DEGs 
were primarily involved in the metabolism of biomole-
cules including carbohydrates and amino acids. Six DEGs 
were associated with ABC transporter pathways. Inter-
estingly, DEGs involved in several carbohydrate transport 
and metabolism pathways including those associated 

with amino sugar and nucleotide sugar metabolism (3), 
phosphotransferase system (1), and glyoxylate and dicar-
boxylate metabolism (1) pathways were up-regulated in 
A. oxidans KQ11 after Mg–Fe-LDH NP treatment.

The Shine-Dalgarno sequence is a ribosomal bind-
ing site in bacterial and archaeal mRNA that is generally 
located around eight bases upstream of the start codon, 
AUG [49]. The sequence is also present in some chloro-
plast and mitochondrial transcripts. The RNA sequence 
helps recruit ribosome to mRNA in order to initiate 
protein synthesis and align the ribosome with the start 
codon. Once recruited, tRNA molecules can add amino 
acids sequentially, as dictated by the codons and moving 
downstream from the translational start site. The six-
base consensus sequence is AGG​AGG​ and AGG​AGG​U 
in E. coli, for example, although the subsequence GAGG 
dominates in E. coli virus T4 early genes [49]. The Shine-
Dalgarno sequences of A. oxidans KQ11 RNA were 
predicted with RBSfinder after treatment with Mg–Fe-
LDH NPs (Additional file  1: Table  S5). A key difference 
was observed in the Shine-Dalgarno sequences with and 
without treatment, wherein the Shine-Dalgarno sequence 
of the Aodex (GeneID: KQ11_GM001677) position was 

Fig. 5  Changes in the gene expression of A. oxidans KQ11 cells induced by Mg–Fe-LDH treatment. A Significantly up-regulated genes are shown in 
red, down-regulated genes in blue, and those not exhibiting significant differences in expression are shown as black dots. The abscissa represents 
the fold changes in gene expression among different samples, and the ordinate represents the statistical significance of differences in expression 
change. B Heat map and clustering analysis of transcriptional profiles of genes encoding transcription factors. High expression levels are depicted in 
red, and low expression levels in blue. Clustering was conducted using log10 (FPKM + 1) values after normalization of expression values
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1,772,726 with the original start codon of CTA, but at a 
new starting position of 1,772,624 after treatment. Thus, 
the original sequence start coordinate moved upstream 
within the same reading frame. The new stop position 
also moved to 1,774,612 after treatment of A. oxidans 
KQ11 with Mg–Fe-LDH NPs and the pattern of the 
Shine-Dalgarno sequence changed to GGGAG, with the 
start codon changing from CTA to ATG. The transcrip-
tional profile of A. oxidans KQ11 in the absence (con-
trol) and presence of Mg–Fe-LDH indicated that Aodex 
was up-regulated with an FDR p value of ~ 0.057. Thus, 
the GGGAG pattern of the Shine-Dalgarno sequence 
likely plays an important role in Aodex transcription and 
expression. Several studies have shown that base pair-
ing between the Shine-Dalgarno sequence in mRNA and 
the 3′ end of 16S rRNA is critical for initiation of transla-
tion by bacterial ribosomes [50, 51]. Thus, mutations in 

Shine-Dalgarno sequence can reduce or increase transla-
tional responses in prokaryotes [52]. These changes are 
due to reduced or increased mRNA-ribosome pairing 
efficiencies, as evidenced by the restoration of transla-
tion by compensatory mutations in the 3′-terminal of 16S 
rRNA sequences.

Bacterial small RNAs (sRNA) are 50- to 500-nucle-
otide-long non-coding RNA molecules produced by 
bacteria that are highly structured and contain sev-
eral stem loops [53]. Bacterial sRNAs affect how genes 
are expressed within bacterial cells via interaction with 
mRNAs or proteins and thus can affect a variety of bac-
terial functions like metabolism, virulence, environ-
mental stress responses, and cell structures [54, 55]. 
Consequently, bacterial sRNAs exhibit a wide range of 
regulatory mechanisms. Generally, sRNAs bind to pro-
tein targets and modify the functions of bound proteins 

Fig. 6  GO enrichment analysis of differentially expressed genes of A. oxidans KQ11 after Mg–Fe-LDH treatment
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[56]. Alternatively, sRNAs can interact with mRNA tar-
gets and regulate gene expression by binding to com-
plementary mRNAs and blocking translation, or by 
unmasking or blocking ribosome-binding sites. Many 
sRNAs are involved in the regulation of stress response 
[57] and are expressed under stress conditions such as 
cold shock, iron depletion, the onset of the SOS response, 
and sugar stress [58]. For example, the small RNA nitro-
gen stress-induced RNA 1 (NsiR1) is produced by cyano-
bacteria under nitrogen deprivation conditions [59]. In 
addition, cyanobacterial NisR8 and NsiR9 sRNAs could 
be involved in the differentiation of nitrogen-fixing cells 
(heterocysts) [60]. Novel non-coding sRNA transcripts in 
A. oxidans KQ11 intergenic regions that were expressed 
after Mg–Fe-LDH NP treatment were annotated by NR. 
A total of four sRNAs were identified, and their sec-
ondary structures were further predicted (Additional 

file 1: Table S6 and Fig. 8). These sRNAs may affect the 
expression of A. oxidans KQ11 intracellular proteins, 
and particularly the production of Aodex. Moreover, we 
hypothesize that these sRNAs are involved in the func-
tion of the riboswitches or the efficiency of Aodex pro-
duction, which was up-regulated after Mg–Fe-LDH NP 
treatment (Fig. 9). 

Conclusions
Our results indicated that the mechanism underlying 
the effects of Mg–Fe-LDH NPs on the physiology of the 
marine bacterium A. oxidans KQ11 could be related 
to the interaction of Fe3+, Shine-Dalgarno GGGAG 
sequences, and sRNAs (Fig.  8). As shown in Fig.  9, 
the  proposed mechanism first involves adsorption of 
Mg–Fe-LDH NPs onto the surface of A. oxidans KQ11 
cells, followed by release of Fe3+, which would impact 

Fig. 7  KEGG pathways represented by enriched differentially expressed genes
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Table 1  Overview of DEGs involved in KEGG pathway

No. Pathway ID DEGs 
with pathway 
annotation (19)

All genes 
with pathway 
annotation (577)

KEGG pathway p value Q value Gene list KO list

1 ko02020 3 (15.79%) 31 (5.37%) Two-component 
system

0.015012085 0.03940672 KQ11_GM000490, 
KQ11_
GM000492, 
KQ11_
GM000491,

K07793, K07795, 
K07794

2 ko00360 3 (15.79%) 13 (2.25%) Phenylalanine 
metabolism

0.000500975 0.01052047 KQ11_GM003846, 
KQ11_
GM003870, 
KQ11_
GM001828,

K00276, K00146, 
K05710

3 ko00260 2 (10.53%) 18 (3.12%) Glycine, serine 
and threonine 
metabolism

0.018086604 0.04220208 KQ11_GM003846, 
KQ11_
GM000418,

K00276, K13745

4 ko01220 1 (5.26%) 9 (1.56%) Degradation of 
aromatic com-
pounds

0.032243512 0.06771138 KQ11_GM001828, K05710

5 ko02060 1 (5.26%) 5 (0.87%) Phosphotrans-
ferase system 
(PTS)

0.009694457 0.02908337 KQ11_GM003720, K02804

6 ko02010 6 (31.58%) 63 (10.92%) ABC transporters 0.002328422 0.01588777 KQ11_GM003996, 
KQ11_
GM003998, 
KQ11_
GM003995, 
KQ11_
GM000625, 
KQ11_
GM000624, 
KQ11_
GM000623,

K02015, K02016, 
K02013, 
K02012, 
K02011, 
K02010

7 ko00630 1 (5.26%) 32 (5.55%) Glyoxylate and 
dicarboxylate 
metabolism

0.284432368 0.37331748 KQ11_GM000606, K01638

8 ko00620 1 (5.26%) 29 (5.03%) Pyruvate metabo-
lism

0.246513313 0.34511864 KQ11_GM000606, K01638

9 ko00643 1 (5.26%) 3 (0.52%) Styrene degrada-
tion

0.003026241 0.01588777 KQ11_GM003870, K00146

10 ko00520 3 (15.79%) 27 (4.68%) Amino sugar and 
nucleotide sugar 
metabolism

0.009121947 0.02908337 KQ11_GM003720, 
KQ11_
GM003723, 
KQ11_
GM003721,

K02804, K01443, 
K02564

11 ko00650 1 (5.26%) 15 (2.60%) Butanoate 
metabolism

0.083581921 0.12537288 KQ11_GM000543, K01029

12 ko00410 1 (5.26%) 2 (0.35%) Beta-Alanine 
metabolism

0.00102903 0.01080481 KQ11_GM003846, K00276

13 ko00280 1 (5.26%) 12 (2.08%) Valine, leucine 
and isoleucine 
degradation

0.055721077 0.1063766 KQ11_GM000543, K01029

14 ko00640 1 (5.26%) 15 (2.60%) Propanoate 
metabolism

0.083581921 0.12537288 KQ11_GM000991, K18382

15 ko00350 1 (5.26%) 13 (2.25%) Tyrosine metabo-
lism

0.064571367 0.11299989 KQ11_GM003846, K00276

16 ko00072 1 (5.26%) 5 (0.87%) Synthesis and 
degradation of 
ketone bodies

0.009694457 0.02908337 KQ11_GM000543, K01029
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carbohydrate transport and associated carbohydrate 
metabolisms. Secondly, the Shine-Dalgarno sequence 
is modified to GGGAG, which could play an important 
role in Aodex transcription and expression. Alternatively, 
the generation of sRNAs could interact with Aodex and 
further promote the expression of Aodex. This process 

would lead to constant Aodex expression with increasing 
concentrations of Mg–Fe-LDH NPs, while the adsorp-
tion of Mg–Fe-LDH NPs to enzymes would concomi-
tantly gradually reach saturation. Such a mechanism 
would explain the U-shaped trend of Aodex production 
with increasing concentrations of Mg–Fe-LDH NPs. 
Nevertheless, abiotic stresses are undoubtedly complex 
in nature. However, understanding the full potential of 
biotechnological approaches can provide an important 
framework for improving enzyme production. Rapidly 
developing technologies including transcriptome profil-
ing and nanotechnology provide promising future pros-
pects for the development of designed enzymes that 
exhibit higher efficiency of natural resource utilization 
and improved productivity under stressful conditions.

The oceans cover more than three quarters of the 
Earth’s surface and are open ecosystems. The protection 
of marine environments and the reasonable exploitation 
and utilization of marine resources are vitally impor-
tant to the sustainable development of human activities. 
Recent interest has grown for using LDHs to remove 
environmental contaminants. In this study, Mg–Fe-LDH 
NPs enhanced the production of Aodex by a marine 
bacterium. Furthermore, the mechanism underlying 
the influence of Mg–Fe-LDH NPs on the marine bacte-
rium A. oxidans KQ11 (Fig.  1) was investigated using a 

Fig. 8  Secondary structures of sRNA1, sRNA2, sRNA3, and sRNA4 of 
A. oxidans KQ11 following Mg–Fe-LDH NP treatment. The sRNAs were 
located on the plas2, plas3, plas1, and plas1 regions of the A. oxidans 
KQ11 chromosome, respectively

Fig. 9  Proposed mechanism of the effects of Mg–Fe layered double hydroxide nanoparticles on the physiological functioning of A. oxidans KQ11
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combined approach of physiological characterization, 
genomics, and transcriptomics. These analyses indicated 
that cellular damage to marine A. oxidans KQ11 cells was 
not observed after Mg–Fe-LDH NP treatment. These 
results have an important practical significance wherein 
Mg–Fe-LDH NPs can be applied in the sustainable sepa-
ration and extraction of marine resources without affect-
ing marine microorganisms, even in marine ecosystems.

Materials and methods
A. oxidans KQ11 exposure to Mg–Fe‑LDH NPs
Freshly grown bacterial colonies on solid nutrient agar 
medium were inoculated into 50 mL of A. oxidans KQ11 
culture medium containing 1.0 g/L yeast extract, 5.0 g/L 
peptone, and NaCl at 4.0 g/L (pH 7.5). Growth was moni-
tored with a UV–visible spectrophotometer at 600  nm 
until the optical density (OD) reached 0.8. Aliquots 
(10 µL) of the culture media were then further inoculated 
in 50  mL of freshly prepared nutrient broth medium 
containing 1.0  g/L yeast extract, 5.0  g/L peptone, NaCl 
4.0  g/L, and 10  g/L dextran 20,000 (dextranase produc-
tion medium, pH 7.5). The co-precipitation method was 
used for preparing Mg–Fe-LDH NPs (Additional file 1). 
In order to ensure Mg–Fe-LDH NPs with given concen-
trations were completely sterile for the growth and the 
enzyme production experiments, the Mg–Fe-LDH NP 
solutions were first sterilized by autoclaving. The Mg–
Fe-LDH NPs were then sonicated at 20 kHz in a 100-W 
bath for 30 min at 25 °C. The Mg–Fe-LDH NP solutions 
were then sterilized with UV irradiation for 30 min. Sub-
sequently, the Mg–Fe-LDH NPs were sonicated again at 
20 kHz in a 100-W bath for 30 min at 25 °C before addi-
tion into A. oxidans KQ11 culture medium. Aliquots 
(50  mL) of A. oxidans KQ11 culture were exposed to 
various concentrations of Mg–Fe-LDH NPs (10  μg/L, 
100  μg/L, 1  mg/L, 10  mg/L, and 100  mg/L) at the time 
of inoculation, and growth and enzyme production were 
monitored at 2-h intervals. All cultures were incubated 
at 30  °C in an orbital shaker incubator with shaking at 
180 rpm and monitoring of bacterial growth in 2-h inter-
vals via OD measurements at 600 nm using a microplate 
reader (Thermo Scientific™ Multiskan™ FC, Thermo 
Fisher Scientific Inc., Waltham, MA, USA). Controls con-
sisting of medium without Mg–Fe-LDH NPs were con-
ducted in parallel.

Dextranase activity assays
Aodex activity was measured using the DNS (3,5-dini-
trosalicylic acid) method that is based on the reaction 
between sugars and the 3,5-dinitrosalicylic acid reagent, 
as described previously [37, 39]. Briefly, a mixture of 
0.05  mL dextranase and 0.15  mL sodium acetate buffer 

(50  mM) containing 3% dextran 20,000 (pH 5.5) was 
incubated at 50  °C for 15  min. DNS [61] was added to 
the experimental and control mixtures to terminate the 
reactions, and 0.05 mL of enzyme was added to the con-
trol group. The mixture was boiled for 5 min, and then, 
3  mL of distilled water was added. The absorbance of 
the mixture was then measured at 540 nm. One unit of 
dextranase activity was defined as the amount of enzyme 
that catalyzed the release of 1 μmol of isomaltose (meas-
ured as maltose) from dextran 20,000 in 1  min under 
the specified assay conditions [37]. To establish enzyme 
production curves, the thallus of the fermentation broth 
was removed by centrifugation after a specified time of 
aerobic fermentation and the liquid supernatant was fil-
tered using an ultrafiltrate membrane (crude enzyme). 
The dextranase activities were then measured at speci-
fied times. For adsorbent experiments, the fermentation 
liquid supernatant recovered after centrifugation was 
used as the cell-free extract solution. The supernatant 
containing dextranase was then collected and purified. 
Briefly, dextranase was purified using a combination of 
ammonium sulfate fractionation and ion-exchange chro-
matography. SDS-PAGE and BD-SDS-PAGE (10% w/v 
SDS-PAGE with 0.5% Blue Dextran) analyses confirmed 
that the purified Aodex displayed a single band close to 
the expected molecular weight (66.2 kDa).

Ultrastructural observations and adsorbent 
characterization of A. oxidans KQ11
The Mg–Fe-LDH NP surface morphologies, physico-
chemical properties, elemental distribution, and inter-
actions with bacterial cells were all investigated. The 
Mg–Fe-LDH NP solution was added to the A. oxidans 
KQ11 cultures after sonication (100  W, 20  kHz, 25  °C, 
15  min) to obtain bacterial cultures containing Mg–Fe-
LDH NPs at concentrations of 10 μg/L, 100 μg/L, 1 mg/L, 
10 mg/L, and 100 mg/L. After 30 h of incubation, bacte-
rial cells were collected by centrifugation of cultures for 
10  min at 8000×g at 4  °C and then washed three times 
with sterile saline solutions. Scanning electron micros-
copy (SEM, Hitachi S-4000; Hitachi Instruments Inc., 
San Jose, CA, USA) and transmission electron micros-
copy (TEM, Hitachi HT7700; Hitachi Instruments Inc., 
San Jose, CA, USA) were then conducted on control cells 
and nanoparticle-treated cultures after suspension over-
night in a phosphate-buffered saline (PBS) buffer with 2% 
glutaraldehyde. The pellet was then washed three times 
with the PBS buffer. A series of graded ethanol solutions 
(20%, 50%, 70%, 95%, and 100%) was used for dehydration 
over three exchanges consisting of 5  min each. STEM, 
energy-dispersive spectroscopy (EDS) and EDS mapping 
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of A. oxidans KQ11 after treatment with 100 mg/L Mg–
Fe-LDH NP were conducted using a JEOL 2100F micro-
scope (JEOL, Tokyo, Japan).

Thirty milliliters of the bacterial culture suspensions 
containing 100  mg/L Mg–Fe-LDH NPs was collected 
after 30  h of exposure and centrifuged at 8000  rpm for 
10  min. The residues were washed a third time with 
50 mM PBS (pH 7.0), and cells were washed a third time 
with ultrapure water and then re-dissolved in 30  mL of 
ultrapure water. The supernatant following centrifugation 
was then used to determine the abundance of heavy met-
als adsorbed onto or into A. oxidans KQ11 cells. Heavy 
metal abundances were determined via inductively cou-
pled plasma atomic emission spectrometry (ICP-AES, 
iCAP 6300, Thermo Fisher, USA). A. oxidans KQ11 sus-
pensions without Mg–Fe-LDH NP exposure were used as 
controls.

Genomic and transcriptional analyses [62–67]
The whole genome of A. oxidans KQ11 was sequenced 
prior to transcriptome analyses. The A. oxidans KQ11 
genome is not discussed in detail here, but annotation of 
the genome is provided in Additional file 1: Table S1.

Prokaryote mRNA sequencing on the Illumina HiSeq platform
RNA-Seq transcriptional profiling of A. oxidans KQ11 
was conducted for cells in the absence (control) and pres-
ence of 100 mg/L Mg–Fe-LDH, with each group includ-
ing three parallel replicates. Briefly, cells were harvested 
after exposure to Mg–Fe-LDH for 30 h and then centri-
fuged at 8000g (4  °C) for 10  min. Total cellular RNA of 
each sample was then extracted using a TRIzol reagent 
(Invitrogen)/RNeasy Mini Kit (Qiagen). Total RNA was 
quantified and quality-checked using an Agilent 2100 
Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA), 
NanoDrop spectrophotometer (Thermo Fisher Scien-
tific Inc.), and 1% agarose gel electrophoresis. For subse-
quent library preparation, 1 μg of total RNA with an RIN 
value > 7 was used. Next-generation sequencing library 
preparations were constructed based on the manufac-
turer’s protocols (NEBNext® Ultra™ Directional RNA 
Library Prep Kit for Illumina®).

Prior to sequencing, rRNA was depleted from total 
RNA using the Ribo-Zero rRNA Removal Kit (Bacteria) 
(Illumina). The rRNA-depleted mRNA was then frag-
mented and reverse-transcribed. First-strand cDNA was 
synthesized using ProtoScript II Reverse Transcriptase 
with random primers and actinomycin D. The second-
strand cDNA was then synthesized using a second-strand 
synthesis enzyme mix (including dACGTP/dUTP). 
The purified double-stranded cDNA was then cleaned 
using an AxyPrep Mag polymerase chain reaction (PCR) 
Clean-up kit (Axygen) followed by treatment with an 

End Prep enzyme mix to repair both ends of the frag-
ments and add dA-tails in a single reaction, followed by 
T-A ligation to add adaptors to both fragment ends. Size 
selection of adapter-ligated DNA to recover fragments 
of ~ 360 bp length (approximate insert size of 300 bp) was 
then performed using an AxyPrep Mag PCR Clean-up kit 
(Axygen). The dUTP-containing second strand was then 
digested with a Uracil-Specific Excision Reagent (USER) 
enzyme (New England Biolabs). The DNA fragments of 
each sample were then amplified with PCR over 11 cycles 
using the P5 and P7 primers, with both primers carry-
ing Illumina-specific sequences that can anneal to the 
sequencing flow cell and allow bridge PCR, in addition to 
a P7 primer carrying a six-base index to allow multiplex-
ing. The PCR products were cleaned using an AxyPrep 
Mag PCR Clean-up kit (Axygen) and quality-checked 
using an Agilent 2100 Bioanalyzer (Agilent Technologies, 
Palo Alto, CA, USA) followed by quantification using a 
Qubit 2.0 Fluorometer (Invitrogen, Carlsbad, CA, USA).

Sequence libraries with different indices were mul-
tiplexed and sequenced on an Illumina HiSeq instru-
ment according to manufacturer’s instructions (Illumina, 
San Diego, CA, USA). Sequencing was conducted with 
2 × 150 paired-end (PE) chemistry, while image analysis 
and base calling were conducted using the HiSeq Control 
Software (HCS) + OLB + GAPipeline-1.6 (Illumina) on 
the HiSeq instrument.

Data analysis
Quality control  Filtering of poor-quality sequence reads 
including adapters, PCR primers, or fragments thereof, 
in addition to those with base quality scores < 20 were 
removed using Cutadapt (v1.9.1).

Mapping  Reference genome sequences and gene model 
annotation files were from genomes of close relatives of 
A. oxidans KQ11. Bowtie2 (v2.1.0) was then used to index 
the reference genome sequence. Clean sequence data 
were aligned and mapped to the reference genome using 
Bowtie2 (v2.1.0).

Expression analysis  Transcript sequence data in the 
FASTA format were first converted from gff annota-
tion files and properly indexed. Then, using the file as a 
reference gene file, HTSeq (v0.6.1p1) was used to esti-
mate gene expression levels from the paired-end clean 
sequence data.

Differential expression analysis  Differential expression 
analysis was conducted using the DESeq Bioconduc-
tor package that incorporates a model based on a nega-
tive binomial distribution of sequence abundances. After 
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adjustment using Benjamini and Hochberg’s approach for 
minimizing the false discovery rate, a p value of < 0.05 was 
used to detect differentially expressed genes.

GO and  KEGG enrichment analysis  The GO-Ter-
mFinder program was used to identify gene ontology 
(GO) terms among the annotated list of enriched genes 
exhibiting significantly different expression levels. The 
Kyoto Encyclopedia of Genes and Genomes (KEGG) is a 
collection of databases incorporating genomes, biologi-
cal pathways, diseases, drugs, and chemical substances 
(http://en.wikip​edia.org/wiki/KEGG). In-house scripts 
were used to identify significantly differentially expressed 
genes among different KEGG pathways. Lastly, the novel 
transcript prediction program Rockhopper uses a Bayes-
ian approach to construct a transcriptome map including 
transcription start/stop sites for protein-coding genes 
and novel transcripts and was used to construct such a 
map using the transcriptional data generated here.
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Genome annotation of Arthrobacter oxidans KQ11. Table S2. for summary 
of raw and filtered reads; and Illumina transcriptome reads mapped to 
the A. oxidans KQ11 genes. Table S3. for transcriptome annotation of 
A. oxidans KQ11 response to Mg-Fe-LDH NPs. Table S4. for significantly 
differential expressed genes of A. oxidans KQ11 with the Mg-Fe-LDH 
NPS treatment. Table S5. for the Shine-Dalgarno sequences of A. oxidans 
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treatment were annotated by NR.
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