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Time‑resolved carotenoid profiling 
and transcriptomic analysis reveal mechanism 
of carotenogenesis for astaxanthin synthesis 
in the oleaginous green alga Chromochloris 
zofingiensis
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Abstract 

Background:  Chromochloris zofingiensis is emerging as an industrially relevant alga given its robust growth for the 
production of lipids and astaxanthin, a value-added carotenoid with broad applications. Nevertheless, poor under-
standing of astaxanthin synthesis has limited engineering of this alga for rational improvements.

Results:  To reveal the molecular mechanism underlying astaxanthin accumulation in C. zofingiensis, here we con-
ducted an integrated analysis by combining the time-resolved transcriptomes and carotenoid profiling in response 
to nitrogen deprivation (ND). A global response was triggered for C. zofingiensis to cope with the ND stress. Albeit the 
little variation in total carotenoid content, individual carotenoids responded differentially to ND: the primary carot-
enoids particularly lutein and β-carotene decreased, while the secondary carotenoids increased considerably, with 
astaxanthin and canthaxanthin being the most increased ones. The carotenogenesis pathways were reconstructed: 
ND had little effect on the carbon flux to carotenoid precursors, but stimulated astaxanthin biosynthesis while 
repressing lutein biosynthesis, thereby diverting the carotenoid flux from primary carotenoids to secondary carote-
noids particularly astaxanthin. Comparison between C. zofingiensis and Haematococcus pluvialis revealed the distinc-
tive mechanism of astaxanthin synthesis in C. zofingiensis. Furthermore, potential bottlenecks in astaxanthin synthesis 
were identified and possible engineering strategies were proposed for the alga.

Conclusions:  Collectively, these findings shed light on distinctive mechanism of carotenogenesis for astaxanthin bio-
synthesis in C. zofingiensis, identify key functional enzymes and regulators with engineering potential and will benefit 
rational manipulation of this alga for improving nutritional traits.
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Background
Chromochloris zofingiensis, also named frequently as 
Chlorella zofingiensis, belongs to the class Chlorophyceae 

and differs from the true Chlorella species that belong 
to Trebouxiophyceae [1, 2]. C. zofingiensis can toler-
ate strong light illumination and grow robustly for high 
biomass production under photoautotrophic conditions 
[3–6]. The alga is also able to grow in the dark by using 
sugars as the sole carbon and energy source and achieve 
ultrahigh cell density in fed-batch culture modes [6, 7]. 
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Furthermore, C. zofingiensis has the capacity to accumu-
late a high level of oleic acid-rich triacylglycerol (TAG), 
the most energy-dense lipid and ideal precursor for 
making biodiesel [5, 7, 8]. The robustness in cultivation 
and lipid production has enabled C. zofingiensis to be a 
promising candidate strain for biofuels. Nevertheless, 
algal biofuels still remain far away from being economi-
cally viable, driving the exploration of lipid production 
with value-added compounds including protein, carot-
enoids and polyunsaturated fatty acids [9, 10]. It has been 
reported that C. zofingiensis is able to synthesize TAG 
and the secondary carotenoid astaxanthin concurrently 
[5, 8, 11, 12], indicative of its great potential for inte-
grated production of the two compounds.

Astaxanthin is a red ketocarotenoid with the highest 
anti-oxidative ability found in nature and has wide appli-
cations in food, feed, nutraceutical and pharmaceutical 
industries [13, 14]. Algae are believed to be the primary 
producers of natural astaxanthin, among which Haema-
tococcus pluvialis and C. zofingiensis are most studied 
species for astaxanthin production [15, 16]. Although syn-
thesizing less astaxanthin than H. pluvialis, C. zofingien-
sis can achieve considerably higher cell density under 
multi-trophic growth conditions leading to comparable 
astaxanthin yield and productivity [6, 15]. Nevertheless, 
improvement in intracellular astaxanthin level is in need 
and critical for C. zofingiensis to substitute H. pluvialis 
for astaxanthin production, which relies on better under-
standing of carotenogenesis for astaxanthin synthesis in 
the alga. Similar to higher plants, algae synthesize primary 
carotenoids in the chloroplast likely utilizing isoprenoids 
derived from the methylerythritol phosphate (MEP) path-
way rather than the mevalonate (MVA) pathway as the 
precursors [17]. Several types of reactions are involved: 
condensation of two geranylgeranyl pyrophosphate 
(GGPP) molecules to form the first C40 carotene phytoene, 
four step-wise desaturation reactions converting phytoene 
to lycopene, cyclization of lycopene to form β-carotene 
and α-carotene, and hydroxylation of the two carotenes 
to zeaxanthin and lutein [18]. Ketolation is required for 
astaxanthin biosynthesis, which is catalyzed by β-carotene 
ketolase (BKT) in algae but typically not present in higher 
plants [16]. The majority of algal astaxanthin is esterified 
with fatty acids, either on its one side or both sides [19, 
20], and is packed into TAG-enriched lipid droplets for 
storage [21], pointing to the potential cross talk between 
astaxanthin and TAG biosynthesis [8, 22, 23]. While well 
studied in H. pluvialis, the carotenogenesis for astaxanthin 
synthesis in C. zofingiensis seemingly has distinctions and 
remains largely to be explored [15].

Chromochloris zofingiensis is capable of accumulat-
ing astaxanthin under many culture conditions includ-
ing nitrogen deprivation (ND), high light (HL), salt stress 

and glucose induction [3–6, 8, 24, 25]. The availability of 
annotated genome of C. zofingiensis lays a strong founda-
tion for studying the molecular mechanisms of astaxan-
thin biosynthesis [26]. Recently, several transcriptomic 
studies on astaxanthin biosynthesis have been conducted 
for C. zofingiensis under such conditions as HL and glu-
cose induction but not ND [26–28]. Furthermore, com-
parative studies indicated that ND exhibited a more 
profound effect than HL and glucose induction on asta-
xanthin synthesis in C. zofingiensis [4, 8, 24], pointing to 
the significance in unraveling the mechanism of caroteno-
genesis in response to ND. We have previously performed 
transcriptomic analysis of C. zofingiensis but with a focus 
on lipid metabolism [29]. To fill the gap in better under-
standing ND-induced astaxanthin biosynthesis, here an 
integrated analysis was conducted for C. zofingiensis by 
combining the time-resolved carotenoid profiling and 
transcriptomes. A global response occurred to cope with 
the ND stress. Based on the reconstructed carotenogen-
esis pathways, astaxanthin biosynthesis was stimulated, 
while lutein biosynthesis was impaired leading to astaxan-
thin accumulation as the expense of primary carotenoids. 
The distinctions in astaxanthin synthesis between C. zof-
ingiensis and H. pluvialis were discussed. Furthermore, 
potential gene targets were identified and engineering 
strategies for astaxanthin improvements were proposed. 
Our findings help understand the mechanism of carote-
nogenesis for astaxanthin biosynthesis in C. zofingiensis 
and shed light on future rational manipulation of this alga 
for nutritional trait improvements.

Results and discussion
Growth responses of C. zofingiensis to ND
To investigate growth responses of C. zofingiensis to ND, 
a two-stage culture system was used: the algal cells were 
firstly cultured in nitrogen-replete (NR) medium for 
4 days, followed by another 4-day growth under ND con-
ditions; the starting cell density under NR and ND con-
ditions was the same (Fig.  1). C. zofingiensis continued 
to propagate under ND conditions, but apparently had 
a low cell density, say 3.3 × 107 cells  mL−1 compared to 
6.5 × 107  cells  mL−1 under NR conditions (Fig.  1a). The 
algal cells maintained cell size and color in green under 
NR conditions while showing an increase in size and 
color transition to orange under ND conditions (Fig. 1b), 
indicative of the change of intracellular compositions. 
Consistent with the cell color, chlorophylls showed a rela-
tively stable content under NR conditions and underwent 
severe degradation in response to ND (Fig. 1c). Similarly, 
Fv/Fm, an indicator of the maximum PSII quantum yield, 
exhibited no change under NR conditions but dropped 
under ND conditions (Fig. 1d). These indicate the attenu-
ation of photosynthesis and explain impairment of algal 
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growth in response to ND, in line with the previous 
reports in various algae [30–33]. Meanwhile, non-pho-
tochemical quenching (NPQ) was stimulated (Fig.  1e), 
accompanied by the increase in intracellular reactive oxy-
gen species (ROS) level (Fig.  1f ), suggesting the occur-
rence of stress triggered by ND.

Time‑resolved carotenoid profiling of C. zofingiensis 
in response to ND
In spite of many reports about carotenoid analysis of C. 
zofingiensis under various conditions [4, 5, 8, 11, 25, 34, 
35], the carotenoid dynamics in a comprehensive way 
is still lacking, particularly under ND conditions. Here, 
time-resolved carotenoid profiling was conducted for 

C. zofingiensis within a 96-h culture period upon ND. 
All detected primary carotenoids, including α-carotene, 
lutein, β-carotene, zeaxanthin, violaxanthin and neox-
anthin, showed a severe decrease in response to ND 
(Fig.  2). Among them, lutein and β-carotene, the major 
primary carotenoids, underwent the most severe attenu-
ation in the content and maintained only 15% after 96-h 
ND treatment. This is generally in line with previous 
studies in which the intracellular contents of lutein and 
β-carotene dropped under stress conditions such as ND 
and HL, though to various extents [4, 25, 35]. By contrast, 
the secondary carotenoids such as echinenone, canthax-
anthin, adonixanthin, astaxanthin and ketolutein, which 
were present only in trace amounts under NR conditions, 
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were considerably induced to accumulate under ND con-
ditions (Fig.  2). Notably, astaxanthin and canthaxanthin 
exhibited the greatest increase, over 20-fold after 96 h of 
ND. Interestingly, the total carotenoid content had little 
change under ND conditions, suggesting that second-
ary carotenoids accumulate at the expense of primary 
carotenoids.

Transcriptome analysis helps elucidate biologi-
cal processes in a global way and has been receiving 

increasing interest for algal research [26–28, 36–39]. 
We have recently generated time-resolved transcrip-
tomes with a focus on dissecting the mechanism of 
lipogenesis for TAG synthesis in C. zofingiensis under 
ND conditions [29]. Here, we took advantage of these 
high-quality transcriptomes and had them analyzed 
in combination with the growth-related and pigment 
profiling data (Figs.  1 and 2), with an aim to bet-
ter understand the ND-induced global response and 
carotenogenesis for astaxanthin biosynthesis in C. 
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zofingiensis, which were detailed in the subsequent 
sections.

ND severely impairs photosynthesis and CO2 fixation of C. 
zofingiensis
Light harvest is a prerequisite for the initiation of photo-
synthesis, which is mediated by light-absorbing pigments 
including chlorophylls and carotenoids. Chlorophylls, 
the core pigments involved in photosynthesis, are con-
served in higher plants and green algae [17]. Chlorophyll 
biosynthesis starts from glutamate and involves a set of 
enzymatic steps, including 5-aminolevulinic acid, uropor-
phyrinogen III formation, trimming of the side chains to 
form protoporphyrin IX and synthesis of chlorophylls 
a and b [40]. The genes encoding all these enzymes are 
present in the C. zofingiensis genome, ranging from 1 to 
3 isoforms (Additional file  1: Data S1). The vast major-
ity of the genes showed a dramatic decrease (~ 2000-fold) 
in the transcript abundance at as early as 3 h of ND in a 
well-coordinated way (Fig. 3a and Additional file 2: Fig-
ure S1), indicating the fast and tremendous response of 
the alga to ND. Chlorophyll degradation, on the other 
hand, was less affected by ND: only seven out of the 19 
genes were DEGs (five up-regulated and two down-
regulated) and their abundance was much less changed 
(Fig. 3a). Pheophorbide a oxygenase (PAO) is considered 
to catalyze the key step of chlorophyll degradation in 
higher plants [41]. C. zofingiensis genome harbors seven 
PAO genes, of which Cz14g19030 had the highest basal 
transcript level and were mostly up-regulated (~ 11-fold) 
by ND (Fig. 3a and Additional file 1: Data S1). In this con-
text, in response to ND stress, chlorophyll biosynthesis 
was severely repressed and chlorophyll degradation was 
stimulated, leading to the considerable decrease in intra-
cellular chlorophylls (Fig. 1c).

The light reactions of photosynthesis, occurring at 
thylakoid membranes of the chloroplast, are composed 
of five complexes such as photosystem I (PS I), PS II, 
cytochrome b6/f (Cyt b6/f) complex, ferredoxin—NADP+ 
reductase (FNR) and ATP synthase, and electron carriers 

including plastoquinone (PQ), plastocyanin (PC) and 
ferredoxin (Fd) [42]. Similar to chlorophyll biosynthesis, 
most genes encoding components of PS I, PS II, light-har-
vesting complexes (LHCs) and Cyt b6/f exhibited a fast, 
dramatic and coordinated down-regulation in response 
to ND (Fig. 3b, Additional file 1: Data S1 and Additional 
file 2: Figure S1). By contrast, genes encoding FNR (pro-
ducing the reductant NADPH) and ATP synthase (gen-
erating the energy molecule ATP) were less responsive 
to ND: FNR gene (Cz02g17180) exhibited little change in 
the transcript abundance during the early period of ND 
(3–6 h) and was only down-regulated mildly (threefold) 
after 24  h of ND; the ATP synthase subunit genes also 
maintained their abundance during the early period of 
ND (3 h), followed by a decrease (~ tenfold) (Fig. 3b and 
Additional file  1: Data S1). These suggested that albeit 
the severe damage to PS components caused by ND, C. 
zofingiensis still maintained a certain level of activity to 
produce ATP and NADPH for supporting the continuing 
propagation of the algal cells (Fig. 1a).

The production of NADPH catalyzed by FNR requires 
electrons, which are from the photolysis of water via the 
linear electron transport. PC (Cz01g35130), the electron 
carrier between Cyt b6/f complex and PS I, was severely 
down-regulated by ND, in line with the transcriptional 
expression pattern of Cyt b6/f complex and PS I (Fig. 3b). 
Unlike PC, Fd, the electron carrier between PS I and FNR 
had five isoforms and responded differentially to ND: 
one (Cz13g08120) was considerably up-regulated (> 200-
fold), while the other four were down-regulated (Fig. 3b 
and Additional file  1: Data S1). It has been reported 
that photosynthetic cells, when exposed to stress condi-
tions, have the cyclic electron transport flow enhanced 
to produce ATP at the expense of NADPH [37, 43, 44]. 
In C. zofingiensis, the considerable up-regulation of 
Fd (Cz13g08120) may pass electron to Cyt b6/f com-
plex rather than FNR, thereby supporting the enhanced 
cyclic electron transport activity to partly compen-
sate for the impairment of ATP generation under ND 
conditions (Fig.  3b). Taken together, ND impaired the 

(See figure on next page.)
Fig. 3  Transcriptional response of photosynthesis and CO2 fixation of C. zofingiensis to ND. a Chlorophyll biosynthesis and degradation. b 
Components of the light reaction and electron transport. Green and purple arrows indicate the electron transport. c Pathways of Calvin–Benson 
cycle and C4 like carbon fixation. Blue, black and red arrows designate down-, non- and up-regulated enzymatic steps. Heat maps show log2(fold 
change) values of transcripts relative to 0 h of ND. Significant difference (absolute log2(fold change) value > 1 and FDR adjusted p < 0.05; n = 3) is 
indicated with an asterisk. Time refers to the duration of ND. BPGA 1,3-bisphosphoglycerate, DHAP dihydroxyacetone phosphate, E4P erythrose 
4-phosphate, Fd ferredoxin, FBA fructose-bisphosphate aldolase, FBPase fructose-1,6-bisphosphatase, FBP fructose 1,6-bisphosphate, FNR 
ferredoxin—NADP (+) reductase, F6P fructose 6-phosphate, GAP glyceraldehyde 3-phosphate, GAPDH glyceraldehyde 3-phosphate dehydrogenase, 
hν photon energy, LHC light-harvesting complex, MDH malate dehydrogenase, ME malic enzyme, OAA oxaloacetate, PC plastocyanin, PEP 
phosphoenolpyruvate, PEPC phosphoenolpyruvate carboxylase, 3PGA 3-phosphoglycerate, PGK phosphoglycerate kinase, PPDK pyruvate 
phosphate dikinase, PQ plastoquinone, PRK phosphoribulokinase, PS photosystem, RBCS Ribulose-1,5-bisphosphate carboxylase/oxygenase small 
subunit, R5P ribose 5-phosphate, RPI ribose 5-phosphate isomerase, RPE ribulose-phosphate 3-epimerase, RuBP ribulose 1,5-bisphosphate, Ru5P 
ribulose 5-phosphate, SBP sedoheptulose 1,7-bisphosphate, SBPase sedoheptulose-1,7-bisphosphatase, S7P sedoheptulose 7-phosphate, TIM 
triosephosphate isomerase, TRK transketolase, Xu5P xylulose 5-phosphate. See Additional file 1: Data S1 for the details of gene transcripts
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photosynthesis of C. zofingiensis severely, as evidenced 
by the tremendous decrease of photosynthetic pigments 
(Figs. 1c and 2), protein complexes (Fig. 3) and thylakoid 
membrane lipids [29].

Photosynthetic eukaryotes evolved photoprotec-
tive mechanisms to cope with photo-oxidative stress, of 
which NPQ plays an important role by dissipating the 
excess light energy as heat [45]. The PS II subunit S (PsbS) 
and light-harvesting complex stress-related (LHCSR) 
proteins represent the well-studied protein cofactors to 
modulate qE, the major component of NPQ [46]. Both 
PsbS (Cz03g01250) and LHCSR (Cz16g02040) genes were 
identified in C. zofingiensis and responded differentially 
to ND: LHCSR was up-regulated and reached the maxi-
mum transcript level (fivefold increase) at 3  h of ND, 
while PsbS showed no up-regulation (Fig.  3b and Addi-
tional file 1: Data S1). By contrast, both PsbS and LHCSR 
were up-regulated by ND at the transcript level in C. 
reinhardtii [39] and were demonstrated to be crucial for 
the activation of NPQ [47]. It is likely in C. zofingiensis 
that LHCSR plays a more important role than PsbS in 
stimulating NPQ under ND conditions (Fig. 1e).

The Calvin–Benson cycle, responsible for photosyn-
thetic fixation of CO2 in C3 plants, occurs in the chlo-
roplast and involves a number of enzymatic reactions, 
which can be classified as three stages of carboxylation, 
reduction and regeneration [48]. In C. zofingiensis, all 
enzymes involved in the cycle were identified, encoded 
by 1–3 isogenes (Fig.  3c and Additional file  1: Data 
S1). Ribulose 1,5-bisphosphate carboxylase/oxygenase 
(Rubisco), which initiates the cycle by catalyzing carbox-
ylation of ribulose 1,5-bisphosphate (RuBP), was severely 
down-regulated by ND as evidenced by the transcript 
change of its small subunit RBCS (Fig. 3c). Notably, RBCS 
had the highest transcript abundance (FPKM > 30,000) 
under NR conditions, which decreased progressively in 
response to ND by over 40-fold after 24  h of treatment 
(Additional file 1: Data S1). Other genes involved in the 
reduction and regeneration stages were also down-reg-
ulated by ND, to different degrees (Fig.  3c). These indi-
cated that the Calvin–Benson cycle was suppressed 
under ND conditions, in line with the severely attenuated 
photosynthesis that produces ATP and NADPH mole-
cules for photosynthetic fixation of CO2 (Fig. 3b). Similar 
in the algae C. reinhardtii, Nannochloropsis oceanica and 
Thalassiosira weissflogii [39, 49, 50], the genes putatively 
involved in C4 cycle pathway with chloroplast-localized 
prediction were found in C. zofingiensis, including one 
phosphoenolpyruvate carboxylase (PEPC), two malate 
dehydrogenases (MDH), one malic enzymes (ME) and 
one pyruvate phosphate dikinase (PPDK) (Fig.  3c and 
Additional file  1: Data S1). Upon ND, although PEPCs 
showed little change and MDHs were down-regulated, 

ME and PPDK were considerably up-regulated (Fig. 3c), 
suggesting that ND might stimulate C4 pathway some-
what to offset the attenuated CO2 fixation. Accordingly, 
HLA3 (Cz05g07180) and LCIA (Cz02g42030), the Ci 
transporters well characterized for CO2 concentrat-
ing mechanism in C. reinhardtii [51], were up-regulated 
(Additional file 1: Data S1).

ND stimulates nitrogen metabolism for protein remodeling
Upon exposure of C. zofingiensis to ND, many genes 
involved in nitrogen metabolism changed significantly 
(Additional file  3: Data S2). ND stimulated the assimi-
lation for inorganic nitrogen sources including nitrate, 
nitrite and ammonium (Fig.  4). Nitrate and nitrite 
need to be imported from the medium and reduced to 
ammonium prior to utilization by the algal cells. C. zof-
ingiensis genome harbors five nitrate transporters and 
two nitrite transporters (Additional file  3: Data S2). In 
response to ND, three nitrate transporters (Cz11g12230, 
Cz08g30210 and Cz16g07340) were up-regulated and 
one (Cz06g16220) was down-regulated, but with an 
overall up-regulation (Fig.  4). Similarly, the two nitrite 
transporters were also up-regulated by ND (Fig. 4). The 
reduction in nitrate to ammonium involves two enzymes, 
nitrate reductase (NRD) and nitrite reductase (NIR). In 
C. zofingiensis, both NRD and NIR have only one gene 
copy and were up-regulated considerably by ND (Fig. 4). 
Furthermore, five AMT type ammonium transporters 
were identified in C. zofingiensis genome and three out of 
them (Cz12g21220, Cz13g12260 and Cz10g23010) were 
up-regulated by ND (Fig.  4 and Additional file  3: Data 
S2). Particularly, Cz13g12260 exhibited a quick and dra-
matic up-regulation (> 20-fold at 3 h of ND), suggesting 
the rapid activation of ammonium uptake. Collectively, 
C. zofingiensis responded rapidly to ND via the coordi-
nated up-regulation of inorganic nitrogen assimilation 
pathways, and the up-regulation was not transient but 
maintained during the whole 24-h period (Fig. 4). This is 
generally in agreement with previous reports of several 
algae including C. reinhardtii, H. pluvialis, N. oceanica 
and Monoraphidium neglectum [37, 38, 49, 52] and may 
represent a survival strategy that allows algal cells to uti-
lize any nitrogen sources whenever they are available.

Nitrogen deprivation also stimulated the utilization 
pathways for organic nitrogen sources. The utilization 
of urea involves urea active transporter (DUR3), urea 
carboxylase (DUR1) and allophanate hydrolase (DUR2), 
which together import and convert urea to ammonia 
ready for use in C. reinhardtii [52]. C. zofingiensis har-
bors only one gene encoding for each DUR3, DUR1 
and DUR2; both DUR3 and DUR1 were up-regulated 
under ND conditions (Fig.  4). Formamidase (AMI), the 
enzyme releasing ammonia from formamide, had a very 
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low transcript level (FPKM < 1) under NR conditions 
and was dramatically up-regulated (> 300-fold) by ND 
(Fig.  4). It has been reported in C. reinhardtii that the 
catabolic pathways of pyrimidine and purine contributed 
to replenishment of ammonia under ND conditions [52]. 
The most common steps for pyrimidine degradation start 
from uracil and are catalyzed by three enzymes of dihy-
dropyrimidine dehydrogenase (DHDH), dihydropyrimid-
inase (DHP) and β-ureidopropionase (BUP) [53]. The 
genes encoding for these enzymes were up-regulated by 

ND in C. zofingiensis (Fig. 4), indicative of the enhanced 
pyrimidine catabolism upon ND. This is in line with the 
results observed in C. reinhardtii that ND stimulated 
pyrimidine catabolism leading to decreased intracellular 
uracil level [33, 52, 54]. Similarly, purine catabolism was 
stimulated upon ND as indicated by the up-regulation of 
guanine deaminase (GDA) and xanthine dehydrogenase 
(XDH), which catalyze the formation of uric acid from 
guanine (Fig. 4). Uric acid is further degraded to glyoxy-
late with the release of ammonia via five enzymatic steps; 
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Page 9 of 19Zhang et al. Biotechnol Biofuels          (2019) 12:287 

the genes encoding for four of the five enzymes exhib-
ited an up-regulation in response to ND in C. zofingien-
sis (Fig. 4). The results, together with the non-detection 
of uric acid in C. zofingiensis [29], indicate that ammo-
nia rather than urea serves as the end product of purine 
catabolism in C. zofingiensis, the same as in higher plants 
and C. reinhardtii [52, 55].

The glutamine synthetase/glutamate synthase (GS/
GOGAT) cycle plays an important role in the assimila-
tion of ammonia for protein synthesis [56]. GS catalyzes 
the incorporation of ammonia into glutamate for produc-
ing glutamine, while GOGAT transfers the amide group 
from glutamine to 2-oxoglutarate leading to the forma-
tion of glutamate, the substrate of GS. C. zofingiensis 
contains three GS-encoding genes: one (Cz14g20030) is 
predicted to be localized in cytosol, one (Cz12g28130) 
in chloroplast and the other one (Cz01g04100) in mito-
chondrion (Additional file  3: Data S2). The chloroplas-
tic GS had a high transcript level and was considerably 
down-regulated upon ND; by contrast, the cytosolic one 
had a low transcript level and was up-regulated by ND 
(Fig.  4 and Additional file  3: Data S2). This generally 
agrees with the phenomenon observed in other algae 
including H. pluvialis [37] and C. reinhardtii [33, 52], 
and indicates that the cytosolic GS may be involved in 
the remobilization of intracellular nitrogen compounds. 
Likely, algae stimulate nitrogen remobilization for salva-
tion and repartition to the proteins with lower nitrogen 
abundance and/or necessary for cell adaption to stress 
conditions. These proteins may be involved in algal pro-
tein and starch catabolism and lipid metabolism [29, 33, 
52], as well as in secondary carotenoid synthesis in the 
algae of H. pluvialis [36, 37] and C. zofingiensis (see fol-
lowing sections).

Reconstruction of carotenogenic pathways for ND‑induced 
astaxanthin biosynthesis
Although C. zofingiensis has long been used for study-
ing astaxanthin synthesis and production, the cloned and 
verified carotenogenic genes are still limiting [57–62]. 
The availability of whole genome sequence of C. zof-
ingiensis [26] allows us to fully identify carotenogenic 
genes involved in the methylerythritol phosphate (MEP) 
and mevalonate (MVA) pathways for producing carot-
enoid precursors isopentenyl pyrophosphate (IPP) and 
dimethylallyl pyrophosphate (DMAPP), the formation 
of primary carotenoids from IPP/DMAPP, and the bio-
synthesis of astaxanthin from β-carotene (Additional 
file  4: Data S3). Our recent study about the characteri-
zation of diacylglycerol acyltransferases (DGATs) has 
demonstrated that the gene models of seven out of the 
ten DGAT​ genes from Roth et  al. [26] are incomplete 
[63], indicating that the current genome annotation of 

C. zofingiensis needs to be improved. In this context, we 
cloned and verified 34 genes listed in Additional file  4: 
Data S3, of which 18 gene models from Roth et  al. [26] 
were updated (Additional file 2: Figure S2 and Additional 
file  5: Data S4). The availability of full-length coding 
sequence would be beneficial to subcellular localization 
prediction (Additional file  6: Data S5) and future char-
acterization of these genes. The carotenogenic pathways 
and their response to ND were detailed as followed for C. 
zofingiensis.

The MEP pathway is not stimulated by ND
It has been suggested that precursors derived from the 
chloroplastic MEP pathway instead of the cytosolic MVA 
pathway are employed for the biosynthesis of carotenoids 
in green algae [64–66]. In C. zofingiensis, all enzymes 
involved in MEP pathway have been identified and 
appear to be encoded by single-copy genes; by contrast, a 
majority of enzymes in MVA pathway are missing (Fig. 5 
and Additional file 4: Data S3). The MEP pathway is initi-
ated by 1-deoxy-d-xylulose 5-phosphate (DXP) synthase 
(DXS), which catalyzes the irreversible condensation 
of pyruvate and glyceraldehyde 3-phosphate to form 
DXP. DXP is then converted to MEP mediated by DXP 
reductoisomerase (DXR), the first committed step of the 
MEP pathway toward isoprenoid synthesis. The last step 
involves 4-hydroxy-3-methylbut-2-en-1-yl diphosphate 
reductase (HDR), catalyzing the formation of 5-carbon 
isoprenoids. These three enzymes are generally con-
sidered as key enzymes controlling carbon flux of MEP 
pathway [67–69]. In C. zofingiensis upon ND, DXS and 
HDR transcripts showed little change, while DXR was 
down-regulated and reached an over twofold decrease 
at 24  h of ND (Fig.  5), suggesting that up-regulation of 
the MEP pathway did not occur under ND conditions. 
This is not surprising in C. zofingiensis because although 
secondary carotenoids particularly astaxanthin showed 
a drastic increase upon ND, total carotenoids had little 
change (Fig. 2), and thus probably requiring no up-regu-
lation of the MEP pathway for precursor supply. By con-
trast, a considerable up-regulation of the MEP pathway 
was observed upon stress conditions of ND and/or high 
light in H. pluvialis [36, 37, 70], pointing to the difference 
between the two algae.

ND up‑regulates astaxanthin synthesis 
while down‑regulating lutein synthesis for the accumulation 
of keto‑carotenoids at the expense of primary carotenoids
The carotenoid β-carotene serves as the direct precur-
sor for astaxanthin biosynthesis, which involves multiple 
routes via a series of hydroxylation and ketolation steps 
mediated by β-carotene hydroxylase (CHYb) and ketolase 
(BKT) [15, 71]. C. zofingiensis possesses one CHYb gene 
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(Cz12g16080) and two BKT genes, BKT1 (Cz13g13100) 
and BKT2 (Cz04g11250). CHYb and BKT1 have been 
characterized by functional complementation in path-
way-reconstructed E. coli cells [61, 62]. CHYb and BKT 
genes were all up-regulated considerably by ND (Fig. 5), 
consistent with the results under other astaxanthin-
inducing conditions such as high light [6, 72], salt stress 
[72] and glucose feeding [11, 28, 62], suggesting the 
important role of both CHYb and BKT genes in astaxan-
thin biosynthesis regardless of stress conditions. Notably, 
BKT1 had ~ 30-fold higher transcript abundance than 
BKT2 and was more up-regulated by ND (Additional 
file  4: Data S3), indicating the dominance of BKT1 in 
contributing to astaxanthin biosynthesis in C. zofingien-
sis. This has been confirmed recently through the char-
acterization of C. zofingiensis bkt1 mutants, in which 
astaxanthin was almost abolished [26, 73].

Lutein and β-carotene, the major primary carotenoids 
accounting for over 70% at 0  h of ND, dropped sharply 
upon ND and reached sevenfold decrease at 96 h of ND 
(Fig. 2). The sharp lutein decrease is likely caused on the 
one hand by the severe down-regulation of lutein biosyn-
thesis genes such as lycopene ε-cyclase (LCYe, ~ 30-fold 
decrease), cytochrome P450 beta hydroxylase (CYP97A) 
and epsilon hydroxylase (CYP97C) genes (~ threefold 
decrease), and on the other hand by the considerable up-
regulation of lycopene β-cyclase (LCYb), CHYb and BKT 
genes that diverts carotenoid flux to astaxanthin and can-
thaxanthin (Fig. 5). Although LCYb had an over threefold 
up-regulation, its direct product β-carotene serves as the 
substrate of both CHYb and BKT enzymes, which were 
more up-regulated by ND thus leading to the consump-
tion of β-carotene (Fig.  5). Taken together the profiling 
of product dynamics and transcriptional expression of 
carotenogenic pathways (Figs. 2 and 5), the ND-induced 
astaxanthin accumulation in C. zofingiensis is unlikely 
contributed by the enhanced carbon allocation to carot-
enoids, but instead by rerouting the carotenoid flux from 
primary carotenoids to secondary carotenoids.

Astaxanthin is esterified with fatty acids mediated 
by an unknown acyltransferase
Unlike Xanthophyllomyces dendrorhous or pathway-
reconstructed astaxanthin-producing transgenic plants 
that accumulate free astaxanthin [74–76], algae syn-
thesize astaxanthin predominantly in the form of ester 
[8, 19, 20, 34]. Intriguingly, astaxanthin ester and TAG 
accumulated in a relative stable stoichiometric ratio and 
were similar in the fatty acid composition [8, 22, 23], 
indicative of possible cross talk between astaxanthin and 
TAG synthesis. The esterification of astaxanthin involves 
an unknown acyltransferase that transfers an acyl moi-
ety probably from acyl-CoAs to the hydroxyl groups of 

astaxanthin. It has been suggested in H. pluvialis that 
DGAT(s) may mediate astaxanthin esterification [22], 
but direct evidence is still lacking. Roth et  al. [26] pro-
posed that a long-chain-alcohol O-fatty-acyltransferase 
(AAT, Cz02g29020), which was up-regulated early upon 
high light, may be involved in astaxanthin esterification 
in C. zofingiensis. This acyltransferase gene also exhibited 
a considerable up-regulation (~ threefold) in response to 
ND (Fig.  5). To confirm the function of these proposed 
acyltransferases, future studies with respect to in  vitro 
enzymatic assay and/or heterologous expression in free 
astaxanthin-producing organisms should be conducted.

The expression of carotenogenic DEGs is validated by qPCR
To evaluate the expression pattern of DEGs from RNA-
seq data, eight carotenogenic genes were selected for 
qPCR, namely PDS, LCYe, LCYb, CHYb, BKT1, BKT2, 
AAT​ and VDE. The housekeeping gene β-actin was used 
as the internal control (Additional file 7: Table S1). Obvi-
ously, LCYb, CHYb, BKT1, BKT2 and AAT​ were up-reg-
ulated, while the other three genes were down-regulated 
in response to ND, consistent with the RNA-seq data 
(Fig. 6).

Astaxanthin biosynthesis is affected by carbon source 
availability
To investigate if carbon source availability has effect on 
carotenoid synthesis in C. zofingiensis under ND condi-
tions, algal cultures were aerated with three CO2 con-
centrations, namely 0.04%, 1.5% and 5%. Clearly, CO2 
concentrations had impact on the synthesis of carote-
noids in C. zofingiensis, as suggested by the color of algal 
cultures (Fig. 7a) and TLC analysis of carotenoid extracts 
(Fig.  7b). HPLC quantification demonstrated that the 
supply of lower CO2 concentration (e.g., 0.04%) restricted 
astaxanthin synthesis to a great extent (Fig. 7c). Consid-
ering the little change of total carotenoids and increase 
in β-carotene and lutein, the attenuated astaxanthin 
accumulation under 0.04% CO2 is unlikely attributed to 
the limit of carbon flux to carotenoids, but instead to the 
repressed conversion from primary carotenoids (Fig. 7c). 
Nevertheless, the transcriptional level of the five genes 
involved in converting primary carotenoids to astaxan-
thin showed just marginal change in response to differ-
ent CO2 concentrations (Fig.  7d). Probably, astaxanthin 
accumulation under this situation is no longer controlled 
by the transcriptional level of these carotenoid synthetic 
genes in C. zofingiensis. It has been showed in H. pluvialis 
that a certain level of TAG, which constitutes the hydro-
phobic core of lipid droplets, is required for recommend-
ing astaxanthin [22, 23], indicative of the metabolite level 
control of astaxanthin synthesis. This may be also the 
case for the astaxanthin accumulation in C. zofingiensis, 
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as total fatty acids (TFA) and TAG, consistent with asta-
xanthin, exhibited a considerable decrease under 0.04% 
CO2 (Fig.  7e) and the ratio of astaxanthin/TAG main-
tained a stable level under different CO2 concentrations 
(Fig. 7f ).

Comparison between C. zofingiensis and H. pluvialis reveals 
distinctions in astaxanthin biosynthesis
Haematococcus pluvialis and C. zofingiensis represent 
two type species well studied for astaxanthin produc-
tion [15, 16]. All enzymes involved in the MEP pathway, 
IPP/DMAPP to primary carotenoids and β-carotenoid 
to astaxanthin are present in these two phylogenetically 
closely related algae (Table  1). Nevertheless, the two 
algae have great difference in the accumulation capacity 
of intracellular astaxanthin: H. pluvialis can accumulate 
a high astaxanthin level of ~ 4% dry weight [22, 77, 78], 
while C. zofingiensis accommodates astaxanthin gener-
ally no more than 0.6% dry weight (Fig. 2; [4, 5, 8, 25]). 
This may be partly explained by the difference in the 
transcriptional expression of genes in the MEP pathway 
and the formation of lycopene from IPP/DMAPP: many 
genes were up-regulated in H. pluvialis, while these 
genes showed almost no up-regulation in C. zofingiensis 
but instead some were down-regulated including PDS 
and ZDS (Table  1). Therefore, C. zofingiensis has less 

carbon flux to carotenoids than H. pluvialis contributing 
to lower astaxanthin content.

Also, the astaxanthin ‘purity’ differs in the two algae: 
astaxanthin represents the predominant secondary 
carotenoid (accounting for more than 90%) in H. pluvi-
alis [16, 23, 36]; by contrast, in addition to astaxanthin, 
C. zofingiensis synthesizes substantial amounts of can-
thaxanthin, ketolutein and adonixanthin, which together 
account for ~ 30% of total secondary carotenoids (Fig. 2; 
[3–5, 25]). It is thought in H. pluvialis that astaxanthin 
comes from β-carotene via the intermediate canthaxan-
thin catalyzed sequentially by BKT and CHYb [79, 80]. 
The high efficiency of CHYb in converting canthaxanthin 
to astaxanthin likely contributes to the accumulation of 
only trace amount of canthaxanthin in H. pluvialis [16, 
80]. By contrast, in C. zofingiensis, CHYb is probably 
unable to convert canthaxanthin to astaxanthin leading 
to canthaxanthin buildup, and BKT is capable of cata-
lyzing the formation of astaxanthin from zeaxanthin yet 
not in high efficiency causing the accumulation of certain 
amount of adonixanthin (Fig. 2). This alternative pathway 
for astaxanthin biosynthesis in C. zofingiensis, however, 
needs further experimental evidences [15].

Although both H. pluvialis and C. zofingiensis synthe-
size predominantly esterified astaxanthin (> 90%), the 
relative abundance of mono-ester and di-ester is different 
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Fig. 6  Expression validation of carotenogenic genes in C. zofingiensis under ND conditions as determined by qPCR. The transcript level was 
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listed in Additional file 7: Table S1
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[8, 20, 34, 81]. H. pluvialis accumulates a high portion of 
mono-ester, which can reach ~ 84% of total astaxanthin 
and is 6.0-fold higher than di-ester [20]. C. zofingiensis, 

on the other hand, synthesizes more di-ester than mono-
ester [81]. It has been reported that inhibition of de novo 
fatty acid synthesis attenuated TAG level and almost 
abolished the accumulation of esterified astaxanthin in H. 
pluvialis [22, 23], suggesting that the de novo fatty acid 
synthesis is critical for astaxanthin buildup. Interestingly, 
treated with de novo fatty acid synthesis inhibitor, C. zof-
ingiensis showed no decrease in astaxanthin level; instead, 
the esterified astaxanthin increased [8]. The mechanism 
underlying this difference between the two algae remains 
unknown and is worth of future investigation.

Identification of engineering targets for rational 
improvement in astaxanthin
Chromochloris zofingiensis is capable of growing robustly 
under multiple trophic conditions and reaching a much 
higher cell density than H. pluvialis [6]. Nevertheless, 
the astaxanthin production by C. zofingiensis is compro-
mised by its low level of intracellular astaxanthin, which 
is possibly due to (1) low efficiency of BKT in ketolat-
ing zeaxanthin to astaxanthin and inability of CHYb in 
hydroxylating canthaxanthin to astaxanthin (‘pulling’), (2) 
limited supply of the isoprene precursor for carotenoid 
synthesis (‘pushing’), (3) and/or insufficient esterification 
of astaxanthin for storage in lipid droplets (‘protection’). 
Accordingly, overexpressing a CHYb capable of convert-
ing canthaxanthin to astaxanthin and/or a BKT with 
high-efficiency conversion of zeaxanthin to astaxanthin 
has the potential to minimize the accumulation of inter-
mediates (e.g., canthaxanthin and adonixanthin) and pull 
the carotenoid flux to the end product astaxanthin, lead-
ing to elevated astaxanthin content and purity as well. 
Another feasible way is to stimulate the MEP pathway via 
overexpressing DXS, DXR and/or HDR genes, providing 
sufficient precursors (IPP and DMAPP) for carotenoid 
synthesis. IPP and DMAPP can be exported out of the 
chloroplast and are used as the precursors for sterol syn-
thesis [66]. Therefore, the overexpression of PSY, PDS or 
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ZDS genes has the potential to drive IPP/DMAPP away 
from sterol to carotenoids. It is also possible to improve 
astaxanthin accumulation by AAT​ overexpression, which 
on the one hand sequesters free astaxanthin thereby 
releasing the product feedback inhibition, and on the 
other hand protects astaxanthin against degradation as 
esterified astaxanthin is considered more stable than free 
astaxanthin [15].

As multiple biological steps are involved in astaxanthin 
biosynthesis for intracellular accumulation, single-gene 
manipulation mentioned above may not achieve satisfac-
tory performance. By contrast, transcription factors (TFs) 
involved in astaxanthin biosynthesis can be used as the 
engineering target to bypass the manipulation of multiple 
genes (not easy to achieve) for better performance. The 
analysis of C. zofingiensis genome using PlantTFDB 4.0 
[82] predicted a total of 180 TFs, among which, 60 were 
ND-induced DEGs (Additional file 8: Data S6). In C. zof-
ingiensis, several TFs including Cz10g24240 (MYB) and 
Cz01g40030 (Nin-like) were predicted to regulate carote-
nogenesis for astaxanthin synthesis based on co-expres-
sion analysis (Additional file 2: Figure S3 and Additional 
file 9: Data S7); they represent potential engineering tar-
gets of TFs for improving astaxanthin production. It is 
worth noting that the up-regulated genes in astaxanthin 
correlated well with the genes involved in lipid metabo-
lism for TAG accumulation (Additional file 2: Figure S4), 
and Cz10g24240 had the potential to regulate both asta-
xanthin and TAG synthesis (Additional file  9: Data S7; 
[29]). In this context, manipulation of this TF may lead 
to the improvement in astaxanthin and TAG simultane-
ously and thus is of particular interest. It is worth not-
ing that genetic engineering of C. zofingiensis for trait 

modification requires improvements in the development 
of genetic tools.

Conclusions
Chromochloris zofingiensis showed a global response to 
ND including impaired chlorophyll synthesis and photo-
synthesis, attenuated CO2 fixation, and stimulated nitro-
gen metabolism. A mechanistic model of carotenogenesis 
for astaxanthin accumulation in C. zofingiensis was pro-
posed (Fig. 8). ND stimulated astaxanthin synthesis from 

Table 1  Comparison of the DEGs of carotenogenesis in C. zofingiensis and H. pluvialis under various conditions

a  The DEGs were retrieved from RNA-seq data of the references. Note that there is only one time-point RNA-seq data for Gwak et al. [36], but many carotenogenic 
genes were verified by qPCR in a time-resolved manner

MEP MVA IPP/DMAPP to primary 
carotenoids

β-carotenoid 
to astaxanthin

Referencesa

C. zofingiensis

 Nitrogen deprivation Up: MCS
Down: DXR

Up: AACT​, HCS
Down: no

Up: LCYb
Down: PDS, ZDS, LCYe, CYP97A, 

CYP97C, VDE

Up: CHYb, BKT1, BKT2, AAT​
Down: no

This study

 High light Up: no
Down: no

Up: no
Down: no

Up: no
Down: ZDS, LCYe

Up: BKT1, BKT2, AAT​
Down: no

[26]

 Glucose induction Up: DXS, HDR
Down: CMK

Up: IPPI
Down: AACT​

Up: LCYb
Down: PDS, ZISO, CRTISO, LCYe, 

CYP97A, CYP97C, ZEP, VDE, NXS

Up: CHYb, BKT1
Down: BKT2

[28]

H. pluvialis

 High light Up: DXS, DXR, HDS, HDR
Down: no

Up: HCS
Down: no

Up: GGPPS, PSY, PDS, ZDS, LCYb
Down: no

Up: CHYb, BKT
Down: no

[36]

 High light plus nitro-
gen deprivation

Up: DXS, DXR, MCT, HDS, HDR
Down: no

Up: no
Down: no

Up: GGPPS, PSY, PDS, ZDS, LCYb
Down: LCYe, CYP97C

Up: CHYb, BKT
Down: no

[37]
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Fig. 8  A mechanistic model of carotenogenesis in C. zofingiensis. 
Boxes in red, blue and black indicate up-, down- and non-regulated 
pathways, respectively. The MEP pathway produces IPP and DMAPP, 
which are used for the synthesis of lycopene. The synthesized 
lycopene can enter both lutein synthesis and astaxanthin synthesis. 
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β-carotene (up-regulation of LCYb, CHYb, BKT and AAT​),  
repressed lutein synthesis (down-regulation of LCYe, 
CYP97A and CYP97C), yet had little effect on the MEP 
pathway and the lycopene formation from IPP/DMAPP, 
thus diverting the carotenoid flux from primary carot-
enoids to secondary carotenoids leading to the accumu-
lation of astaxanthin at the expense of lutein. This differs 
from the mechanism of astaxanthin synthesis in H. plu-
vialis and may partly explain why C. zofingiensis achieves a 
low astaxanthin level. The genes involved in fatty acid syn-
thesis and TAG assembly were up-regulated and correlated 
well with astaxanthin synthetic genes, likely providing 
fatty acids for astaxanthin esterification and building lipid 
droplets for astaxanthin storage. Furthermore, integrated 
analysis identified several potential gene targets for future 
rational engineering to improve astaxanthin level. Recon-
struction of carotenogenesis pathways and understand-
ing of its regulation for astaxanthin synthesis will pave a 
way toward developing this alga as an emerging model for 
studying astaxanthin biosynthesis and production.

Methods
Algal growth conditions
Chromochloris zofingiensis (ATCC 30412), purchased 
from the American Type Culture Collection (ATCC, 
Rockville, MD, USA), was maintained on agar plates in 
our laboratory as previously described [6]. A single col-
ony of the alga was inoculated to a 10-mL tubes contain-
ing 2  mL of BG-11 medium and allowed to grow under 
continuous illumination (30  µE  m−2  s−1) with hand 
shaking twice per day. When the culture turned green, 
it was transferred to a 100-mL flask containing 20  mL 
of medium and cultured for 6  days on an orbital shaker 
(150 rpm) under the same illumination condition. There-
after, the culture was transferred to 200 mL of medium in 
a 3-cm (diameter) glass column for seed preparation, with 
aeration of 1.5% CO2 enriched air and constant illumina-
tion of 70 µE m−2 s−1.

The seed cells were then inoculated to new glass col-
umns with a starting density of 107  cells  mL−1 and 
allowed to grow under the above mentioned aeration 
and illumination conditions (defined as nitrogen replete, 
NR). After 4 days of cultivation under NR conditions, the 
algal cells were pelleted by centrifugation, rinsed off three 
times with nitrogen-free medium (BG-11 medium with-
out nitrogen), and re-suspended in the same medium for 
nitrogen deprivation (ND) treatment. As for the carbon 
source availability experiment, algal cultures in the nitro-
gen-free medium were aerated with different CO2 con-
centrations, namely, 0.04% (air), 1.5% and 5%.

Determination of growth and photosynthesis‑related 
parameters
Cell number was counted under a light microscope by using 
a hemocytometer (Neubauer chamber; Sigma-Aldrich, 
MO, USA). Dry weight was determined by weighting using 
pre-dried Whatman GF/C filter papers (1.2 μm pore size) 
according to our previous study [8]. Fv/Fm, the potential 
quantum efficiency of PSII indicating the photosynthetic 
performance, and non-photochemical quenching (NPQ) 
were measured in a pulse amplitude-modulated (PAM) 
fluorometry (Walz, Germany) as previously stated [83]. 
The algal samples were dark-adapted for 2 h prior to meas-
urement. The level of reactive oxygen species (ROS) was 
determined according to the procedures from Li et al. [72], 
using the cell-permeable fluorescent dye chloromethyl-2′, 
7′-dichlorodihydrofluorescein diacetate (CM-H2DCFDA; 
Molecular Probes, OR, USA). The fluorescence intensity 
was recorded on a fluorescence microplate reader (Thermo 
Scientific, MA, USA), using 485  nm for excitation and 
520 nm for emission.

Pigment extraction and determination
The algal samples were harvested by centrifugation 
(washed three times with deionized water) and dewa-
tered on a freeze-drier (Labconco, MO, USA). The lyo-
philized samples, after being homogenized fully in the 
presence of liquid nitrogen, were subjected to acetone 
for pigment extraction (repeat three times). For thin 
layer chromatography (TLC) analysis, the extracts were 
separated on a Silica gel 60 TLC plate (EMD Chemicals, 
Merck, Germany) with the mobile phase consisting of a 
mixture of hexane/tert-butylmethyl ether (TBME)/ace-
tic acid (80/20/2, by vol). For quantification, the extracts 
were analyzed according to Liu et  al. [11], by a high-
performance liquid chromatography system, which is 
composed of a Waters 2695 separation module, a Waters 
2996 photodiode array detector and a Waters Spherisorb 
5  µm ODS2 4.6 × 50  mm analytical column (Waters, 
Milford, MA, USA). To fully separate lutein and zeax-
anthin, a Waters YMC Carotenoid C30 column (5  μm, 
4.6 × 250 mm) was used as stated by previous studies [73, 
81]. Pigments were compared with authentic standards 
with respect to the retention time, absorption spectra 
and peak area.

Lipid extraction and quantification
The algal samples from CO2 availability experiment, 
after harvest, lyophilization and extraction, were used for 
quantification of total fatty acids (TFA) and TAG accord-
ing to the previously stated protocols [63]. Briefly, for 
TFA quantification, the lipid extracts were directly trans-
esterified with 1.5% sulfuric acid in methanol prior to gas 
chromatography–mass spectrometry (GC–MS) analysis. 
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For TAG quantification, the lipid extracts were separated 
on a Silica gel 60 TLC plate (EMD Chemicals) with the 
mobile phase consisting of a mixture of hexane/tert-
butylmethyl ether (TBME)/acetic acid (80/20/2, by vol), 
followed by visualization with iodine vapor, TAG recov-
ery, transesterification and GC–MS analysis.

The transesterified fatty acids were analyzed by using 
an Agilent 7890 capillary gas chromatograph equipped 
with a 5975 C mass spectrometry detector and a HP-88 
capillary column (60  m × 0.25  mm) (Agilent Technolo-
gies, CA, USA). Individual fatty acids were quantified 
with authentic standards in the presence of the internal 
standard heptadecanoic acid (Sigma-Aldrich). The con-
tent of TFA and TAG was expressed as the content of 
their corresponding fatty acids.

RNA‑seq data and differentially expressed gene analysis
The RNA-seq data at the Gene Expression Omnibus 
under Accession number GSE113802 were generated by 
our recent study that focused on lipid metabolism [29]. 
A total of 15 transcriptomes were retrieved, correspond-
ing to five time points (each had three replicates) of ND 
(namely 0, 3, 6, 12 and 24 h). The ND treatment condition 
was the same as in this study. Differentially expressed 
gene (DEG) analysis was performed between ND time 
points (3, 6, 12 and 24 h) and the reference (0 h). DEGs 
were defined as followed: the FPKM value of at least one 
condition was no less than 1 and gene expression showed 
at least a twofold change with the false discovery rate 
(FDR) adjusted p value less than 0.01.

Quantitative real‑time PCR for the validation 
of carotenogenic genes
Total RNA was extracted from the algal samples (homog-
enized in the presence of liquid nitrogen) using Trizol 
reagent (Invitrogen, CA, USA) according to the manufac-
turer’s instructions. The RNA concentration was deter-
mined using a NanoDrop 2000C (Thermo Scientific). The 
cDNA synthesis and subsequent qPCR were performed 
as described by our previous study [11] using a 7500 Fast 
Real-Time PCR System (Applied Biosystems, Waltham, 
MA, USA) with SYBR® Premix Ex Taq™ II (TaKaRa, 
Japan). Genes and primers used for qPCR were listed in 
Additional file  7: Table  S1. The gene expression level at 
the transcriptional level was normalized using the β-actin 
gene as the internal control.

Reconstruction of carotenogenic pathways
The carotenogenic genes from Arabidopsis thaliana and 
H. pluvialis were used to search against the genome of 
C. zofingiensis [26] for the identification of correspond-
ing genes, which were listed in Additional file 4: Data S3. 

Our recent study has indicated that many gene models 
from Roth et  al. [26] are probably incorrect/incomplete 
[63]. In this context, we cloned the coding sequence of 
carotenogenic genes based on our transcriptomic data 
and the previously published gene sequences and had 
them verified by sequencing (Additional file 5: Data S4). 
Subcellular localization prediction was performed based 
on the confirmed sequences, using the green algae-ded-
icated software Predalgo (https​://giava​p-genom​es.ibpc.
fr/cgi-bin/preda​lgodb​.perl?page=main) [84]. When the 
program-based prediction is contradictory to the exper-
imentally resolved localization of homologs in other 
eukaryotic organisms, the subcellular localization of 
homologs was adopted (Additional file  6: Data S5). The 
identification of carotenogenic genes and their predicted 
subcellular localization helped better to reconstruct the 
carotenogenic pathways, which is shown in Fig. 5.

Identification of transcription factors involved 
in carotenogenesis via co‑expression analysis based 
on time‑resolved transcriptomes
The correlation coefficient between transcription factor 
(TF) genes and DEGs involved in carotenogenesis was 
calculated based on the temporal dynamics of transcripts 
over the five time points (0, 3, 6, 12, and 24  h) of ND, 
according to Hu et al. [85]. A correlation was considered 
significant if the absolute value of the Pearson correlation 
coefficient was over 0.85 and p value was below 0.05. A 
TF was considered as the regulator of carotenogenesis 
if it had a significant correlation with at least 40% of the 
carotenogenic DEGs (Additional file  2: Figure S3 and 
Additional file 9: Data S7).

Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1306​8-019-1626-1.

Additional file 1: Data S1. RNA-seq data for the genes involved in chloro-
phyll metabolism, photosynthesis and CO2 fixation.

Additional file 2: Figure S1. Pearson correlation among DEGs of photo-
synthesis-related genes at the transcriptional level. The log2-transformed 
transcript levels (FPKM values) were used for plotting. 1 Chlorophyll 
biosynthesis; 2 chlorophyll degradation; 3 cytochrome complexes and 
soluble electron carriers; 4 photosystem I; 5 photosystem II; 6 light-
harvesting complexes I and II; 7 ATP synthase. Figure S2. Comparison 
between carotenogenic genes predicted from Roth et al. [26] and ours. 
The gene models from Roth et al. [26] and us are on the bottom and top 
of each panel, respectively. The different gene models are designated in 
red. Figure S3. Pearson correlation between DEGs of TFs and caroteno-
genic genes at the transcriptional level. The log2-transformed transcript 
levels (FPKM values) were used for plotting. Figure S4. Pearson correla-
tion among DEGs of astaxanthin synthesis, fatty acid synthesis and TAG 
assembly at the transcriptional level. The log2-transformed transcript levels 
(FPKM values) were used for plotting.

Additional file 3: Data S2. RNA-seq data for the genes involved in 
ammonium production, transport and assimilation.
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Additional file 4: Data S3. RNA-seq data for the genes involved in carote-
nogenesis for astaxanthin synthesis.

Additional file 5: Data S4. The verified coding sequence of caroteno-
genic genes.

Additional file 6: Data S5. Subcellular localization prediction of caroteno-
genic genes.

Additional file 7: Table S1. Primers used for qPCR of selected caroteno-
genic genes.

Additional file 8: Data S6. The RNA-Seq data for the DEGs encoding for 
transcription factors.

Additional file 9: Data S7. Pearson correlation between TFs and carote-
nogenic genes.
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