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Abstract 

Background:  Microorganisms in biogas reactors are essential for degradation of organic matter and methane pro‑
duction. However, a comprehensive genome-centric comparison, including relevant metadata for each sample, is still 
needed to identify the globally distributed biogas community members and serve as a reliable repository.

Results:  Here, 134 publicly available metagenomes derived from different biogas reactors were used to recover 1635 
metagenome-assembled genomes (MAGs) representing different biogas bacterial and archaeal species. All genomes 
were estimated to be > 50% complete and nearly half ≥ 90% complete with ≤ 5% contamination. In most samples, 
specialized microbial communities were established, while only a few taxa were widespread among the different 
reactor systems. Metabolic reconstruction of the MAGs enabled the prediction of functional traits related to biomass 
degradation and methane production from waste biomass. An extensive evaluation of the replication index provided 
an estimation of the growth dynamics for microbes involved in different steps of the food chain.

Conclusions:  The outcome of this study highlights a high flexibility of the biogas microbiome, allowing it to modify 
its composition and to adapt to the environmental conditions, including temperatures and a wide range of sub‑
strates. Our findings enhance our mechanistic understanding of the AD microbiome and substantially extend the 
existing repository of genomes. The established database represents a relevant resource for future studies related to 
this engineered ecosystem.

Keywords:  Anaerobic digestion, Metagenome-assembled genomes, Biogas, Microbial community structure, 
Functional reconstruction
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Background
Anaerobic environments are ubiquitous in the bio-
sphere. Some examples are the digestive tract of animals, 
paddy fields, wetlands and aquatic sediments. These 

environments play crucial roles in the degradation of 
organic matter and in the global carbon cycle. The anaer-
obic digestion (AD) process has great societal impor-
tance since it reduces our dependence on fossil fuels via 
its ability to generate methane within engineered biore-
actors [1]. For these reasons, the AD process has been 
widely established as an efficient metabolic route allow-
ing the conversion of organic wastes, agricultural resi-
dues and renewable primary products into energy and 
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other valuable products, and accordingly has been pro-
moted as a sustainable solution for resource recovery and 
renewable energy production underpinning the circular 
economy concept.

Methane is one of the most relevant end-products gen-
erated during the methanogenesis step of the AD pro-
cess, and is produced by methanogenic Archaea [2, 3]. 
Methane production has been directly linked to the com-
position of the AD microbiome [4–6], and it is also under 
the control of microbial metabolism, which is in turn 
thermodynamically dependent on environmental param-
eters of the reactor [7]. The intimate connection between 
these parameters offers unique opportunities to improve 
process efficiency, which can be achieved through micro-
bial selection or manipulation.

To improve the understanding of highly diverse and 
interconnected networks of AD microbiomes, several 
studies focused on the taxonomic and functional char-
acterization of microbial communities originating from 
laboratory-scale biogas reactors [8–17] as well as from 
full-scale biogas plants [18–23] trying to connect micro-
biome compositions to prevailing process parameters [4, 
24]. Other studies focused on the identification of the 
functional roles of particular species isolated from AD 
systems [25–27]. Cultivation-based approaches to iso-
late microorganisms from AD environments have yielded 
hundreds of novel species; however, this approach is lim-
ited since only the cultivable fraction of the microbiome 
is accessible. For deeply studied anaerobic environments 
such as the human gut microbiome, there are highly dif-
ferent reports regarding the cultivable fraction rang-
ing from 20 to 95% of the operational taxonomic units 
[28]. To get insights into the genetic repertoire of non-
cultivable biogas community members, metagenome 
sequencing, including assembly and binning strategies 
became highly valuable. Genome-centric metagenomic 
approaches have been developed to obtain large num-
bers of metagenome-assembled genomes (MAGs) across 
many different environments. However, a global meta-
analysis study aimed at complementation and consolida-
tion of AD microbiome MAG repositories is still lacking. 
Accordingly, it is necessary to integrate available metage-
nome sequence information for AD microbiomes in a 
joint endeavor addressing the compilation of genomes 
for common community members. It is predictable that 
this approach will yield genome information for vari-
ous novel organisms residing in AD microbiomes and 
facilitate insights into their potential functions and life-
style. New archaeal microorganisms, such as members 
of the Verstraetearchaeota [29] and Bathyarchaeota [30] 
were discovered on the basis of metagenome-assembled 
genomes, the latter ones being proposed to contribute 
to hydrolysis and subsequent fermentation of organic 

substrates within biotechnological biogas production 
processes [31]. MAG collections in combination with the 
corresponding metadata related to the AD process, will 
allow the implementation of a “Microbial Resource Man-
agement” platform [32] as basis for microbial community 
characterization. This resource will provide information 
on the genetic potential and the performance of microor-
ganisms within AD environments. However, results from 
multidisciplinary cutting-edge -omics methodologies 
and bioinformatics tools have to be considered to recover 
functional information.

To address compilation of a large-scale AD microbial 
genome database, we present a comprehensive metagen-
ome-centric analysis performed by incorporating nearly 
0.9 Tbp of sequence data, representing a wide range of 
different biogas reactor systems from seven different 
countries. The use of a homogeneous assembly and bin-
ning workflow, associated with a de-replication strategy, 
identified the genomes of nearly 1600 distinct bacte-
rial and archaeal species. In total, 134 publicly available 
metagenomes were analyzed to (1) provide a global refer-
ence database of genomes for future studies; (2) under-
stand the relative microbial composition in different 
reactor systems; (3) evaluate the metabolic properties 
of the species present; (4) determine the importance of 
some crucial functional processes among samples and 
(5) estimate the replication index in different taxa. This 
resource provides the opportunity to holistically study 
the genetic potential and performance of taxa repre-
sented by MAGs and to relate their activities to changing 
environmental conditions and process parameters.

Results and discussion
Public metagenomes selection and data processing
To get an overview of the AD microbiome, 18 experi-
ments published between 2014 and 2019 were selected. 
These include 134 samples, some of them represent-
ing biological replicates (Fig.  1). Only experiments per-
formed using Illumina sequencing technology have been 
considered in the present study, in order to facilitate the 
assembly and binning process. Among these datasets, 
both laboratory-scale- and full-scale biogas plants fed 
with a range of different substrates were considered, thus, 
the outcomes of the work reflect a broad spectrum of the 
microbiomes residing in such engineering systems. Most 
of the samples were collected from reactors operated 
in Denmark (68%), while others derived from Germany 
(9%), Canada (7%), Japan (7%), Spain (4%), Sweden (3%) 
and China (2%) (Additional file  1). Most samples were 
collected from laboratory-scale biogas reactors and batch 
tests, while other samples were obtained from 23 full-
scale biogas plants located in Europe.
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Microbial composition was initially determined con-
sidering unassembled reads, and this highlighted marked 
differences between samples, which were classified into 
35 groups (details reported in Additional file  2). This 
microbial diversity is also clearly evident in Fig. 2, where 
different samples are connected with arcs having differ-
ent colors depending on the fraction of common species.

A subsequent binning approach was independently 
performed on each assembly of the 35 groups, leading to 
a total of 5194 MAGs (Table 1). Data regarding metagen-
omic assemblies and number of MAGs collected from 
the binning process are reported in detail in Additional 
file  3. Those MAGs featuring completeness (Cp) lower 
than 50% and/or contamination rates (Ct) higher than 
10% were discarded. The remaining MAGs were de-
replicated by means of the genome-aggregate ANI value 
reducing the number down to 1635 unique “species” 
(Table 1; Fig. 3; Additional file 4). By considering all 134 
samples, on average 89% of the reads were consistently 

aligned on the 1635 MAGs, suggesting that the obtained 
dataset captured much of the available sequencing infor-
mation. Results obtained were quite similar when only 
the HQ MAGs were selected. The degree of novelty of 
our study was determined performing a comparison 
with MAGs previously recovered from the AD environ-
ment [11, 33, 34] (https​://bioga​smicr​obiom​e.com/). Our 
study showed an improvement in the quality (increased 
Cp and/or reduced Ct) of 75% of the MAGs already pre-
sent in public repositories, and added 1228 “new species”, 
consistently improving the entire biogas microbiome 
(Additional file 5). 

Structure of the microbial community
The analyses performed using MiGA estimated that a 
relevant fraction of the genomes belong to taxonomic 
groups for which genomes of type material are not pre-
sent in the NCBI genome database. More specifically, 
0.2% of MAGs cannot be assigned to known phyla, 11.6% 

Fig. 1  The tree is a representation of the β-diversity values determined from samples comparison. Reactor temperature and feeding substrates are 
reported in the external circles. Histogram graph in the external ring represents Fisher alpha diversity values

https://biogasmicrobiome.com/
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to known classes, 69.7% to orders, 71.3% to families, 
92.1% to genera and 95.2% to species. This evidenced that 
the present genome-centric investigation allowed to fill-
in a notable gap in the knowledge of the AD microbial 
community. A dedicated project was established to allow 
the recovery of both genome sequences of MAGs and 
their taxonomic assignment “http://micro​bial-genom​
es.org/proje​cts/bioga​smicr​obiom​e”.

In addition, to determine the taxonomic position of 
the MAGs, a procedure based on four different evi-
dences was used (Additional file 2). Only 69 out of 1635 
MAGs were assigned to known species based on ANI 
comparison performed considering the genomes depos-
ited in NCBI (https​://www.ncbi.nlm.nih.gov/genom​e/
micro​bes/) (Additional file  4). Furthermore, the vast 
majority of obtained MAGs (1574) were assigned to 

Fig. 2  Representation of the MAGs fraction “shared” among samples. Arcs colored from black to dark red connect samples having increasing 
fractions of shared MAGs. Samples in the external circle are colored according to the temperature of the reactor

http://microbial-genomes.org/projects/biogasmicrobiome
http://microbial-genomes.org/projects/biogasmicrobiome
https://www.ncbi.nlm.nih.gov/genome/microbes/
https://www.ncbi.nlm.nih.gov/genome/microbes/
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the domain Bacteria and only 61 to Archaea, and dis-
tributed over 55 different phyla as reported in Fig.  4. 
However, our data are similar to those previously 
obtained using marker gene based analysis [35], in fact, 
the vast majority of species were classified as belong-
ing to the phylum Firmicutes (790 MAGs), followed 
by Proteobacteria (137 MAGs) and Bacteroidetes (126 
MAGs). The bacterial phylum Firmicutes, which is the 
most abundant taxon within the biogas microbiome, 
varied between 1.3% and 99.9% of the microbial com-
munity (Additional file  2: Figure S1 and Additional 
file  6). In almost 40% of all samples analyzed, Firmi-
cutes was not the dominant taxon, but Bacteroidetes, 
Coprothermobacter, Actinobacteria, Thermotogae and 
Chloroflexi become prevalent reaching up to 85% rela-
tive abundance within the microbiome. Interestingly, in 
reactors where none of the previously mentioned taxa 
were dominant, microbial species belonging to candi-
date phyla radiation (CPR) and to other candidate taxa 
reached high relative abundances, as was the case for 
Candidatus Cloacimonetes (15.7%), Ca. Fermenti-
bacteria (16.4%), Ca. Roizmanbacteria (19%) and Ca. 
Saccharibacteria (16.4%) (Additional file  6). The high 
relative abundance of yet-uncultivated taxa suggests 
that they may play an important role in the microbial 
community. Some species associated to CPR were iden-
tified by our study and were tentatively assigned to Sac-
charibacteria (8 MAGs) and Dojkabacteria (8 MAGs), 
Microgenomates (1 MAG) and Peregrinibacteria (1 
MAG).

Regarding the methanogenic community, it was 
shown that the AD microbiome is almost exclusively 
represented by phylum Euryarchaeota (53 MAGs).

Influence of environmental conditions on the microbiome 
composition
It was shown that the applied environmental condi-
tions (e.g., temperature), or the design of the reactors 
(e.g., biofilm), greatly determine the microbial diversity 
and properties of this ecosystem. For instance, the “Bac-
teria/Archaea” ratio, which has a median value of ~ 14, 
was highly variable (Additional file 2: Figure S2). Besides 
the acidogenic reactors, where the methanogenic pro-
cess was undetectable (i.e., “LSBR-DSAc-preH2” and 
“LSBR-DSAc-postH2”), it was concluded that in 7.7% of 
all samples archaeal abundance was lower than 1% and 
consequently “Bacteria/Archaea” ratio exceeded 100. 
However, Archaea were predominant in several reac-
tors analyzed in this study and in 3% of all samples, their 
abundance exceeded that of Bacteria, with a ratio of ~ 0.5 
in a biofilm sample collected from a reactor fed with ace-
tate (“LSBR-D200-DNA-BF”). Acetate is a very impor-
tant “methanogenic substrate” and it can be directly 
converted to methane by acetotrophic Archaea. Thus, a 
dominance of Archaea in the microbial community is a 
reasonable finding, as evidenced in some samples of the 
present study. A complex combination of factors, such as 
the presence of biofilm, is probably contributing to this 
unbalanced proportion of the “Bacteria/Archaea” ratio. 
Considering only biogas plants, the ratio is kept within 
a narrower range, but still it is very flexible (from 470 in 
Nysted to 3.4 in Vilasana) (Additional file 2: Figure S2).

Furthermore, we calculated the variation in abundance 
for each MAG across the AD samples, along with their 
taxonomic assignment. The number of MAGs in each 
sample was estimated considering as “present” those with 
abundances higher than 0.001%. This analysis revealed 

Table 1  Number of MAGs assigned to different categories according to their quality

ANI genome-wide average nucleotide identity

MAGs belonging to one cluster generated during ANI calculation are indicated as “Selected from clusters”, while MAGs not clustered at more than 95% ANI are 
indicated as “identified once”

MAGs number 
before clustering (ANI)

MAGs number 
after clustering 
(ANI)

HQ MAGs
Cp > 90%, Ct < 5%

1628 HQ MAGs selected from clusters 441

HQ MAGs identified once 355

MHQ MAGs
90% > Cp ≥70%, 10% > Ct > 5%

1316 MHQ MAGs selected from clusters 170

MHQ MAGs identified once 435

MQ MAGs
50% ≥ Cp > 70%, 10% > Ct > 5%

526 MQ MAGs selected from clusters 15

MQ MAGs identified once 219

LQ MAGs
Cp < 50%

1436

Contaminated MAGs
Ct > 10%

288

Total 5194 Total 1635
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Fig. 3  Box plots of genome size and completeness. a Genome size and b completeness of the 1635 selected MAGs. c Scatter plot reporting the 
completeness and contamination levels for each MAG (circle size is proportional to the genome length)
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that the microbial community composition was highly 
variable depending on the origin of each AD sample as a 
consequence of the reactor operation, performance, and 
influent feedstock (Figs. 1, 2 and Additional file 2: Figure 
S3). The number of detectable species in the microbiome 
ranged between 79 (Fisher alpha diversity 4.4) and 1213 
(Fisher alpha diversity 133.8) (Additional file 7). Accord-
ing to previous findings [6, 9], thermophilic reactors have 
a lower number of species than mesophilic (p < 0.001). 
Among the thermophilic reactors in this study, those 
characterized by a very high number of species were fed 
with manure or a mixture of manure and agricultural 
feedstocks, while those having fewer species were fed 
with simplified substrates such as cheese whey, acetate 
or glucose (p < 0.001). This suggests that the AD pro-
cess can be supported by less than 100 species when the 
feedstock is mainly consisting of a single compound. On 

the contrary, degradation of complex substrates (such as 
sewage sludge or manure) requires the cooperation of a 
large cohort of microbes including more than 1000 spe-
cies. Analysis of the MAGs shared among different sam-
ples (Fig.  2) revealed that thermophilic reactors tend to 
share more species than mesophilic systems, which could 
be due to the selective pressure imposed by the high 
growth temperature. Despite feedstock is the primary 
determinant of community structure, it was previously 
demonstrated that the initial inoculum plays a major role, 
lasting for months even after feed changes [36]. Addition-
ally, feedstock contributes to the community composi-
tion in terms of immigrant microbes, which are partially 
involved in shaping the final microbiome.

Cluster analysis was performed both at individual MAG 
abundance level and at sample level (Additional file  2: 
Figure S3) in order to verify MAGs and samples having 

Fig. 4  MAGs taxonomic assignment. The maximum likelihood tree was inferred from the concatenation of 400 taxonomic informative proteins and 
spans a de-replicated set of 61 archaeal and 1574 bacterial MAGs. External circles represent, respectively: (1) taxonomic assignment at phylum level, 
(2) genome size (bar plot), (3) heatmap representing the number of experiments where each MAG had abundance higher than 0.001% (from blue 
0% to red 10%), (4) average abundance (from blue 0% to red 10%) and (5) maximum abundance determined among the entire set of experiments 
(from blue 0% to red 10%)
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similar abundance profiles, respectively. This allowed the 
assignment of MAGs to two main groups: “G1” includes 
mostly Chloroflexi and Bacteroidetes, while “G2” includes 
mostly Firmicutes. Sample clustering revealed three main 
groups, “C1” including reactors fed with sewage sludge, 
“C2” those fed with “simplified substrates” and “C3” fed 
with manure only. A similar classification is shown in 
Fig.  1, indicating that the temperature and feeding sub-
strate were the main driving forces of the AD microbiome 
diversification [3, 35, 37, 38]. Furthermore, the principal 
coordinates analysis (PCoA) performed considering the 
microbiome composition originating from different AD 
environments revealed a clear separation of samples in 
three groups, one formed by thermophilic reactors fed 
with a mixture of carbohydrates and LCFA, one formed 
by thermophilic reactors fed with acetate and lactose 
and the third one represented by mesophilic samples 
(Additional file  2: Figure S4 A–C). This is in agreement 
with previous findings [3, 4] showing mostly specialized 
microbial communities depending on the temperature 
regime. The high heterogeneity in metadata accompany-
ing the experiments evidenced the importance of estab-
lishing common guidelines regarding the parameters that 
have to be recorded during AD process. These standards 
will simplify the comparison among projects and will 
allow the correlation between metadata and microbial 
composition.

Considering a concept of “core microbiome”, meaning 
that some species are present in the anaerobic digestion 
microcosm independently of the applied environmen-
tal parameters, we identified only few MAGs in multiple 
samples (Additional file  2: Figure S3; Additional file  8). 
By considering the highly abundant MAGs (more than 
1% relative abundance), only 25 were present in more 
than 10% of the samples, while 1246 were considered 
as low abundant (lower than 1%) (Additional file 2: Fig-
ure S5). Among the 25 abundant MAGs, four methano-
genic Archaea were identified, namely the Candidatus 
Methanoculleus thermohydrogenotrophicum AS20ys-
BPTH_159, Methanosarcina thermophila AS02xz-
SISU_89, Methanothrix soehngenii AS27yjCOA_157 and 
Methanoculleus thermophilus AS20ysBPTH_14. The 
remaining 21 MAGs were assigned to the phyla Firmi-
cutes (14  MAGs), Bacteroidetes (2  MAGs), Synergistetes 
(2 MAGs), Thermotogae (1 MAG) and Coprothermobac-
terota (1  MAG). Interestingly, Defluviitoga tunisiensis 
AS05jafATM_34, one out of seven MAGs of the phylum 
Thermotogae identified in this study, was present at high 
abundance (average 2.1%; maximum 58.9%). Widespread 
identification of this species in reactors suggests its cen-
tral role in thermophilic AD system possibly associated 
to specific metabolic potential related to saccharide, 
polyol, lipid transport systems (Additional file  9) and 

hydrogen production [39]. Analysis of the low abundant 
MAGs (threshold 0.001%), revealed that 94% of these 
taxa were present in more than 10% of the samples, and 
the phyla statistically over-represented in this group were 
Chloroflexi, Elusimicrobia, Firmicutes and Plantomycetes 
(p < 0.01). This finding indicates that many MAGs are 
widespread in the global AD microbiome, but they are 
present at very low relative abundances. Differently from 
other ecological niches (e.g., human gut) a “core micro-
biome” present in all the reactors was not clearly identi-
fied. However, the existence of distinct core microbiomes 
characterizing groups of reactors with similar character-
istics (e.g., feedstock or temperature) is more realistic, as 
also previously hypothesized [35].

Functional analysis of the microbiome
Metabolic pathway reconstruction and biological role 
interpretation of 1401 HQ and MHQ MAGs were per-
formed by applying a collection of functional units, called 
KEGG modules. Analysis was performed on 610 mod-
ules, and identified that 76.2% of them are “complete” in 
at least one MAG, 10.1% have at best one block missing 
(1 bm) and 2.5% have at best two blocks missing (2 bm). 
In the following sections, only complete and “1  bm” 
modules will be considered. Modules distribution and 
completeness indicated that a very low number of them 
are widespread in MAGs, while the majority has a scat-
tered distribution in terms of presence/absence (Fig.  5). 
Additionally, the association of many modules with some 
specific taxa is remarkable; in fact, a strong correlation 
between the clustering based on modules presence/
absence and MAGs taxonomic assignment was found 
(Fig. 5; Additional file 10).

Main functions within the anaerobic digestion food‑chain
Initial evaluation was focused on the identification of 
MAGs having a specific KEGG module. Considering 
both the complete and “1  bm” modules, only 15 “core 
modules” have been identified in more than 90% of the 
HQ-MHQ MAGs. These include for example “C1-unit 
interconversion”, “PRPP biosynthesis”, “glycolysis, core 
module involving three-carbon compounds”. Other 
223 “soft core modules” were present in 10% to 90% of 
the HQ-MHQ MAGs. Finally, 289 “shell modules” have 
been identified in less than 10% of MAGs, including 
those associated with “methanogenesis”, “reductive cit-
rate cycle” and “Wood–Ljungdahl (W–L)-pathway”. The 
high fraction of “soft core” and “shell” modules revealed 
a highly specialized microbial community, with a small 
number of species performing crucial functions such as 
methanogenesis. Results obtained revealed the presence 
of a small fraction of “multifunctional MAGs” (~ 1.6%) 
with more than 180 modules encoded. These microbes 
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are mainly associated to specific taxa, and considering 
the HQ-MHQ MAGs, they represent 8.6% of the Pro-
teobacteria, 14.3% of the Chloroflexi, 7.7% of the Planc-
tomycetes. Thus, the AD microbiome typically comprises 
“oligofunctional” MAGs, which are characterized by the 
presence of less than 80 modules. Taxonomic distribu-
tion of the 89 HQ “oligofunctional” MAGs demonstrated 
that they were phyla-specific, representing 91.7% of the 

HQ Tenericutes, 32.2% of the HQ Euryarchaeota and 
19.7% of the HQ Bacteroidetes.

Carbon fixation and methanogenesis
Particular attention was given to the modules associ-
ated with “methane metabolism”, and especially to the 
conversion of different substrates (carbon dioxide, ace-
tate, methylamines and methanol) into methane. These 

Fig. 5  Hierarchical clustering of the “complete” and “1 bm” KEGG modules identified in the HQ and MHQ MAGs. In the right part of the figure 
taxonomic assignment is shown for the most represented phyla. KEGG modules specifically identified in selected phyla are highlighted
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modules were identified with different frequencies in the 
AD microbiome. Carbon dioxide reduction was identi-
fied in 29 MAGs, acetate conversion in 25 MAGs, metha-
nol reduction in 40 MAGs and methylamine-methane 
conversion in 17 MAGs.

Apart from the fundamental role of methanogene-
sis in the AD system, the conversion of acetate, carbon 
dioxide and hydrogen can follow different pathways and 
can be strongly influenced by the environmental condi-
tions. Practically, these flows are of particular interest for 
applying recent technologies, such as biomethanization 
or bioaugmentation. Considering the modules associ-
ated with carbon fixation, those encountered more fre-
quently were the phosphate acetyltransferase–acetate 
kinase pathway (acetyl-CoA ⇒ acetate) identified in 1155 
MAGs (82.4%) with 988 MAGs encoding the complete 
module, the reductive acetyl-CoA pathway (also called 
Wood–Ljungdahl pathway) identified in 86 MAGs (5.8%) 
with 52 encoding the complete module, and the reductive 
pentose phosphate cycle (ribulose-5P ⇒ glyceraldehyde-
3P) identified in 128 MAGs (9.1%) with 42 encoding the 
complete module. The W-L pathway is present only in 
0.49% of the microbial genomes deposited in the KEGG 
database; notably, this pathway is proven to be more 
common among the members of the AD microbiome. 
The taxonomic distribution of the 86 MAGs encoding the 
W-L pathway is mainly restricted to Firmicutes (75.6%), 
followed by Chloroflexi (9.3%), Proteobacteria (7%), Eur-
yarchaeota (3.4%) and Actinobacteria (2.3%). Functional 
activity and syntrophic association with methanogens 
was previously reported for some of these species (e.g., 
Tepidanaerobacter syntrophicus, Syntrophorhabdus 
aromaticivorans and Desulfitobacterium dehalogen-
ans) [40–42]. However, the vast majority was not previ-
ously characterized at the genome level, suggesting that 
potential syntrophic acetate oxidizer (SAO) or acetogenic 
metabolism are present in many unknown species. Most 
of the MAGs encoding the W-L pathway (putative SAO 
bacteria or acetogens) are rare in the microbiome and 
on average they do not exceed 1% of relative abundance. 
However, under certain conditions they can become 
dominant, as for example Firmicutes sp. AS4GglBPBL_6 
(24.8% relative abundance in the Fangel biogas plant), 
Firmicutes sp. AS02xzSISU_21 (32% in reactor fed with 
Avicel) and Firmicutes sp. AS4KglBPMA_3 (12% in the 
Nysted biogas plant). This piece of information is quite 
useful for the design of bioaugmentation strategies tar-
geting biogas reactors that are fed with nitrogen/ammo-
nia rich substrates. Interestingly, the Fangel biogas plant 
showed a high total ammonia level during the sampling 
process (4.2  g/L) [43] (Additional file  1). This indicates 
that, despite SAO bacteria are usually present at low 
abundance, environmental parameters of the reactors 

can strongly influence their abundance and probably 
their activity. More specifically, high acetate concentra-
tions can disturb acetoclastic methanogenesis leading to 
a shift towards SAO process coupled with hydrogeno-
trophic methanogenesis. Despite it is hard to classify the 
species mentioned above as SAO or acetogens, this result 
can provide a more accurate evaluation of the fraction of 
bacteria involved in acetate conversion and may support 
the delineation of a more accurate mathematical model 
for the AD process.

Relative abundance of KEGG modules
Considering the relative percentage of HQ MAGs in each 
condition, along with the completeness of KEGG mod-
ules, it was possible to estimate the relative abundance of 
each module in all samples (Additional file 11). Although 
measurements at the RNA/protein level are needed to 
have direct information on pathways activity, it is evident 
that different samples have highly variable representation 
of crucial KEGG modules (Fig.  6). It is noteworthy that 
the relative abundance of MAGs potentially associated to 
the hydrogenotrophic and acetoclastic methanogenesis 
is highly variable among samples. Particularly, in biogas 
plants characterized by low TAN (1.9–2  mg/L) (e.g., 
“BP-Gimenells” and “BP-LaLlagosta”), acetoclastic meth-
anogenesis is favored and the ratio acetoclastic/hydrog-
enotrophic is 0.94 and 0.99, while in biogas plants where 
TAN is high (4–7  mg/L) (e.g., “BP-Vilasana”, “BP-Torre-
grossa” and “BP-Fangel”) the ratio acetoclastic/hydrog-
enotrophic is 0.16, 0.21, 0.02. Analyzing reactors where 
ammonia levels were reported, it was indeed found a sig-
nificant correlation (R2 0.62, p 9.3 E−5) between ammonia 
concentration and the “acetoclastic/hydrogenotrophic” 
ratio. Additionally, there is a high level of acetoclastic 
methanogenesis in reactors fed exclusively with acetate, 
such as “LSBR-D122-DNA-BF-Rep1”, “LSBR-D200-
DNA-BF-Rep1” and “LSBR-R3-acetate”. Relative abun-
dance of the methanogenic modules was found to be 
highly different among samples considered. As expected, 
it was close to zero in acidogenic reactors (pH < 5, “LSBR-
DSAc-preH2” and “LSBR-DSAc-postH2”) and very high 
in reactors with acetate as feeding substrate (e.g., “LSBR-
D200-DNA-BF” or “LSBR-R1-acetate”). The high abun-
dance of methanogenic modules in the latter reactors can 
be correlated with the direct use of the substrate by ace-
toclastic methanogens, with a parallel reduction of the 
species encoding the W-L pathway.

Polysaccharides degrading functions
Cellulosic biomass in AD is represented by agricultural 
residues and dedicated energy crops, and is the most 
abundant carbon source [44]. In order to find the species 
involved in complex carbohydrate decomposition, MAGs 
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Fig. 6  Representation of the relative abundance of relevant functional modules in the AD system: a “methanogenesis from CO2”, “acetate” and 
“methylamines” and “W-L pathway”, b oxidation pathway, c selected polysaccharide degradation modules. Bar graph was obtained for each sample 
by summing the relative abundance of all the HQ and MHQ MAGs encoding these “complete” and “1 bm” modules. Samples collected from biogas 
plants are in the left part of the figure (first 26 samples), while those derived from laboratory reactors or batch tests are shown in the right part
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featuring high enrichments in CAZymes (p < 1*e−5) have 
been selected for further analysis (Additional file  12). 
Globally, 490 HQ MAGs (35% of the total) are enriched 
in one or more CAZymes classes, evidencing that poly-
saccharide degradation is one of the most widespread 
functional activities in the AD system. Although polysac-
charide degraders are frequently associated to Firmicutes 
(246 MAGs) and Bacteroidetes (68 MAGs), many other 
phyla were found to be enriched, and an involvement 
in polysaccharide degradation can be hypothesized for 
members of other taxa. For example, all MAGs belonging 
to the Candidatus Hydrogenedentes, the Armatimona-
detes, 90% of the Fibrobacteres, 93% of the Lentisphaerae 
and 85% of the Planctomycetes are potentially involved in 
this process. Some members of the CPR taxa are also pre-
dicted as associated to carbohydrate degradation, such as 
Candidatus Dojkabacteria.

A tentative estimation of the relative impact of the 
polysaccharide degradation process in different samples 
(Fig.  6c) was obtained by considering the relative abun-
dance of MAGs encoding genes for a specific function 
(e.g., “cohesin”, “dockerin”, or “Carbohydrate Esterases”). 
A few samples are dominated by polysaccharide hydro-
lyzing MAGs, (e.g., “LSBR-R1-avicel”), most probably 
because they were fed with substrates rich in cellulose, 
while generally the fraction is lower than 2%, particularly 
in biogas plants (Fig. 6c). This indicates that, despite the 
number of MAGs involved in polysaccharide degrada-
tion is high, the relative abundance of most species is low. 
This can be due to the presence of relative minor play-
ers in terms of abundance, but having high transcrip-
tional activity; if they are highly active, they can enhance 
or trigger the metabolic processes of dominant mem-
bers. However, this needs additional verification to be 
demonstrated.

MAGs replication index
Analysis of MAGs provides insights into the genetic com-
position of non-cultivable biogas community members 
and enhances our understanding of their contribution to 
the AD process. Such analysis is able to provide knowl-
edge related to the replication capacity of certain biogas-
producing members. Although the results obtained have 
to be considered with caution, bacterial replication index 
offers information on the growth dynamics and life cycles 
of microbial species, which in turn can be an indicator of 
community composition and the in situ activity of differ-
ent species within the sub-communities.

To determine the replication index of MAGs across 
multiple samples, the sequencing coverage resulting 
from bi-directional genome replication was used to cal-
culate the index of replication (iRep) [45]. In total, 2741 
measurements were obtained for 538 MAGs (Additional 

file 13). Considering the median iRep values determined 
in all different samples for each MAG, it was obvious that 
nearly 90% of species showed similar values between 1.1 
and 2, and only 10% had values between 2 and ~ 4 and 
can be considered as “fast growing”. Among the fast 
growing species, there are microbial members of the 
poorly characterized phylum Atribacteria (Atribacteria 
sp. AS08sgBPME_53, iRep 2.9), and the candidate syn-
trophic species Defluviitoga tunisiensis AS05jafATM_34 
(iRep 2.53) [39]. Results were obtained for 28 phyla evi-
dencing that Tenericutes, Spirochaetes, Atribacteria, 
Thermotogae, Synergistetes, and Coprothermobacterota 
have on average high median iRep values (iRep 1.66, 1.77, 
2.12, 2.53, 2.13, 2.99, respectively) (p-values 8.63E−10, 
2.52E−04, 7.59E−04, 2.61E−05, 2.22E−11, 0.016), while 
Euryarchaeota and Acidobacteria have low values (1.37 
and 1.41) (p-values 7.02E−05 and not statistically sig-
nificant NSS, respectively) (Fig.  7a). Euryarchaeota spe-
cies having multiple replication origins were 18 and 
have been excluded from the analysis (Additional file 2), 
however results should be treated with caution. MAGs 
belonging to the phyla Bacteroidetes and Firmicutes have 
similar (and low) median iRep values (both 1.52) except 
some outliers. Otherwise, iRep values assigned to Syner-
gistetes and Coprothermobacterota are distributed over a 
wide range, but on average are higher than that of other 
phyla (2.12 and 2.99) (Fig. 7). The limited growth rate of 
some taxa, such as Acidobacteria, was also previously 
reported [46] and it was speculated that this property 
hampered their isolation. The high iRep values measured 
here for some known species also suggest that their isola-
tion may be easier as previously assumed [47].

Finally, Euryarchaeota replication index was calcu-
lated (~ 1.52 on average) for 8 MAGs having different 
abilities in substrate utilization. Interestingly, while M. 
soehngenii was previously defined as a slow-growing 
methanogen specialized in acetate utilization [48], 7 out 
of 9 iRep results obtained for M. soehngenii AS21ys-
BPME_11 are higher than 2, while all the other Archaea 
had values between 1.2 and 2 (Fig. 7b). Findings reported 
for AS21ysBPME_11 indicate that, in a complex micro-
biome, growth rates can be very different compared to 
those determined for isolated species under laboratory 
conditions, possibly because of cooperative/syntrophic 
associations with other microbes, or difficulties in identi-
fying the appropriate growth medium.

Our findings also suggest that duplication rates are 
dependent on metabolic properties of MAGs. Calcula-
tion of iRep values performed independently for MAGs 
encoding different KEGG modules evidenced that MAGs 
involved in polysaccharide degradation have quite low 
iRep values; this is more evident for microbes grow-
ing attached to plant material with cohesin/dockerin 
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domains (iRep 1.41) (p-value 0.024). These species rep-
resent the so-called slow-growing cellulolytic micro-
flora [49]. Species involved in “carbon fixation” (e.g., 
“reductive citrate cycle” or “W–L pathway”) have higher 
values (iRep 1.40; 1.53) (p-values 1.44E−08 and NSS, 
respectively). Additionally, iRep values were obtained for 
poorly characterized taxa such as Atribacteria and Can-
didatus Fermentibacteria (Fig.  7a), suggesting that most 
of the species are slow-growing members of the AD sys-
tem, but with some exceptions such as Atribacteria sp. 
AS08sgBPME_53.

Availability of iRep values for a large number of species, 
and their association with functional roles of microbes 
can provide an estimate of the growth dynamics of spe-
cies involved in particular steps of the AD food chain. 
Since nowadays mathematical models of the AD system 
are based on growth rates measured for a limited number 
of species, information obtained from iRep can provide 
a more generalized representation of microbial dynamics 
which can be included in simulations, reinforcing their 
predictive efficiency.

Conclusions
The current comprehensive genome-centric assessment 
of the AD microbiome proves the great plasticity of this 
ecosystem upon variations on applied environmental 
conditions, such as reactor type, operational tempera-
ture and influent feedstock composition. The microbial 
adaptation is facilitated by the presence of multiple 
different microbial communities that have little to no 
overlap among them. Considering the abundant MAGs, 
only 25 were commonly identified in numerous sam-
ples. On the other hand, there are many other MAGs 
constituting a persistent, but low-abundant micro-
biome. Our findings related to metabolic pathways 
showed a partitioning of microorganisms according to 
their predicted substrate utilization capacities. Inves-
tigation of metabolic pathways suggested that some 
crucial processes, such as conversion of acetate to CO2, 
may be performed by a limited number of species. The 
high heterogeneity regarding protocols used for sam-
ple collection/processing and metadata registration 
evidenced that a common procedure is direly needed 
to obtain easily comparable datasets. By reconciling 
numerous metagenomics studies previously reported in 
the literature, this study suggests that the establishment 
of a global repository on microbial genome sequence 

Fig. 7  Box plots reporting the index of replication for some selected taxonomic groups. Index of replication. a Distribution of iRep values obtained 
for 538 MAGs belonging to each of the 25 phyla having at least three MAGs (“na” refers to taxonomically unassigned MAGs). b Distribution of iRep 
values obtained for Euryarchaeota. MAGs having only one value are reported as a horizontal bar
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information is of great importance for future studies 
and enhances our understanding of their contribution 
to the AD process.

Methods
Selection of samples and reads filtering
Illumina sequences were downloaded from Sequence 
Read Archive (SRA), MG-RAST or JGI Genome portal 
databases. Quality check and adaptors removal were per-
formed using Trimmomatic (v0.33) and bbduk (version 
released Nov 2016) (https​://jgi.doe.gov/data-and-tools​
/bbtoo​ls/). The composition of the feedstocks used in 
the different reactors was approximated using substrate 
information from various sources (Additional file  1). 
When available, metadata were taken from the publicly 
accessible description of the respective experiments or 
full-scale plant operation datasets. Otherwise, reactor 
feedstock compositions were estimated from the avail-
able literature, and were expressed in terms of carbohy-
drate, protein, lipid and VFA fractions relative to their 
total solid (TS) content.

Assembly
Reads were assembled using Megahit (v1.1.1) with “−
sensitive” mode for samples having less than 40  Gb of 
sequenced bases and with “–large” for the remaining 
[50]. Quality of the assemblies was determined using 
QUAST (v3.1) [51] and the results are reported in Addi-
tional file 8.

Binning
Using MetaBAT 2 (v2.12.1) bam files were inspected and 
each assembly was binned using standard parameters 
[52]. Minimum size of scaffolds considered for MAGs 
generation was 1.5  kbp. MAGs were checked for com-
pleteness (Cp) and contamination (Ct) using the “Line-
age_wf” workflow of CheckM (v1.0.3) [53] and the result 
obtained for each MAG was determined using the for-
mula: CC3 = Cp − (Ct*3). Removal of contamination 
from MAGs was performed using RefineM (v0.0.23) [54]. 
Threshold values used for defining the quality level of 
MAGs and to assign them to the categories “High Qual-
ity” (HQ), “Medium–High Quality (MHQ), “Medium 
Quality” (MQ) and “Low Quality” (LQ) were defined 
according to the standards recently described, except for 
the introduction of the MHQ class (Table 1) [55].

MAGs de‑replication
MAGs obtained were de-replicated using Mash (v2.0) 
[56] on the entire genome sequences with very permissive 
parameters (0.05 Mash-distance, roughly equivalent to 
0.95 ANI and 100/1000 Matching-hashes). Subsequently, 

a more precise analysis was performed applying the 
genome-wide Average Nucleotide Identity metric (ANI) 
using protein-encoding nucleotide sequences only [57]. 
MAGs were considered as belonging to the same species 
if they showed ANI value higher than 95% and reaching 
at least 50% of genome coverage for both strains (on at 
least one of the two comparisons, “MAG1 vs. MAG2” or 
“MAG2 vs. MAG1”). Details regarding the assembly and 
binning procedure are reported in Additional file 2.

Taxonomic assignment
Taxonomic classification was determined for 1635 MAGs 
obtained after de-replication and belonging at least to the 
MQ level. This approach was carried out as described 
previously [4] and more details can be found in the Addi-
tional file 2. MAGs were classified by comparison against 
all taxonomically classified taxa of the NCBI Genome 
Database (prokaryotic section) using Microbial Genomes 
Atlas MiGA Online [58].

MAGs coverage calculation and relative abundance
Filtered shotgun reads randomly selected from each sam-
ple were aligned back to the entire collection of MAGs. 
Ordered “bam” files were inspected using CheckM [53] 
to calculate both the fraction of reads aligned and the rel-
ative abundance of each MAG. Analysis was performed 
using all reads available for each sample and verified 
using a representative subsample of one million reads 
per sample. Results obtained using the two datasets of 
sequences were highly similar (Pearson correlation coef-
ficient was > 0.999 on MAGs representing more than 
0.001% of the population). Results obtained using one 
Mread per sample are reported in Additional file 8. The 
value (0.001%) was also defined as the arbitrary thresh-
old for considering one MAG as “present in a specific 
sample”. Coverage values obtained for each MAG were 
clustered with MeV (v4.9.0) using Pearson correlation 
and average linkage [59]. The fraction of MAGs shared 
between different samples was visually represented using 
CIRCOS (v0.69) [60]. Alpha and beta diversity were 
determined from the file reporting the number of reads 
per MAG using Past (v3.21) [61]. The same tool was used 
for statistical tests and graphical plots.

Gene finding and annotation
Gene annotation was performed using three different 
procedures: (1) rapid annotation using subsystem tech-
nology (RAST annotation server) [62]. These results were 
reported in a table for comparative purposes (Additional 
file  14). (2) KEGG annotation and modules complete-
ness were determined using “KEGG Mapping/Recon-
structmodule.py” (https​://githu​b.com/pseud​onymc​p/

https://jgi.doe.gov/data-and-tools/bbtools/
https://jgi.doe.gov/data-and-tools/bbtools/
https://github.com/pseudonymcp/keggmapping
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keggm​appin​g). Software assigned to the KEGG modules 
the results obtained from diamond (v0.9.22.123) align-
ment; only results having max log e-value 1e−5, min 
bitscore 50, min identity 25 were recovered. Abundance 
of all the KEGG modules in each experiment was calcu-
lated with custom perl scripts (https​://sourc​eforg​e.net/
proje​cts/perl-scrip​ts-kegg/). Cluster analysis on “com-
plete” or “1  bm” KEGG modules identified in HQ and 
MHQ MAGs was performed using MeV (v4.9.0) [59]. 
(3) Enzymes involved in carbohydrates utilization were 
annotated using the carbohydrate-active enzyme data-
base (CAZy) annotation web server dbCAN (dbCAN-
fam-HMMs.txt.v4) based on hmmscan. hmmscan-parser.
sh was used to filter output file with default parameters 
(if alignment > 80aa, use E-value < 1e−5, otherwise use 
E-value < 1e−3; covered fraction of HMM > 0.3) (hmmer.
org) [63] (Additional file 12). Abundance of specific func-
tional classes was determined using hypergeometric 
analysis and p-values corrected using false discovery rate 
as described previously [64].

MAGs replication rate
Considering the genome size and the total number of 
reads mapped on each MAG, the coverage of each MAG 
was determined using Bowtie 2 (v2.2.4). The MAGs hav-
ing completeness higher than 90%, contamination lower 
than 5%, a number of scaffolds per Mbp lower than 175 
and a coverage value higher than five, were selected 
in order to determine their index of replication (iRep) 
applying the iRep software [45]. Pairwise Wilcoxon rank 
sum test was performed (pairwise.wilcox.test in R soft-
ware v3.4.4) and p-values were corrected with Bonferroni 
adjustment. The number of replication origins in archaeal 
genomes was inspected using Ori-Finder 2 software [65] 
and those having none or more than one were excluded 
from further analyses.

Diversity indices, statistics and PCoA
β-diversity (pairwise sample dissimilarity, clustering 
method UPGMA) was calculated applying the Express-
BetaDiversity (EBD) software (v1.0.7) [66]. Statistical 
calculations (Mann–Whitney with Bonferroni correc-
tion for identification of taxa enriched in different groups 
and t-test for the comparison of the number of species 
in reactors fed with different substrate), diversity indexes 
(including for example Dominance, Simpson, Shannon 
H, Evenness, Fisher alpha, Berger–Parker, Chao-1) and 
β-diversity (pairwise sample dissimilarity, Whittaker) 
calculations were performed using past software (v3.21) 
[61]. PCoA was performed with past software using 
Bray–Curtis as distance measure; solely acidogenic 

reactors were excluded from the analysis due to their 
strongly different microbial composition.

Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1306​8-020-01679​-y.

Additional file 1. Metadata of the samples included in the present study. 
The composition of the feedstocks used in the different reactors was 
approximated using substrate information from various sources. When 
available, such data was taken from the publicly accessible description of 
the respective experiments or full-scale plant operation datasets. Other‑
wise, reactor feedstocks were estimated by a proportionality-based mixing 
technique: taking the characteristics of their individual constituents from 
available literature and combining them according to their fresh matter 
(FM) or volatile solid (VS) ratio in the feed. 

Additional file 2. Supporting methods containing detailed process for 
assembly, binning and taxonomic assignment. This file includes also 
supplementary figures (S1 to S5) and Supplementary Table S1, with the 
number of replication origins identified in the archaeal genomes. 

Additional file 3. Global statistics of the assemblies and binning. 

Additional file 4. MAGs taxonomy. MAGs obtained after redundancy 
removal (based on ANI calculation) were assigned to the taxonomy using 
three different methods and results were subsequently combined. 

Additional file 5. Comparison of MAGs with those reported in previous 
projects. 

Additional file 6. Relative abundance of each taxa in the samples 
examined. Relative abundance of all the MAG having the same taxonomic 
assignment were combined in order to determine the relative abundance 
of each taxon as reported in columns D-CP. All the taxonomic levels from 
kingdom to genus were considered. 

Additional file 7. Diversity indexes. Indexes were calculated for each 
sample in order to estimate the characteristics of the microbiome. Results 
were obtained starting from the files reporting the number of reads 
assigned to each MAG on each sample (subsampling all the samples to 1 
million reads) and subsequently elaborated using PAST software. Colors 
reported in line 2 refer to the projects from which reads have been col‑
lected. Remaining colors were assigned in order to discriminate low and 
high values in a heatmap scale. 

Additional file 8. MAGs coverage per sample. MAGs coverage was 
calculated on all the samples (average values were considered for samples 
collected in replicates). 

Additional file 9. KEGG modules. Completeness of each KEGG module 
was reported for the high and medium-high quality MAGs. 

Additional file 10. MAGs having KEGG modules. Number of MAGs having 
each KEGG module are reported. Only MAGs having complete and 1 block 
missing KEGG modules are considered. In column B is reported the total 
number of MAGs per each phylum (considering only high quality and 
medium-high quality MAGs). KEGG modules are reported in columns. 

Additional file 11. KEGG pathways abundance in different microbial 
samples. Abundance of all HQ and MHQ MAGs having a complete or "one 
block missing" KEGG module were summed and the value is reported 
here as an estimate of the abundance of this pathway in each sample. 

Additional file 12. Enrichment of CAZymes classes in MAGs. Number 
of proteins assigned to different classes and determined using dbCAN 
software. Only HQ and MHQ MAGs have been considered. 

Additional file 13. Index of replication. iRep values were calculated for 
each MAG in all the samples considered. Average values were calculated 
for replicate samples. All samples are reported in column 2, while MAGs 
IDs and names are reported in columns A and B. 

Additional file 14. Results obtained using RAST (Rapid Annotation using 
Subsystem Technology). MAGs genes were assigned to the function using 

https://github.com/pseudonymcp/keggmapping
https://sourceforge.net/projects/perl-scripts-kegg/
https://sourceforge.net/projects/perl-scripts-kegg/
https://doi.org/10.1186/s13068-020-01679-y
https://doi.org/10.1186/s13068-020-01679-y
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RAST and the number of genes identified per each functional category 
(FL = first level; SL = second level) are reported. Functional categories are 
reported in column B, while MAGs are reported in rows (2 is MAG ID and 3 
is MAG name assigned considering taxonomy).
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