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METHODOLOGY

Parallel isotope differential modeling 
for instationary 13C fluxomics at the genome 
scale
Zhengdong Zhang1,2†, Zhentao Liu3†, Yafei Meng1, Zhen Chen4, Jiayu Han4, Yimin Wei5, Tie Shen2*  , Yin Yi6 
and Xiaoyao Xie2

Background:  A precise map of the metabolic fluxome, the closest surrogate to the physiological phenotype, is 
becoming progressively more important in the metabolic engineering of photosynthetic organisms for biofuel and 
biomass production. For photosynthetic organisms, the state-of-the-art method for this purpose is instationary 13C 
fluxomics, which has arisen as a sibling of transcriptomics or proteomics. Instationary 13C data processing requires 
solving high-dimensional nonlinear differential equations and leads to large computational and time costs when its 
scope is expanded to a genome-scale metabolic network.

Result:  Here, we present a parallelized method to model instationary 13C labeling data. The elementary metabolite 
unit (EMU) framework is reorganized to allow treating individual mass isotopomers and breaking up of their networks 
into strongly connected components (SCCs). A variable domain parallel algorithm is introduced to process ordinary 
differential equations in a parallel way. 15-fold acceleration is achieved for constant-step-size modeling and ~ fivefold 
acceleration for adaptive-step-size modeling.

Conclusion:  This algorithm is universally applicable to isotope granules such as EMUs and cumomers and can 
substantially accelerate instationary 13C fluxomics modeling. It thus has great potential to be widely adopted in any 
instationary 13C fluxomics modeling.

Keywords:  Instationary metabolic flux analysis, Parallel differential equations modeling, Genome-scale metabolic flux 
analysis, 13C fluxomics, Mass isotopomer network
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Background
With the arrival of the post-genome era, 13C fluxom-
ics has matured as a state-of-the-art approach to derive 
in vivo metabolic flux information in parallel with tran-
scriptomics, proteomics and metabolomics [1–3]. This 
method captures very important and unique informa-
tion reflecting intracellular physiology that could never 
be achieved by other -omics techniques and is pivotal 
to metabolic engineering of microbes for biofuel and 

bioproduct [4–7]. Its irreplaceability qualifies it as an 
extraordinarily powerful tool for exploring metabolic 
flux and has encouraged progressively wide application 
to a broad variety of organisms, such as photosynthetic 
organisms, fungi or mammalian cells [8–10].

13C fluxomics can be divided into two categories. One 
is stationary 13C fluxomics, which assumes a steady-
state metabolic and isotopic labeling environment and 
deals with algebraic balance equations of mass and iso-
topes [3, 11]. Model construction and flux estimation 
can be performed with different isotope granules, such 
as isotopomers, cumomers and elementary metabolite 
units (EMUs) [12–15]. This capability has excited a wave 
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of tool development, such as 13CFLUX2, FiatFlux, and 
WUFlux [16–20].

However, the isotopic steady-state assumption does not 
hold true for many circumstances, for example: (1) fed-
batch conditions where the isotopic steady state cannot 
readily be reached in a short time [21, 22]. (2) Continu-
ous cultivation conditions with a pulsed substrate sup-
ply [23–25]. In particular, steady-state 13C fluxomics 
becomes inefficient where the substrate is a one-carbon 
compound, such as CO2 for photoautotrophic cultivation 
for biofuel and biomass conversion, since the steady-state 
isotopic distribution is binomial and independent of the 
flux values [26, 27].

To circumvent the limits of steady-state 13C fluxomics, 
the second type of 13C fluxomics—isotopically instation-
ary 13C fluxomics (INST-Fluxomics) has been invented 
to be applied to systems that are in a metabolic steady 
state while being isotopically instationary [23, 24, 26–29]. 
This technique has been implemented in software such as 
INCA, OpenMebius [30, 31], and extensively adopted to 
investigate the intracellular physiology of cyanobacteria, 
microalgae and plants [6, 32–34].

Unlike the stationary case, instationary 13C fluxom-
ics is required to model a large set of ordinary differen-
tial equations (ODEs) instead of algebraic equations. 
In particular, the equations contain high-dimensional 
derivative variables over the flux values and pool sizes 
and inevitably incur large computing and time costs [10, 

24]. For example, modeling a realistic central carbon 
model of E. coli with constant time integration method 
requires several hours [30]. This problem grows signifi-
cantly when a genome-scale metabolic network is con-
sidered [35, 36]. Such models usually have hundreds of 
metabolites and reactions, resulting in a steep increase in 
the number of equations [35, 36]. The motivation of this 
paper is to find a way to more quickly model a large set of 
isotope ordinary differential equations, especially those 
for a genome scale metabolic network. Here, we present 
the first parallel method for instationary fluxomics analy-
sis. We reorganized the mass isotopomers of the EMU 
to model them individually. This treatment facilitates 
downstream isotopic network decomposition and simpli-
fication. An algorithm for parallelization in the variable 
domain is used to model the ODE systems in a parallel 
way. Implementing this method has achieved tens of fold 
improvement with constant-step-size ODEs and ~ five-
fold improvement for adaptive-step-size ODEs. Since 
the method is universally applicable to labeling frame-
works such as EMUs and cumomers, we expect that this 
method will benefit all 13C fluxomics communities.

Results
SCC decomposition and EMU reorganization in a mass 
isotopomer network
Here, we use a toy network previously reported 
to show the framework (Fig.  1 and Table  1) [13]. 

Fig. 1  The carbon atom mapping information of the toy network. The yellow round represents the carbon atom of intracellular metabolite. The 
blue round represents the carbon atom of extracellular metabolite. The blue arrow is the carbon atom transferring path between metabolites
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According to the generation relationship, we can draw 
the mass isotopomer labeling network in a directed 
graph Gm. Then, the unnecessary part that could not 
contribute to the measured mass isotopomer distri-
bution (MID) is removed from this mass isotopomer 
labeling network. Thus, the computation complexity 
can be significantly reduced. 

If two mass isotopomers are interdependent, they 
should be modeled together and simultaneously. 
The interdependency is that the nodes belong to one 
strongly connected component (SCC). To model the 
mass isotopomers separately and in parallel, the classic 
Tarjan algorithm is employed to decompose the whole 
network Gm into small pieces of SCCs (Fig. 2a) [37, 38].

The SCCs are organized by their topological sort 
to reveal their dependency, as shown in Fig.  2a (see 
Method description  section). As such, the mass iso-
topomers are transformed into different SCCs, which 
still contain all original mass isotopomers, as shown in 
Fig.  2b. The motivation to perform such reorganiza-
tion is that the whole network can be split into SCCs 
with smaller scale and large quantity and similar 
manipulation is universally applicable to other isotope 
granules like cumomer and isotopomer [12, 14]. In 
addition to the toy network, this study also uses an E. 
coli metabolic network and a genome-scale metabolic 
network of Synechococcus 2973, which is modified 
from imSyn593 reconstruction [36]. The number of 
SCCs is 14, 45 and 98 for the 3 networks, respectively.

Additionally, the adjacent SCCs with the same 
weight can be combined in a head-to-tail way, to form 
a larger unit that could be modeled simultaneously 
similarly. We also call such a unit as SCC. To assess the 
impact of such combination, we set a parameter λ rep-
resenting the minimum mass isotopomer quantity of 
an SCC with each of the new SCCs being larger than λ. 
As λ goes up, the number of SCCs declines.

Parallelization for a constant‑step ODE at the genome scale
The parallelization strategy is shown in Fig.  3. In simu-
lating the ODE, the value of each time step of one SCC 
depends on not only its own value in the previous step, 
but also the values of its parent SCCs in the previous 
step. Once the values of one SCC for time Ti have been 
computed, these values are delivered immediately to the 
threads where their downstream SCCs are waiting. The 
delivery paths of these values (Fig. 3a) are the same as the 
cascade relationship in the mass isotopomer network. 
With this strategy, all SCCs can be computed simulta-
neously step by step, and the corresponding time is sig-
nificantly shorter than the sum of times for each SCC 
individually (Fig. 3b).

There are at least two kinds of ODE methods applica-
ble according to the step-size choice: a constant-step-size 
method and an adaptive-step-size method [39, 40]. The 
constant-step-size method is well suited for paralleliza-
tion. A 4th-order Runge–Kutta method with a constant 
step size is implemented with a nonparallel technique 
and a parallel technique on the genome-scale carbon 
mapping models (Fig.  4) [36, 39]. The evolution mod-
eling is carried out with tensor-based and vector-based 
method. The following data are from the vector-based 
method since it got a significantly faster speed.

The model encompasses 78 free fluxes in 174 total 
fluxes and 189 free pool size in 266 metabolites, result-
ing in 407 carbon transition reactions (Additional file 1). 
The bicarbonate uptake rate was set as 10 mmol/gDW/h 
before scaling, while the growth-related dilution was 
not considered. The pool sizes were randomly set within 
the physiological range from micromole per liter to 
millimole per liter. The MID of whole molecules of 14 
metabolites was set as the measured MID for network 
simplification as previously reported (2-phospho-d-glyc-
erate, 6-phospho-d-gluconate, ribose-5-phosphate, 
d-glucose-6-phosphate, phosphoenolpyruvate, pyru-
vate, sedoheptulose7-phosphate, succinate, malate, 
3-phospho-d-glycerate, d-fructose-6-phosphate, citrate, 
sedoheptulose-1,7-bisphosphate and d-fructose-1,6-bi-
sphosphate, 5-methyltetrahydrofolate, and shikimate) 
[36].

Then, a total of 819 mass isotopomers were identified in 
the transitive closure of 14 metabolites. They were trans-
formed into 98 pieces of SCCs with up to 2.16 × 105 ODE 
equations. The ordinary equations were simulated from 0 
to 10 s. The step size for constant-step-size method is set 
to be 0.005 s. The absolute and relative tolerance was set 
as 10−9 and 10−7. 3 different sets of the flux distribution 
were used for the S.2973 network. The ODEs parameters 
are set in Table 2 and flux values are documented in the 
Additional file  2. The speed of the nonparallel and par-
allel methods is compared in Fig. 5. The parallel method 

Table 1  The stoichiometry and  carbon transition of  toy 
model

a   Represents the carbon atom at different positions

Reaction name Reaction stoichiometry Carbon transition

V1 A → B #ABa → #BA

V2 B → C #AB → #AB

V3 B + C → D #AB + #CD → 
#ABCD

V4 C - > E #AB → #BA

V5 C + E → F #AB + #CD → #ABCD

V6 B → B_OUT #AB → #AB

V7 D → D_OUT #ABCD → #ABCD

V8 F → F_OUT #ABCD → #ABCD
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obtains an average 15-fold acceleration over the nonpar-
allel method, as shown in Fig. 5. The λ is 10, generated by 
a grid search for best speed-up.

Parallelization for the adaptive‑step‑size ODE 
at the genome scale
In contrast, the adaptive-step-size method is poten-
tially hard to parallelize since the step size depends on 
the current value and may differ for different SCCs [40]. 

Therefore, a universal step size requires computation on 
all SCCs simultaneously.

Fortunately, the labeling curve of any mass isotopomer 
is not complicated and can be mimicked by a cubic spline 
[41]. In particular, the sum of the mass isotopomers of 
the same EMU equals one while the sum of the mass iso-
topomers’ derivatives relative to particular flux or pool 
size equals zero. So, the dynamic curves of the mass 
isotopomers and the derivatives belonging to the same 

Fig. 2  The framework for SCC of mass isotopomer. a A SCC decomposition for the m0s of the toy network. The mass isotopomer network 
was decoupled based on mass weight and network connectivity. b The reorganization of mass isotopomer into SCC. Green background is 
corresponding to the EMU vector and yellow background is corresponding to SCC of mass isotopomer. Subscripts refer to the mass weight and 
superscripts refer to the code of EMU
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metabolite have similar steepness and require similar 
sampling density, even though there is a wide distribution 
in the concentrations of metabolites. We calculated the 
trajectory of all mass isotopomers and the derivatives of 
EMUs of different sizes in a medium-scale carbon meta-
bolic network of E. coli (the Additional file 3). The calcu-
lation was repeated for 3 sets of flux rate and pool size. 
The result indicates the evolution curve of different mass 
isotopomers and their derivatives from the same EMU 
have the similar changing amplitude in the same time-
scale. This phenomenon is exemplified by the curves of 
all EMUs of AcCoA and isocitrate in Fig. 6a–c, from one 
dataset. More data are provided in the Additional file 4.

Figure  6d–f shows the mass isotopomers of mass 0 
(m0) and their derivatives of different EMUs of the same 
metabolite for 18 metabolites, according to above param-
eter settings. The curves belonging to the same metabo-
lites are indeed similar to each other, implying that the 
step size calculated for m0 of one EMU from one metabo-
lite is suitable for other mass isotopomers of any EMU of 
the same metabolite. More data are provided in the Addi-
tional file 4.

This property enables us to carry out parallelization 
even in the adaptive-step-size method. First, a set of m0 
values is constructed from the first few SCCs, which con-
tain at least one EMU of each metabolite. This set is used 

to calculate the step size with an adaptive method, which 
is simultaneously delivered to the SCCs to carry out the 
parallelized constant-step-size modeling.

The speed-up in the adaptive-step-size method is 
shown in Fig. 5. The parallel method obtains an average 
speed-up of 5 times. λ does not exhibit an observable 
effect because the time-limiting step is the process of cal-
culating the step size for the systems, which is not corre-
lated with λ. The adaptive-step-size method can identify 
and use the maximal step size in each step while produc-
ing an error of an allowed magnitude. This results in a 
significant reduction in the total number of steps and a 
decrease in the running time.

Stiffness problem is an interesting problem for insta-
tionary 13C fluxomics. As shown in Eq (7), the ODEs for 
each SCC are one order and their derivatives are deter-
mined by the value of SCC at right side and the SCCs 
with lower topological sort. Since the value of the SCCs 
with lower topological sort are known, the derivatives 
from these components are constant over time. The trun-
cate error will be fixed once the step-size fixed. As such, 
the stiffness of SCCi is major resulted from the square 
matrix Mi in Eq (7), which is multiplying with SCCi. The 
stiffness is characterized by this matrix’s stiffness ratio, 
which is the ratio between maximal value and minimal 
value of the real components of the eigenvalues of the 
matrix.

We have calculated the eigenvalues of the correspond-
ing matrix of different SCCs with 3 sets of flux distribu-
tion on E. coli network. All the eigenvalues are negative 
real number, which shows that the isotope differential 
equation is stable. The maximal stiffness ratio is less than 
104 for all the SCCs with λ ranging from 5 to 1000, 
which means the stiffness of these SCCs is not a serious 
problem.

Discussion
Modelling a large set of isotope ordinary differential 
equations in a parallel and faster way have a potential-
ity to be highly used by the researchers who develop new 
13C fluxomics method and will help to utilizes 13C flux-
omics to explore more species. To this end, a new frame-
work for modeling the isotope is generated. A parallel 
strategy is realized for isotope ordinary equations mod-
eling and achieved observable speed-up. Some factors 
affecting the speed of isotope ordinary equations mod-
eling are discussed.

Specifically, we have put forward a new framework 
for modeling the isotope fate within the atom transi-
tion network. This framework is in parallel with current 
isotope granule EMU, cumomer and bondmer and easy 
to be implemented. The modeling is based upon a new 
combination of mass isotopomer. The mass isotopomer 

Fig. 3  The parallel algorithm for isotope ordinary differential 
equations. a An example of variable dependency relationship 
between the threads for the toy network. The variables in the end 
threads of one red arrow will rely on those in the start thread. b 
Cost diagram for the parallel algorithm. Thinner blue rectangles 
correspond to calculation of the function value while finer red ones 
correspond to calculation of the slope value. Dots correspond to data 
and information communication between processors
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generation relationship has been abstracted as a mass 
isotopomer network. Mass isotopomer network is an 
important concept here. The equations can be signifi-
cantly simplified by preserving the transitive closures 

of the measured mass isotopomers and cutting out the 
rest parts. This is like what have been done for cumomer 
and EMU. The left mass isotopomer network is then 
decomposed into different SCCs, which is the basic 

Fig. 4  The genome-scale atom mapping network modified from imSyn593. The light blue rectangles represent the enzymes. The orange circles 
with white bound represent the carbon atom of a metabolite

Table 2  ODEs parameters

Parameter Value Comment

λ 10 SCC aggregation parameter, i.e., the minimum 
mass isotopomer quantity of an SCC

Tn 10 ODEs end time point

Step 0.005 Step size

Tolerance_scaling_factor 10−9 Tolerance scaling factor for adaptive method

Tolerance_addition_factor 10−7 Tolerance addition factor for adaptive method
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unit for modeling. The modeling can be implemented 
in two ways, one of which is tensor-based and the other 
vector-based. The tensor-based method is analogue to 
the cumomer algorithm from Weitzel’s work [38]. The 
vector-based method is analogue to the EMU block algo-
rithm from Young’s work [26].

A parallel strategy of modeling isotope ordinary equa-
tions has been realized with the constant-step-size and 
adaptive-step-size integration methods. Their com-
parison is as shown in Fig. 5. This strategy is essentially 
universally applicable and can be adapted in different 
isotope modeling method and benefit to the 13C flux-
omics community. For the test cases, the vector-based 
method shows systems advantage in modeling speed over 
the tenser-based method. This is reasonable because the 
vector-based method requires only the product of two 
vectors, while the tensor algorithm requires an additional 
component. These results confirm the wide applicability 
of our parallel method.

Many other factors also impact the modeling speed. 
In addition to the hardware performance such as the 
number of CPU cores, the speed of the modeling is also 
affected by the number of EMU reactions and the flux 
distribution value. When the difference between the 
reaction values within one flux distribution goes down, 
the size of time point calculated by the adaptive step size 
method become smaller and the modeling can be quickly 
ended. This information is also instructive for modeling 
based upon EMU and cumomer.

Conclusion
Isotopically instationary 13C fluxomics has emerged 
as the gold standard to obtain a precise picture of the 
fluxome for photosynthetic microorganisms utilizing 
a one-carbon substrate. The increased computational 

Fig. 5  The speed comparison of nonparallel and parallel methods on 
the genome-scale metabolic model. The speed values are normalized 
by the speed of nonparallel constant-step-sized tensor method. 
Red bar with diagonal stripe is tensor-based modeling and blue bar 
with diagonal stripe is vector-based modeling. The bars indicate the 
standard deviation of 3 replicates

Fig. 6  The dynamic curves of each mass isotopomer and their derivatives of different metabolites. a The curves of all mass isotopomers of all 
EMUs of AcCoA and isocitrate. b The curves of all mass isotopomers’ derivatives over flux value of all EMUs of AcCoA and isocitrate. c The curves of 
all mass isotopomers’ derivatives over pool size of all EMUs of AcCoA and isocitrate. Each subfigure refers to an EMU of a metabolite. The colored 
curves represent the corresponding values of mass isotopomers or their derivatives with different weight. d The m0s of different EMUs of the same 
metabolite. e The m0s’ derivatives over flux value of different EMUs of the same metabolite. f The m0s’ derivatives over pool size of different EMUs of 
the same metabolite. Each subfigure refers to a metabolite. The colored curves refer to the m0s or their derivatives of all EMUs of a metabolite
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and storage demands may hinder easy adoption when 
a genome-scale fluxome is required. The parallel algo-
rithm for isotope ODEs here is found to be a success-
ful strategy to promote the speed of instationary 13C 
fluxomics, regardless of whether constant-step-size 
or adaptive-step-size modeling is used. This parallel 
strategy utilizes the cascade relationship of the isotope 
granules balance equations. This property also holds 
true for any other isotope granules, such as EMUs or 
cumomers. It is essentially universally applicable and 
will benefit to the 13C fluxomics community.

Method description
Reorganization of EMU mass isotopomers
An EMU can be defined as a specific subset of metab-
olite atoms [13]. A mass isotopomer is a group of iso-
topomers that is classified according to the number of 
heavy isotopes rather than the position [42]. The mass 
isotopomers here are considered individually, unlike 
those previously treated in one EMU as a whole. One 
mass isotopomer is treated as one node in the graph. 
When a mass isotopomer A is a precursor of mass iso-
topomer B, we define a directed arrow starting from 
node A and ending on node B.

Subsequently, according to EMU equations, a 
directed graph Gm (Vm, Em) of the mass isotopomer 
network can be drawn [38]. The vortex Vm repre-
sents the mass isotopomers, while the directed edge 
Em connects the reactant isotopomers to the product 
mass isotopomers in an EMU reaction. To remove the 
unnecessary mass isotopomers, the graph Gm is first 
transformed into its transposed graph Gm

T by reversing 
each edge of Gm. Then, the transitive closures of the 
measured mass isotopomers are identified by a Floyd–
Warshall algorithm [43].

Then, the Tarjan algorithm has been implemented to 
decompose Gm into different SCCs, which is a subgraph 
where there exists at least one directed path for any pair 

of its vertices [37]. A solitary mass isotopomer shall be 
treated as an SCC consisting of a single node. If SCC A 

contains a node with an edge directed toward another 
node in SCC B, then SCC A has a prioritized topological 
sort over B, and SCC A is called the parent SCC of SCC 
B. Thus, for all edges from A to B, node A appears before 
node B. The SCCs with higher sort rely on the SCCs with 
lower sort, while the latter do not rely on the former.

As a heavier mass isotopomer will never contribute to 
a lower mass isotopomer in terms of an EMU, one SCC 
contains mass isotopomers of the same weight. If one 
directed edge connects SCC A to SCC B, then we define 
SCC A as having a topological sort less than that of SCC 
B [38]. The content of an SCC is as follows:

where i represents the weight of the mass isotopomer, 
while j represents the topological sort of the SCC for the 
same weight.

Tensor‑based modeling of the mass isotopomers of SCCs
The instationary framework presented here is based 
upon the mass isotopomers of SCCs. Generally, any 
matrix manipulation of isotopes can be represented by a 
combination of SCC reactions. One SCC reaction with n 
reactants and one product has the following form:

The generation of the MID of SCCP can be calculated as 
the product of the transition tensor of SCCs of all reac-
tants, such as

Here, SCCp · · · SCCRn is the vector of mass isotopomers 
of product and reactant SCCs sorted by their weights and 
topological sort. Q is a transition tensor with order equal 
to the number of reactant and product SCCs and dimen-
sions equal to the dimensions of the SCCs. The precise 
definition of the transition tensor can be described as 
follows:

The consumption of the mass isotopomer can be for-
mulated by an eliminating matrix. Its content can be 
defined as follows:

(1)SCC =

(

SCC1,1SCC1,2
· · · SCCi,j

· · ·

)

,

(2)SCC1 + SCC2 + · · · + SCCn ⇒ SCCP .

(3)SCCP = Q⊗ SCCR1 ⊗ SCCR2 · · · ⊗ SCCRn .

(4)Qr,(i1,i2,...,in,j) =







1, if the i1th mass isotopomer of SCCR1 , i2th mass isotopomer of SCCR2 , . . . ,
join together to make the jth mass isotopomer of SCCP in the rth reaction

0, otherwise.

(5)Ek(i,j) =

{

−1, if i = j and the kth reaction consumes the ith mass isotopomer.
0, otherwise.
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The dimension is equal to the number of mass isoto-
pomers for the corresponding SCC. The ODEs of mass 
isotopomer SCCs have the following form:

SCCik,jk is an SCC with the jkth topological sort and 
the ikth weight. vp is the flux value of reactions produc-
ing certain mass isotopomers of SCCik,jk. vc is the flux 
value of reactions consuming certain mass isotopomers 
of SCCik,jk. vinp is the flux value of the input reactions. 
SCCi1,j1 and so on are the SCCs whose element is involved 
in vp to produce SCCik,jk. ip is the number of reactants of 
vp, while jp is the topological sort. Qp

(i1,j1) (i2,j2),…, 

(ip,jp) is the transition tensor of vp as defined in Eq.  (6) 
to adapt the SCC instead of the EMU, which produces 
SCCik,jk from SCCi1,j1 and so on. Ec is the eliminating 
matrix of vc. Qinp is the transition tensor of input reac-
tions. Cik, jk is a diagonal matrix whose diagonal elements 
are the metabolite pool size associated with SCCik,jk.

Implicit differentiation of Eq.  (3) with respect to the 
free fluxes and pool size generates the differential equa-
tions of first-order derivatives of the measured mass 
isotopomer equations. The initial conditions for these 
derivatives are set as zero to solve these equations.

Vector‑based modeling of mass isotopomers of SCCs
Like EMU [13], mass isotopomer SCCs can also be mod-
eled directly in a vector way as Eq (7) 

where SCCj1
 and SCCj2

 are the SCCs which contribute 
to SCCi through a single molecule transition. The single 
molecule transition from certain SCCs to target SCCi can 
be characterized in the matrix M.

(6)

Cik ,jk

dSCCik ,jk

dt
=

∑

p

vpQ
(i1,j1),(i2,j2),...,(ip,jp)
p ⊗ SCCi1,j1

⊗ SCCi2,j2

· · · ⊗ SCCip,jp
+

∑

c

vcEcSCC
ik ,jk

+

∑

inp

vinpQinpSCC
inp.

(7)

�

Mj1
Mj2

· · ·Mi · · ·Mjn

�















SCCj1
SCCj2
· · ·

SCCi

· · ·

SCCjk1
⊛SCCjk2
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=

{
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,

SCCjk1
 and SCCjk2

 are the SCCs which contribute to SCCi 
through a double molecule transition. ⊛ is a user-defined 
vector product specific to the set of SCCjk1

, SCCjk2
 and 

SCCi . For different set of SCCjk1
, SCCjk2

 and SCCi , the 
content of ⊛ is different. Mjn

 is set as a unit matrix to 
be compatible with such configuration. The sensitivities 
equations can be organized in a similar way.

Parallel algorithm for the ODEs
The decomposed SCCs are a cascade system, and heav-
ier SCCs rely on the value of lower SCCs. Generally, the 
ODEs are solved sequentially to obtain the time-series 
data of mass isotopomers. Therefore, parallel implemen-
tation of the SCC differential equations substantially 
accelerates the forward simulation. The parallel strategy 
is schematically shown in Fig. 4.

1.	 Each SCC evolution is carried out in one individual 
thread.

2.	 For the first thread, a 4th-order Cash–Karp Runge–
Kutta scheme is employed to solve the equations 
about the first SCC1,1.

2.1	 Each time step of hk and each value of SCCk
1,1 of 

this process are preserved and communicated 
to the downstream threads.

3.	 For the thread of SCCi,j, the current value SCCk
i,j is 

calculated based upon SCCk-1
i,j together with hk and 

SCCk
im,jm received from previous threads where im 

and jm are less than i and j, respectively. The algo-
rithm is a typical explicit 4th-order Runge–Kutta 
method as described in Eq. (9) [36, 39]. 

3.1	 Each time step of hk and each value of SCCk
i,j of 

this process are preserved and communicated 
to the downstream threads:

4.	 Repeat (3).
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Algorithm implementation and parameter setting
The parallel algorithm is performed via ExecutorSer-
vice. The data communication between threads is 
executed efficiently through ConcurrentHashMap. 
Constraint-compatible initial flux distributions are gen-
erated by the Python-based sampler OptGPSampler in 
COBRApy [44]. A clear protocol to guide the method 
development has been included in the Additional file 5. 
The toy network is adopted from a previous report 
[13]. The central carbon metabolism network of E. 
coli is described in the Additional file  3. The genome-
scale metabolic model of S.2973 was modified from 
imSyn593 from a previous study [36]. The computer is 
equipped with 2 Xeon E7 4820 V2 2.2G CPUs with 8 
cores and 512G memory card, which can support 32 
threads at most.

Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1306​8-020-01737​-5.

Additional file 1. A genome-scale metabolic network of Synechococ-
cus 2973 modified from imSyn593. 

Additional file 2. 3 different sets of the flux distribution of the S.2973 
network. 

Additional file 3. A medium-scale carbon metabolic network of E.coli. 

Additional file 4. The trajectory of all mass isotopomers and the 
derivatives of EMUs of different sizes in E.coli for 3 set of flux 
distribution. 

Additional file 5. Instruction for isotope differential equations 
parallelization. 
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