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Abstract 

Background: The conversion of lignocellulosic biomass from agricultural waste into biofuels and chemicals is 
considered a promising way to provide sustainable low carbon products without compromising food security. 
However, the use of lignocellulosic biomass for biofuel and chemical production is limited by the cost‑effectiveness 
of the production process due to its recalcitrance to enzymatic hydrolysis and fermentable sugar release (i.e., sac‑
charification). Rice straw is a particularly attractive feedstock because millions of tons are currently burned in the field 
each year for disposal. The aim of this study was to explore the underlying natural genetic variation that impacts the 
recalcitrance of rice (Oryza sativa) straw to enzymatic saccharification. Ultimately, we wanted to investigate whether 
we could identify genetic markers that could be used in rice breeding to improve commercial cultivars for this trait. 
Here, we describe the development and characterization of a Vietnamese rice genome‑wide association panel, high‑
throughput analysis of rice straw saccharification and lignin content, and the results from preliminary genome‑wide 
association studies (GWAS) of the combined data sets. We identify both QTL and plausible candidate genes that may 
have an impact on the saccharification of rice straw.

Results: We assembled a diversity panel comprising 151 rice genotypes (Indica and Japonica types) from commer‑
cial, historical elite cultivars, and traditional landraces grown in Vietnam. The diversity panel was genotyped using 
genotype by sequencing (GBS) methods yielding a total of 328,915 single nucleotide polymorphisms (SNPs). We 
collected phenotypic data from stems of these 151 genotypes for biomass saccharification and lignin content. Using 
GWAS on the indica genotypes over 2 years we identified ten significant QTL for saccharification (digestibility) and 
seven significant QTL for lignin. One QTL on chromosome 11 occurred in both GWAS for digestibility and for lignin. 
Seven QTL for digestibility, on CH2, CH6, CH7, CH8, and CH11, were observed in both years of the study. The QTL 
regions for saccharification include three potential candidate genes that have been previously reported to influence 
digestibility: OsAT10; OsIRX9; and OsMYB58/63-L.

Conclusions: Despite the difficulties associated with multi‑phasic analysis of complex traits in novel germplasm, 
a moderate resolution GWAS successfully identified genetic associations encompassing both known and/or novel 
genes involved in determining the saccharification potential and lignin content of rice straw. Plausible candidates 
within QTL regions, in particular those with roles in cell wall biosynthesis, were identified but will require validation to 
confirm their value for application in rice breeding.
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Background
The need to cut carbon emissions has become a global 
priority and  the production of low carbon liquid fuels 
and chemicals are important components in the drive 
for a sustainable industrial bio-economy. The use of 
major crops and agricultural land exclusively for bio-
fuel production is considered unsustainable and gener-
ates concerns over global food security. However, the 
use of non-food crop residues represents an alternative 
source of biomass. Such lignocellulosic crop biomass is 
typically composed of around 70% polysaccharides that 
can be potentially depolymerized to produce sugars for 
fermentation. Millions of tons of rice straw are burned 
every year for disposal [1]. Field burning of biomass 
generates ground-level atmospheric pollution that is 
responsible for premature mortalities, lost economic 
activity and decreased agricultural yields in many 
rice-growing nations [2]. Consequently, there are clear 
benefits to valorizing rice straw and other residues to 
produce fuels and chemicals. However, the use of bio-
mass is hindered by its recalcitrance to digestion.

Most agriculturally important broad-acre cereals have 
large complex genomes that make them complicated 
to use for research purposes. One exception to this is 
rice (Oryza sativa), one of the worlds’ most important 
cereal crops. Rice has a small diploid genome (only 
about twice the size of Arabidopsis) and well-developed 
molecular genetic tools [3].

Albeit with many advantages, most research focused 
on understanding the synthesis and construction of 
plant cell walls has been conducted in Arabidopsis [4]. 
Unfortunately, many aspects of this research cannot be 
directly transferred to grasses, as monocots and dicots 
differ in their cell wall biology [5]. While they both 
comprise cellulose microfibrils embedded in a matrix 
of hemicellulose and lignin, there are substantial dif-
ferences in these two components and how they bond 
to one another. While the predominant hemicellulose 
in dicot lignocellulose is an acetylated glucuronoxylan, 
grasses have more complex, highly decorated arabi-
noxylans [6]. Grass arabinoxylans are notably decorated 
with hydroxycinnamic acid esters associated with ara-
binosyl side chains. Ferulic acid esters on arabinoxylans 
form cross links with neighbouring stretches of differ-
ent arabinoxylan chains and with lignin [7], a feature 
not found in dicots. Lignin structure also differs con-
siderably between dicots and grasses, with a greater 
preponderance of hydroxycinnamic acids in grass 
lignin [8].

Alterations in cell wall components can affect the recal-
citrance of lignocellulosic biomass, and thus improve its 
saccharification with the potential to improve energy 
crops through plant breeding [9–11]. While reducing 
lignin can decrease recalcitrance in grasses [12], several 
publications also indicate that alterations in hydroxycin-
namic esters can have a significant effect on recalcitrance 
[13]. In rice and Brachypodium, decreased levels of feru-
lic acid accompany increases in lignocellulose digestibil-
ity [14–16]

Recently, important advances that lay the foundations 
for engineering or breeding plants for biofuel produc-
tion have been made. These include lists of genes that 
could be manipulated or mined towards a goal of path-
way engineering. However, for practical implementation, 
many challenges remain to be addressed [17]. In plants 
and animals, studies of genetic sources of phenotypic 
variation have been the key to determining the cause of 
disease, improving agriculture and understanding adap-
tive processes [18]. In particular, genetic analysis of nat-
ural variation has been used to identify both genes and 
quantitative trait loci (QTL) that account for significant 
amounts of phenotypic variation for a given trait within 
a population. QTL were originally mapped in bi-parental 
populations in plants [19]. In bi-parental mapping popu-
lations, genetic resolution is often limited, confined to a 
range of 10  cM to 30  cM due to the restricted number 
of meiotic events captured during a cross between two 
parental lines [20]. For example, Truntzler et al. identified 
26 and 42 QTL in a maize bi-parental population that 
accounted for much of the variation in forage digestibil-
ity and cell wall composition traits, respectively, apparent 
in that population [21]. Penning et al. similarly identified 
QTL for cellulase digestibility in a recombinant inbred 
population of maize [22], and Liu et al. identified a broad 
region on chromosome 1 that influenced digestibility in 
rice straw in a bi-parental population [23]. Unfortunately, 
the number, effect and resolution of individual QTL in 
a bi-parental population frequently hamper causal gene 
identification. In addition, only a couple of all possible 
alleles present in a species can be examined for linkage 
to a trait in a population derived from two parental indi-
viduals [24].

Linkage disequilibrium (LD) mapping, or associa-
tion mapping (AM) exploits historical recombination 
events that have occurred in all of the genomes con-
tained within a population. All major alleles segregat-
ing in those genomes can then be considered when 
attempting to identify significant marker–phenotype 
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associations [25]. Over the last few years, genome-
wide association studies (GWAS) have become 
increasingly popular. GWAS is a powerful approach 
that overcomes many of the constraints inherent to 
bi-parent linkage mapping. It exploits the consider-
able variation revealed by high-throughput molecu-
lar markers in natural or constructed populations 
across all chromosomes with high resolution [26]. An 
appropriate panel of genotypes, density of molecular 
markers and high-quality phenotypic data are key to 
establishing successful association study. GWAS was 
first applied in humans [27] and, after over two dec-
ades, is continuing to provide a powerful approach for 
the localization of genes underlying both simple and 
complex traits in many species, including crops. The 
advent of high-density single-nucleotide polymor-
phism (SNP) genotyping is allowing whole-genome 
scans to identify small haplotype blocks that are sig-
nificantly correlated with quantitative trait varia-
tion [18]. GWAS in crops usually use a population of 
diverse (and preferably homozygous) genotypes that is 
genotyped once and can be phenotyped for many traits 
to generate specific mapping populations for specific 
traits or QTL [28]. There have been a number of stud-
ies using a range of genetic approaches to identify QTL 
for digestibility with different degrees of resolution 
in different species such as sorghum [29], Miscanthus 
[30], maize [22], alfalfa [31], and poplar [32]. Never-
theless, digestibility/saccharification is a difficult trait 
to measure, with potential variation arising from both 
the field and the laboratory phases of the work [33].

Rice is a selfing species and, like Arabidopsis, a 
good candidate for GWAS. Huang et  al. identified an 
unbiased set of common SNPs that was used to iden-
tify strong associations between genetic loci and 14 
agronomic traits, including heading date, grain size, 
and starch quality [34]. With the now well-developed 
molecular genetics tools, the advent of affordable 
large-scale DNA sequencing and association genetic 
studies starting to reach their full potential, GWAS 
in rice has the potential to identify both QTL for sac-
charification and novel genes involved in cell wall 
synthesis.

The aim of the present work was to determine 
whether GWAS can be used to identify QTL and candi-
date genes associated with the saccharification potential 
of rice straw. Using a new association panel comprising 
151 rice genotypes from Vietnam, we measure ligno-
cellulose digestibility and lignin content in field-grown 
straw from this population across 2 years. Association 
studies using only the indica subset revealed a number 
of significant QTL and candidate genes, some common 
to both lignin content and digestibility.

Results
SNP identification
The SNP matrix used for association mapping in the pre-
sent work was generated by genotyping by sequencing 
(GBS) 172 rice genotypes, followed by GBS “Discovery 
Pipeline” analysis (Tassel Version: 3.0.166, date: April 17, 
2014). We identified a total of 328,915 SNPs that were 
stored in HapMap [35] and used as genotypic data for 
GWAS (Fig.  1). The average density of SNP markers in 
our panel is 1SNP/Kb. It has been reported that genome-
wide linkage disequilibrium decay rates for rice subspe-
cies such as indica and japonica are estimated at ~ 123 kb 
and ~ 167 kb [34], and cultivated rice has a longer range 
of decay (100 kb to over 200 kb) [36]. For GWAS studies, 
the coverage of markers that we generated should there-
fore give satisfactory resolution. Indeed, this SNP density 
means that causative polymorphisms stand a reasonable 
chance of being in LD with one or more markers and 
should help to identify small haplotype blocks that are 
significantly correlated with complex traits such as ligno-
cellulose recalcitrance.

Population stratification
From 172 genotypes used for SNP identification, we 
reduced the number for GWAS to 151 due to appearance 
of some identical genotypes. Controlling for population 
structure is a standard procedure in GWAS and is par-
ticularly important in this research as genotypes were 
collected from many different sources and include both 
indica and tropical japonica varieties. The diversity level 
and stratification of the population were examined before 
performing GWAS. A phylogenetic tree and heat map of 
the values in the kinship matrix created from the SNPs, 
which both show relatedness among the population were 
calculated using GAPIT (Fig. 2) [37, 38]. The results show 
that there are two subpopulations in the association map-
ping panel (Fig.  2). The smaller subpopulation includes 
22 tropical japonica genotypes with the other subpopula-
tion comprising 129 indica genotypes.

Measuring lignocellulose recalcitrance and lignin content
Recalcitrance
Lignocellulose recalcitrance to digestion was measured 
by incubating ground straw from individual genotypes 
with a commercial cellulase cocktail following a water 
pre-treatment at 94  °C using an automated platform 
[39]. To determine QTL for recalcitrance in our rice 
association panel, we harvested straw over two consec-
utive years during the spring season in 2013 (93 geno-
types) and the summer season in 2014 (151 genotypes). 
The results from the 2014 harvest showed values in the 
range of 20–134  nmol of reducing sugar equivalents/
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mg of biomass per hour of hydrolysis (nmol/mg  h), 
and for the 2013 harvest the range was between 23 
and 72.8 nmol/mg h (Fig. 3). There is little correlation 
between the saccharification data sets from both years 
in the 93 genotypes present in both trials (Fig.  4). We 
attribute the lack of correlation between two datasets 
largely to environmental effects of growth in different 
seasons on saccharification. This illustrates the dif-
ficulties inherent in measuring complex traits where 
field and laboratory phases of the analysis and different 
years of growth can introduce non-genetic variation. In 
addition to that, there is also potential influence of dif-
ferent environmental conditions to marker effects (i.e. 
marker by environment interaction effects) [33] Most 
rice genotypes are adapted for optimal growth in a spe-
cific growing season, while some are adapted for both 
seasons, causing differences in biomass quality.

Lignin content
Lignin content was assessed using the acetyl bromide 
method [40] and showed a significant degree of variation 
among the 151 rice genotypes included in the association 
panel, ranging between 26.3% and 14.3% (Fig. 5).

A correlation analysis between lignin content and 
recalcitrance revealed no significant correlation between 
the two for the indica population (R2 = 0.0006), although 
there was a significant correlation apparent in the smaller 
japonica sub-population (R2 = 0.066, and the p = 0.045*) 
(Fig. 6). Based on these results, we decided to remove the 
japonica subpopulation to improve the power of GWAS 
and to avoid the population structure misleading the 
analysis [18].

GWAS for recalcitrance
We ran GWAS for recalcitrance in 2 years separately, 
using adjusted saccharification genotype means from 
straw biomass harvested from 83 indica genotypes 

Fig. 1 Bar graph showing the distribution of identified SNPs across the rice genome
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in 2013 and 125 indica genotypes in 2014. A separate 
mixed linear model (MLM) was fitted for each year sep-
arately in TASSEL [41]. We identified several significant 
associations in each year including seven QTL regions, 
on CH2, CH6, CH7, CH8, and CH11, present in both 
years’ data (Table 1). The data set from 2014 yielded a 
total of 102 significant SNP associations (Table 1). Fig-
ure  7 shows a Manhattan plot showing QTL for sac-
charification with a false discovery rate (FDR) of < 0.05, 

as the cutoff for significant SNPs (above the red line). 
The quantile–quantile (QQ) plot that represents devia-
tion of the observed P values from the null hypothesis is 
shown in Additional file 1. The genetic effects of these 
QTL to phenotype variance were calculated as pheno-
typic variance explained (PVE) by significant SNPs (see 
Table  1). There are SNP clusters/QTL on CH1, CH2, 
CH6, CH7, CH8, and CH11, which have PVE values 
ranging from 18% (at CH2_24.6 ± 0.2  Mb) to 56% (at 
CH7_26.4 ± 0.4 Mb) (Table 1).

Fig. 2 Phylogenetic tree in the form of a kinship plot. A heat map of the values in the kinship matrix, showing the level of relatedness among 
the population (the darker area showing highly related variety and also from different origin with the rest of the population). The population is 
separated into the main population (Indica) in the bigger orange box, and subpopulation (Japonica) in the smaller orange box
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GWAS for lignin content
By fitting the adjusted means of lignin of 124 indica 
genotypes grown in 2014 in the same GWAS model as 
for recalcitrance, we found 56 significant SNPs using 
a cutoff at p < 0.001 and MAF > 0.05. The FDR correc-
tion for p value was not applied because none of the 
SNPs qualified for FDR < 0.05. In this case, we used 
only the p value to account for the significance of each 
SNP associated with lignin content. This means that 
we have accepted an overestimate of the true signifi-
cance of some SNPs and accept that some may be false 
positives. The QQ plot that represents deviation of the 

observed p values from the null hypothesis is shown 
in Additional file  1. The significantly associated SNPs 
with lignin content are situated in CH1, CH2, CH3, 
CH8, CH10, and CH11 (Table  2). These significant 
SNPs explain from 5.18% (at CH10_19.2 ± 0.3  Mb) to 
12.58% (at CH11_4.0 ± 0.2 Mb) of the phenotypic varia-
tion (Table 2). The QTL on CH11_4.0 ± 0.2 Mb is at the 
same region as a QTL found in GWAS for digestibil-
ity, although no common significant SNPs were found 
between these two GWAS (Fig. 8, Tables 1 and 2).
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Identification of candidate genes
Candidate genes for recalcitrance
To identify the candidate genes underlying the QTL, 
we searched within 400 kb (± 200 kb of the peak SNPs) 
around the significant loci identified, based on the link-
age disequilibrium (LD) decay range, published for rice 
[36, 42]. The MSU Rice Genome Annotation Project 
(https ://rice.plant biolo gy.msu.edu/expre ssion .shtml ) 
database was used to search for genes and their expres-
sion data in these regions (Additional file 2). Candidates 
were selected based on whether the function of the genes 
had been characterized before in rice or if similar genes 
in other species had known roles in cell wall biosynthe-
sis or modification. Table  2 shows the candidates iden-
tified for each saccharification QTL. Three candidate 
genes located in QTL regions found in both years of har-
vest have previously been shown to affect lignocellulose 
digestibility. The first one, LOC_Os06g39390 (OsAT10) 
encoding a p-coumaroyl coenzyme A transferase belongs 
to the Mitchell clade of BADH acyl transferases and has 
previously been shown to add p-coumaroyl esters to ara-
binoxylan [16]. This gene and its close neighbour, locus 
LOC_Os06g39470 (OsAT8), belong to family PF02458 
transferases [10, 43]. In 2010, Piston et  al. showed that 
cell walls of lines where both genes are down-regu-
lated exhibit a reduced content of ester-linked ferulate 
[43]. A candidate gene located within the QTL region 

on chromosome 7 is LOC_Os07g49370 (OsIRX9) that 
encodes a glycosyl transferase involved in the synthesis 
of the xylan backbone in the secondary and primary cell 
walls. Expressing OsIRX9 in an Arabidopsis irx9 mutant 
background restored xylosyltransferase activity and stem 
strength to wild-type levels [44]. A candidate gene within 
the QTL on chromosome 2 is locus LOC_Os02g46780 
next to the SNP-S2_28582605 (p = 1.05E−07), identified 
as OsMYB58/63 L [45], which is a homologous to the 
Myb transcription factor OsMYB58/63 involved in the 
expression of a rice secondary wall-specific cellulose syn-
thase gene, OsCesA7 [46].

Table 1 lists the QTL regions along with the positions 
of the three candidates mentioned above, and a number 
of other potential candidate genes.

Candidate genes for lignin content
All genes located in QTL regions and their expression 
data are listed in Additional file 3. Candidate genes asso-
ciated with lignin content QTL were identified following 
the same procedure as for recalcitrance. The list of candi-
date genes in the QTL regions is shown in Table 2. Sev-
eral QTL regions encompass genes known to be involved 
in lignin biosynthesis. A hydroxycinnamoyltransferase 
(HCT) gene on CH11 (CH11_4.0 ± 0.2  Mb) is in the 
common QTL region between GWAS for recalcitrance 
and lignin content. Interestingly, there are also two 

Fig. 6 Correlation graph of digestibility vs lignin observing 151 genotypes, three biological reps. Blue dots represent the main population P1 (Indica 
rice genotypes) and red dots represent subpopulation P2 (Janopica rice genotypes)

https://rice.plantbiology.msu.edu/expression.shtml
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potential HCT genes located within a digestibility QTL 
on chromosome 8, namely, LOC_Os08g43040 and LOC_
Os08g43020 (Table  2). Reduced expression of HCT in 
alfalfa has been shown to increase stem digestibility [47].

There is a cluster of seven peroxidase genes 
located close to the peak in the lignin QTL region on 
CH3_14.5 ± 0.4. Also, a laccase, LOC_Os11g47390.1, 
located in the QTL region CH11_18.8 ± 0.3, is sur-
rounded by several cell wall genes, including a wall-asso-
ciated kinase (WAK), a kinase, a receptor-like protein 
kinase, and a glycosyl hydrolase. Peroxidases together 
with laccases have been proposed to take part in the 
polymerization of monolignols into lignin [48]. Down-
regulation or disruption of these enzymes led to the 
reduction of lignin content in plants [48–50].

Discussion
The lignin content in our rice accession straws are at 
a similar level to that of grasses in general and higher 
than in dicot but lower than in wood species [5, 49–51]. 

A comparison of our results with the other unpublished 
data (using the same method) in our laboratory shows 
that rice has a top high lignin content and has the highest 
range of digestibility in the studied grasses.

We have piloted the use of GWAS to identify QTL 
for the saccharification potential of rice straw using an 
association panel of 151 Vietnamese elite and landrace 
genotypes. In this association panel, based on the pair-
wise studies for relatedness among all the genotypes, 129 
indica genotypes were grouped into the main population 
and 22 tropical japonica genotypes were grouped into a 
smaller group, which can be considered as a sub-popu-
lation. The japonica sub-population was removed from 
all GWAS to reduce the number of confounding factors. 
False positives and negatives in GWAS can occur when 
the patterns of population structure overlap with pat-
terns of the phenotype and with patterns in environmen-
tal variation [18].

We used an automated multi-phasic saccharifica-
tion platform to phenotype the straw samples collected 

Table 1 Digestibility QTL regions, the  significant SNPs, and  selected candidate genes in  the  QTL regions in  2014; 
the significant SNPs are selected by false discovery rate (FDR) < 0.05

a Minimum allele frequency
b Phenotypic variance explained (PVE) by significant SNP

Chromosome 
(CH)

QTL regions (Mbp) No of significant 
SNPs in QTL 
regions

Most significant p 
value of SNP in QTL 
regions

MAFa R2 (%)b Candidate genes

1 CH1_29.5 ± 0.2 9 4.92E−08 0.179 22.6 LOC_Os01g51260 (OsMYB26 TF) [79]
LOC_Os01g50720 Homologous to BdMYB48 

[80, 81]

2 CH2_2.9 ± 0.2 2 8.04E−05 0.18 13.8

CH2_19.2 ± 0.2 2 8.94E−06 0.2 17.3

CH2_24.4 ± 0.2 1 5.30E−05 0.13 13.1

CH2_28.5 ± 0.2 14 4.06E−08 0.191 25.9 LOC_Os02g46970 (4CL2) [82]; LOC_
Os02g46780 (OsMYB58/63 L) [46]

6 CH6_6.2 ± 0.2 1 3.61E−09 0.23 30.0

CH6_23.4 ± 0.2 2 1.37E−05 0.23 15.7 LOC_Os06g39470 (BADH)

LOC_Os06g39390 (OsAT10) [16, 43]; LOC_
Os06g39970 (CESA11) [83]

7 CH7_26.2 ± 0.2 9 2.78E−09 0.18 27.5

CH7_27.5 ± 0.2 12 3.34E−11 0.14 39.1

CH7_29.4 ± 0.2 8 2.17E−11 0.14 36.0 Os07g49370 (OsIRX9)  [44]:

8 CH8_2.1 ± 0.2 5 8.34E−11 0.18 30.1

CH8_26.8 ± 0.2 5 1.30E−08 0.09 26.8

CH8_27.3 ± 0.2 3 6.38E−09 0.2 28.3 LOC_Os08g43040 and LOC_
Os08g43020(Orthologous to AT5G48930, 
HCT)

CH8_28.0 ± 0.2 5 4.15E−08 0.17 22.5

11 CH11_2.3 ± 0.2 6 2.05E−08 0.16 24.1

CH11_4.1 ± 0.2 8 7.51E−06 0.2 15.5 LOC_Os11g07960 (Orthologous to 
AT5G48930, HCT)

CH11_5.1 ± 0.2 1 3.00E−06 0.18 18.1

CH11_6.3 ± 0.2 9 5.56E−07 0.17 19.01



Page 9 of 16Nguyen et al. Biotechnol Biofuels          (2020) 13:165  

Fig. 7 Genome‑wide association study shows association between saccharification and markers across rice genome over 2 years of studies. 
Manhattan plot shows significant SNPs for saccharification (significant SNPs with p < 0.001; MAF > 5%); the red arrow indicates the common QTL. 
Red line indicates cutoff for significant SNP with a false discovery rate (FDR) of < 0.05
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over two different growing seasons (spring and sum-
mer) in 2 years (2013 and 2014), [52]. Only eight geno-
types in the top of 25% for digestibility in 2013 were 
found in the top 25% in 2014. We attribute this to the 

environmental effects on the population including vari-
ation in day length requirement for different genotypes 
[53, 54]. Despite this apparent lack of correlation, we 
nevertheless identified seven QTL that were common 

Table 2 Lignin QTL regions, the  significant SNPs, and  candidates in  the  QTL regions in  2014; the  significant SNPs are 
selected by p value < 0.001 equal to Log10p value > 3.0

a Minimum allele frequency
b Phenotypic variance explained (PVE) by significant SNP

Chromosome 
(CH)

QTL regions (Mbp) No of significant SNPs 
in QTL regions

Most significant p value 
of SNP in QTL regions

MAFa R2 (%)b Candidate genes

1 CH1_41.0 ± 0.2 9 8.96E−06 0.24 15.9

2 CH2_5.5 ± 0.2 24 5.19E−06 0.47 17.4

3 CH3_14.7 ± 0.2 1 8.21E−04 0.3 9.18 7 peroxidases

8 CH8_8.8 ± 0.2 3 3.98E−06 0.38 16.2

10 CH10_19.4 ± 0.2 2 4.48E−04 0.44 9.5

CH11_4.0 ± 0.2 2 6.44E−04 0.17 12.58 HCT

11 CH11_18.8 ± 0.2 8 9.69E−05 0.38 12.6 LOC_Os11g47390.1 
putative laccase 
14

Fig. 8 Genome‑wide association study showing association between lignin content and SNP markers across the rice genome. Manhattan plot 
showing lignin QTL Significant SNP (p < 0.001; MAF > 5%). Red line indicates cutoff for significant SNP at p < 0.001
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across both years. There have been a number of stud-
ies using different genetic approaches to identify QTL 
for saccharification in different types of plant biomass. 
Only a few candidate genes have been identified and 
validated from association mapping for saccharification 
so far. In alfalfa, 20 simple sequence repeat (SSR) mark-
ers were predicted to be associated with fiber-related 
quality traits (heritability, H2 = 45 to 73.6); no specific 
candidate genes were reported but their finding helped 
to facilitate marker-assisted breeding programs [31]. In 
sorghum, screening 703 SSR markers against low and 
high saccharification (glucose release by cellulase) pools 
identified two markers on the sorghum chromosomes 2 
(23–1062) and 4 (74-508c) associated with saccharifica-
tion yield; these markers were physically close to genes 
encoding plant cell wall synthesis enzymes such as xylo-
glucan fucosyltransferase (149  kb from 74-508c) and 
UDP-d-glucose 4-epimerase (46  kb from 23-1062) [29]. 
In maize, recombinant inbred lines screened for lignin 
abundance and sugar yield established 11 QTL, using 
pyrolysis molecular-beam mass spectrometry to establish 
stem lignin content and an enzymatic hydrolysis assay to 
measure glucose and xylose yield [22]. So far, several nat-
urally occurring mutants with reduced lignin have been 
identified in cereals such as brown midrib (bm) mutants 
in maize [55], orange lemma (rob) mutants in barley 
[56], and “gold hull internode” (gh) mutant in rice [57]. 
The phenotypes with reduction and changes in lignin 
characteristic of these mutants has shown their poten-
tial impacts on cell wall digestibility [58–61]. In the pre-
sent work, we have used a direct GWAS approach in an 
association panel to screen for QTL in rice and found a 
number of genes already established as affecting sacchar-
ification, as well as other novel candidates.

By screening the regions in close proximity to the sig-
nificant SNPs in the seven 2-year QTL, as well as two 
single-year QTL, we identified 12 candidate genes, 
which included the transcription factors, OsMYB26 
TF, OsMYB58/63 L, and an ortholog of BdMYB48. The 
other candidate genes are OsHCT2, three homologs 
of HCT, Os4CL2, OsCESA11, OsAT8, OsAT10 (BAHD 
family), and OsIRX9 (a GT43). OsAT10, OsIRX9, and 
OsMYB58/63L were detected in both years of assays.

Association mapping based on examining individual 
genes and alleles at the loci responsible for lignin con-
tent has been applied to perennial ryegrass to identify 
significantly associated SNPs. An intronic SNP in the 
candidate gene LpCCR1 in poplar was found significantly 
associated with cell wall digestibility and Klason lignin 
content in stem material [62]. Similarly, association map-
ping across 40 candidate genes associated with lignin 
content were characterized by pyrolysis molecular-beam 
mass spectrometry (PyMBMS), and 13 significant single 

marker associations were found for 9 candidate genes in 
black cottonwood (Populus trichocarpa). In the present 
study, we used the acetyl bromide method [63] to meas-
ure lignin in the association panel given that is faster, 
simpler and presents better recovery of lignin in differ-
ent herbaceous tissues than Klason- [64] and thioglycolic 
acid-based methods [65]. In our GWAS, we identified 
seven QTL regions, with one of them (CH11) coinciding 
with the one found in the GWAS for digestibility. This is 
in contrast with the results of Penning et  al., in maize, 
where they did not find overlapping QTL for lignin abun-
dance and saccharification [22]. This common QTL in 
CH11 contains a homolog of HCT. Although there are 
no reports published about functional studies of any 
OsHCT, in Medicago, HCT expression determines stem 
digestibility [47]. As well as candidates in monolignol 
synthetic pathways, some QTL contain putative can-
didate genes involved in lignin polymerization such as 
a cluster of seven peroxidase genes located next to the 
QTL peak on CH3 and a laccase gene in the QTL region 
CH11_18.8 ± 0.3. Homologues of these genes in Arabi-
dopsis and tobacco are involved in determining lignin 
content [66–68].

Conclusion
The use of crop residue biomass provides a way to avoid 
competition between biofuel and food production 
for feedstock. Since rice straw is an abundantly avail-
able and globally underutilized resource, it provides an 
attractive feedstock for bio-refining [69]. However, to 
take full advantage of this resource, we need to improve 
its processing potential and make it more easily digest-
ible with industrial enzymes to allow the production of 
cost-competitive sustainable biofuels by fermentation. 
To this end, we have assembled a diversity panel from 
rice germplasms in Vietnam, which is the fourth largest 
rice exporter in the world [70]. Rice is a cereal with a 
small-sized diploid genome (~ 430 Mb), well-developed 
molecular genetics tools, and has representative cell 
wall characteristics of grasses, making it an important 
crop from which to extrapolate knowledge on cell wall 
to other cereals [71]. This is important because our 
understanding of the biosynthetic gene machinery and 
molecular structure of plant cell walls remains incom-
plete and the molecular basis of biomass digestibility 
even more so.

The availability of accurate genomic information in rice 
opens the possibility for precise and robust GWAS for 
multigenic traits such as saccharification. We produced a 
high-density SNP matrix for 151 rice cultivars that were 
in parallel phenotyped for straw digestibility and lignin 
content. We were able to identify a number of QTL for 
these parameters and proposed a number of candidate 
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genes associated with some of these QTL. Besides these 
QTL, we could identify outstanding genotypes that can 
be included in breeding programs for biomass qual-
ity. The markers identified could be validated and used 
in a breeding program for the selection of high digest-
ible straw genotypes with a potential increase of up to 
48 kg ha−1 of sugar released (Additional file 4).

In conclusion, association mapping for two traits asso-
ciated with rice straw quality succeeded in identifying 
genetic variation in genomic regions that contain plau-
sible candidate genes affecting digestibility. This forward 
genetic approach is a powerful way to identify known and 
novel genes involved in these traits. Future work is nev-
ertheless required to validate these candidates and carry 
out the functional studies required to confirm their roles 
in cell wall biosynthesis. Such validation will lead to the 
robust application of associated molecular markers in 
breeding programs aiming to select plants with improved 
digestibility and avoid grain yield penalties.

Methods
Mapping population
The association panel comprises 151 rice genotypes 
from Vietnam, which originated from two Oryza sativa 
subspecies: indica and tropical japonica. These geno-
types were selected from a trial population derived from 
a breeding project at the Plant Biotechnology Divi-
sion, Field Crops Research Institute (FCRI), 84 different 
genotypes which are reserved in the Germplasm Bank 
of FCRI, 29 high-quality genotypes which are popularly 
cultivated in different areas in Vietnam, and 38 landrace 
cultivars. These collected genotypes are expected to be 
highly inbred lines with homozygous genomic back-
ground. (See Additional file 5 for the list of the genotypes 
used). From these, a subset of 93 genotypes was grown in 
2013 and the full panel was grown in 2014. Several field 
traits of this population from other trials such as plant 
height, flowering time, and grain yield are listed in Addi-
tional file 6.

The association panel was grown in the field, in Hai 
Duong province, the north of Vietnam (GPS coordinates 
are attached in Additional file  7). The first field trial, 
including 93 single plots, was sown in January and har-
vested in May 2013, and the second field trial, including 
151 single plots, was sown in June and harvested in Octo-
ber 2014. Straw samples for each genotype were collected 
from five plants in the plot (plot size = 2 × 5 m = 10 m2, 
plant density/plot = 40/m2) after harvest for grain, and 
these five plants were kept separately as five replicates 
for each genotype. All samples were taken from the main 
tiller. The straw collected was dried for 2 days in the open 
air in Vietnam. Straw samples were kept in separate paper 

bags and sent to the Centre for Novel Agricultural Prod-
uct (CNAP), University of York, UK, for characterization. 
The rice stems (minus nodes) were cut into small pieces, 
then ground to a fine powder and stored. These samples 
were used for different assays including saccharification, 
and total lignin content.

Phenotyping for cell wall traits
Saccharification assay
The saccharification for 93 genotypes in 2013 and 151 
genotypes in 2014 was analyzed using an automated plat-
form as described in Gomez et  al. [52]. Samples of five 
plants from the same genotypes were treated as five sepa-
rated replicates. In brief, ground straw samples were for-
matted in 96 well plates, in randomized positions, with 
four technical replicates of 4 mg for each sample using a 
robotic platform (Labman Automation, Stokesley, North 
Yorkshire, UK) [39]. The samples were analyzed using a 
liquid handling robot (Tecan LTD, UK), which performed 
a water pre-treatment at 94  °C for 20  min, followed by 
an enzymatic hydrolysis during 8 h at 50 °C. The enzyme 
used for saccharification was a 4:1 mixture of Celluclast 
and Novozyme 188 (Novozymes). The saccharification 
was estimated by measuring the reducing sugars released 
from the biomass material. This was done with a colori-
metric assay using 3-methy-2-benzothiazolinone hydra-
zone method (MBTH) [39, 52]. Three standards of 50, 
100 and 150 nmol glucose (three replicates each) and fil-
ter paper disks (four replicates)—as control—were used 
to account for any change in enzyme concentration or 
condition through time.

Total lignin content
Lignin content was quantified using acetyl bromide [72]. 
Three replicates from each straw sample were used for 
lignin determination. Four mg of ground samples was 
weighed into 2  ml tubes and 250  µl freshly prepared 
acetyl bromide solution (25% v/v acetyl bromide/75% 
glacial acetic acid) was added before incubating at 50 °C 
for 2  h, followed by a further 1  h with vortexing every 
15 min to solubilize the lignin. Samples were then cooled 
to room temperature before being transferred to 5  ml 
volumetric flasks. Subsequently, 1  ml of 2  M NaOH 
was added, followed by 175  µl freshly prepared 0.5  M 
hydroxylamine hydrochloride. After shaking, the sam-
ples were then made up to 5 ml with glacial acetic acid, 
and the 280 nm absorbance was read using a Shimadzu 
UV-1800 spectrophotometer. Lignin content (µg.mg-1 
cell wall) was determined using the following formula: 
(Absorbance ÷ (coefficient × path length)) × ((total vol-
ume × 100%) ÷ biomass weight)). The coefficient for grass 
(17.75) was used for rice [72].
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Data analysis
The analysis of the raw saccharification and lignin content 
data took into account sources of non-genetic variation 
relating to field and laboratory factors [33]. The genotype 
means used in GWAS are therefore adjusted rather than 
raw means. All statistical analysis were obtained from 
using R-package asreml (https ://www.vsni.co.uk/softw 
are/asrem l-r) in R studio (https ://www.rstud io.com/). To 
avoid the population structure misleading GWAS analy-
sis, we decided to remove the japonica subpopulation. 
The trait file of indica genotype used in GWAS is listed in 
Additional file 8.

Genotyping data
The genotypic data was produced by genotyping by 
sequencing (GBS) assays. 172 rice genotypes were 
sequenced on an Illumina platform at the Rice Labora-
tory, Cornell University, USA. The GBS assay involved 
library construction, sequencing, data analysis, and 
SNP detection from HapMap, following the methods 
described in [73]. The GBS analysis pipeline (Tassel Ver-
sion: 3.0.166, date: April 17, 2014) was applied to analyze 
the data after sequencing [74]. The report of the GBS is 
attached as Additional file 9.

Population stratification using GAPIT
To study stratification of the population, a phylogenetic 
tree was created from GAPIT (Fig. 2) [37, 38]. This was 
determined based on the kinship matrix, which accounts 
for the degree of genetic relatedness or coefficient of 
relationship between individual members of the popula-
tion. Kinship among genotypes was calculated using an 
R implementation (www.R-proje ct.org) available as part 
of GAPIT software libraries [38, 75]. Using output dis-
tances, clustering was performed in R using the internal 
package “hclust” with default parameters.

Mixed linear model (MLM) using tassel
Based on the genotypic data stored in the HapMap and 
the phenotypic data collected from the analysis of sac-
charification from 2013 and 2014 harvest (sugar released) 
and lignin content from 2014 harvest (% of total lignin), 
GWAS was performed by merging genotype and each 
phenotype to examine the association between the mark-
ers and the studied trait to identify the quantitative trait 
loci (QTL).

GWAS was performed using the compressed mixed 
linear model approach, which includes both fixed and 
random effects [37, 76] carried out by TASSEL [41] that 
was also implemented in the Efficient Mixed-Model 
Association (EMMA) [77] for performing association 

mapping while simultaneously correcting for relatedness 
and population structure.

The data were merged and manipulated with Tassel 3.0 
[41]. The Q Matrix file was created, using PSIKO (https 
://www.uea.ac.uk/compu ting/pisko ) on a Linux platform. 
The proportion of the phenotypic variation explained 
(PVE) by each marker was estimated by the relevant R2 
in TASSEL [41, 78].

The significant level for association with a SNP in the 
Fig. 7 was based on FDR value. Please find the formula 
for calculating FDR as follows. FDR = pvalue × (n/rank), 
in which n = total number of SNP, and rank = ranking 
of SNP based on p value. FDR < 0.05 = significant (−log 
10 of the last significant value = 5% FDR cutoff ).
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