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Abstract 

Background:  The diauxic growth of Saccharomyces cerevisiae on glucose and xylose during cellulose-to-ethanol 
processes extends the duration of the fermentation and reduces productivity. Despite the remarkable advances in 
strain engineering, the co-consumption of glucose and xylose is still limited due to catabolite repression. This work 
addresses this challenge by developing a closed-loop controller that is capable of maintaining the glucose con-
centration at a steady set-point during fed-batch fermentation. The suggested controller uses a data-driven model 
to measure the concentration of glucose from ‘real-time’ spectroscopic data. The concentration of glucose is then 
automatically controlled using a control scheme that consists of a proportional, integral, differential (PID) algorithm 
and a supervisory layer that manipulates the feed-rates to the reactor accounting for the changing dynamics of 
fermentation.

Results:  The PID parameters and the supervisory layer were progressively improved throughout four fed-batch 
lignocellulosic-to-ethanol fermentations to attain a robust controller able of maintaining the glucose concentration 
at the pre-defined set-points. The results showed an increased co-consumption of glucose and xylose that resulted 
in volumetric productivities that are 20–33% higher than the reference batch processes. It was also observed that 
fermentations operated at a glucose concentration of 10 g/L were faster than those operated at 4 g/L, indicating that 
there is an optimal glucose concentration that maximises the overall productivity.

Conclusions:  Promoting the simultaneous consumption of glucose and xylose in S. cerevisiae is critical to increase 
the productivity of lignocellulosic ethanol processes, but also challenging due to the strong catabolite repression of 
glucose on the uptake of xylose. Operating the fermentation at low concentrations of glucose allows reducing the 
effects of the catabolite repression to promote the co-consumption of the two carbon sources. However, S. cerevisiae 
is very sensitive to changes in the glucose concentration and deviations from a set-point result in notable productiv-
ity losses. The controller structure developed and implemented in this work illustrates how combining data-driven 
measurements of the glucose concentration and a robust yet effective PID-based supervisory control allowed tight 
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Background
Cellulosic ethanol is commonly seen as a potential player 
to alleviate the dependence on fossil fuels. However, the 
low productivity of cellulose-to-ethanol fermentation 
limits its consolidation at an industrial scale. This low 
productivity is, among other reasons, associated with the 
diauxic growth on glucose and xylose [1, 2]. Even though 
new yeast strains able to utilise glucose and xylose simul-
taneously are currently being developed using genetic 
engineering, catabolite repression is still an issue, espe-
cially at high glucose concentrations [1, 2]. The simulta-
neous consumption of the two sugars can be stimulated 
from a process operation perspective, by keeping the 
concentration of glucose inside the fermenter below an 
inhibitory threshold, i.e. by running fed-batch fermen-
tations. However, in cellulose-to-ethanol processes, 
advanced fed-batch control is challenging due to the sub-
strate variability and to the weak correlation between the 
commonly monitored variables and the metabolic activ-
ity of the cell culture [3].

Fed-batch operations, where the substrate is fed contin-
uously throughout the fermentation, is the most common 
operation mode in industrial biotechnology [4–9]. This is 
because fed-batch processes allow for a better utilisation 
of the carbon source (e.g., avoiding overflow metabolism 
[8, 9]) and limit the inhibition by substrate [8], resulting 
in increased productivities and higher titers of product 
[4] or biomass [5, 10]. By adjusting the substrate feed-
rate during the fermentation, it is possible to change the 
concentration of substrates, products, or by-products 
inside the tank and to alter the metabolic activity of the 
fermentation hosts [7, 8]. Traditionally, the substrate feed 
is manually manipulated during the fermentation [5], or 
fixed to a constant flow rate. However, this strategy often 
leads to sub-optimal operations. Given the central role 
of substrate feed in the outcome of the fermentation, 

developing flow-rate control strategies is increasingly 
becoming an object of interest in industrial biotechnol-
ogy [7] to respond to the market needs to increase pro-
duction capacity [9]. The goal is then to find optimal 
feeding profiles that lead to specific control objectives 
(e.g., maximising the process productivity, or the biomass 
or product concentrations) [7, 8]. Open-loop control-
lers are often used to pre-define feeding profiles based 
on the known dynamics of the process. Kinetic models, 
coupled to mathematical programming routines, can be 
used to rigorously pre-define optimal feeding profiles 
accounting for the growth demands of the cell culture at 
the different stages of the fermentation [7, 11, 12]. While 
these strategies can result in improved operations, open-
loop schemes are not able to reject process disturbances 
or to account for process variability because they lack 
‘real-time’ process information, which limits their range 
of applicability. On the contrary, closed-loop controllers 
use ‘real-time’ process information to generate responses 
that meet the specific control objectives. The possibil-
ity to account for process disturbances and variability 
makes closed-loop schemes more robust than open-loop 
approaches. However, implementing closed-loop control-
lers in fermentation processes is challenging due to the 
non-linear nature of biological systems and the lack of 
‘real-time’ process information (often limited to indirect 
measurements of cell growth such as pH, temperature or 
dissolved oxygen [10, 12]). Although feed-rate controllers 
have successfully been implemented using the commonly 
monitored variables [10–13], advanced measurements 
of substrate or products potentially result in tighter con-
trol of systems whose metabolism does not correlate well 
with the commonly monitored variables.

In the present work, on-line spectroscopy was used 
to design and implement a closed-loop feed-back con-
troller of the feed-rate in order to maintain the glucose 

control of the concentration of glucose to adjust it to the metabolic requirements of the cell culture that can unlock 
tangible gains in productivities.
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Fig. 1  Structure of a closed-loop feed-back algorithm
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Fig. 2  Experimental results of fed-batch fermentations 1–4. A.1–D-1 show the fermentation profiles of experiments 1–4. Note that initially, the 
750 mL of biomass hydrolysate were mixed with 250 mL of inoculum, diluting the initial concentration of glucose and xylose. The dashed red line 
(Max xylose) shows the maximum xylose concentration accumulated in the reactor if there was no co-consumption of glucose and xylose. A.2–D-2 
(top) show the PV (process variable) predicted by the PLS (partial least squares) model, the set-point (SP) for the fermentation, the upper and 
lower bounds, and the off-line samples analysed with high-performance liquid chromatography (HPLC). In fermentation 2 (B.2), the three different 
configurations of the PID that were tested are shown with blue, yellow, and red backgrounds. Note that before the first controller strategy was 
implemented in fermentation 2 (blue-shaded area) the same controller configuration as in fermentation 1 was used. A.2–D-2 (bottom) show the 
manipulated variable (MV), a signal scaled from 0–10 sent to the controlled pump, and the mass of wheat straw hydrolysate fed into the reactor
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concentration at a given set-point (SP), allowing to co-
utilise glucose and xylose (Fig. 1). Attenuated total reflec-
tance mid-infrared spectroscopy (ATR-MIR) was used to 
collect the spectra of the fermentation media continu-
ously, and linear data-driven partial least squares (PLS) 
regression models were used to calculate the glucose 
concentration in ‘real-time’ from the collected spectra. 
Compared to other monitoring approaches to measure 
the concentration of glucose (such as at-line high-perfor-
mance liquid chromatography or biosensors), ATR-MIR 
spectroscopy allows to automatically measure the con-
centration of glucose with high frequency directly from 
the fermentation media, thereby eliminating the need 
to prepare the sample [3]. Then, the predicted glucose 
concentration was used as the process variable (PV) for 
a proportional, integral, and differential (PID) algorithm 
that actuated to adjust the feed-rate of the reactor. A PID 
is one of the most common feed-back controllers used in 
industry. It attempts to control the error between a pre-
defined SP and the actual value of the PV by generating 
a control signal [14] using the control law shown in Eq. 1.

where u(t) is the response signal, e(t) is the error 
( SP − PV (t) ), Kp , Ki, and Kd are the responses of the 
proportional, integral and differential terms of the con-
troller and τ is the integration time ranging from 0 to t . 
A more detailed description of a PID controller can be 
found in specialised literature such as [14]. A supervi-
sory layer based on PV manipulation concepts suggested 
in [15] was implemented to account for the non-linear 
behaviour of the fermentation kinetics and to avoid the 
undesirable scenarios where glucose accumulates above 
or is depleted below certain thresholds. The developed 
control scheme is a simple and effective approach to 
attain robust cellulose-to-ethanol fed-batch fermenta-
tion allowing tight control of the metabolic activity of 
the cell culture and stable operations within and between 
batches, even in the presence of substrate variability.

Results
Fermentation profiles and co‑consumption of glucose 
and xylose
The performance of four fed-batch fermentations 
(Fig.  2A.1–D.1) with feed-rate control was compared 
with a standard batch fermentation (Fig.  3), containing 
the same inoculum size (Table 1). Compared to the batch 
process, the fed-batch fermentations ran faster and had 
higher ethanol productivity (between 20 and 33% higher, 
Table 1), while exhibiting similar total ethanol yields on 
glucose and xylose (ethanol mass over the total glucose 
and xylose mass) as the batch process (~ 35%, Figs. 2A.1–
D.1, 3). In order to account for the fact that different vol-
umes were fermented throughout experiments 1–5, the 
ethanol production rate was calculated for the batch and 
fed-batch experiments, showing that in the fed-batch 
processes, ethanol was produced at a rate between 85 
and 126% higher than in the batch process (Table 1). The 
co-consumption of glucose and xylose during the feed-
ing phase was assessed by calculating the mass balance 

(1)u(t) = Kp · e(t)+ Ki

∫ t

0

e(τ )dτ + Kd ·
d

dt
(e(t)),

Table 1  Overview of fermentations 1–5

Productivities and production rates refer to ethanol formation. The fermented volume was calculated from the mass of media added in each fermentation, 
considering a density of 1.05 g/L. The ethanol productivity and production rate were calculated when the concentration of xylose dropped below 0.5 g/L

Fermentation Mode Initial 
volume (L)

Volume 
fermented (L)

Inoculum (g) Time (h) Ethanol 
productivity 
(g/L/h)

Ethanol 
production rate 
(g/h)

1 Fed-batch 1.00 1.81 1.75 19 1.13 1.94

2 Fed-batch 1.00 1.86 1.75 20 1.08 1.99

3 Fed-batch 1.00 1.86 1.75 22 1.02 1.90

4 Fed-batch 1.00 1.95 1.75 19 1.13 2.21

5 Batch 1.24 1.24 1.75 25 0.85 1.05
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Fig. 3  Profile of a batch fermentation (fermentation 5). The 
consumption of xylose only started when glucose was almost 
consumed entirely
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of xylose in the fed-batch experiments (Fig. 2A.1–D.1). In 
the scenario where yeast does not consume the two sug-
ars simultaneously, xylose would accumulate in the reac-
tor, reaching a maximum concentration of 19 g/L during 
the glucose-consumption phase. Note that the xylose 
concentration in the feed was higher than the initial con-
centration in the reactor because 750 mL of wheat straw 
hydrolysate were diluted with 250 mL of inoculum. How-
ever, during the fed-batch fermentations, xylose did not 
exceed 15 g/L (Fig. 2A.1–D.1), which indicates that oper-
ating the fermenter at a low glucose concentration pro-
motes the co-consumption of glucose and xylose. Besides 
promoting the substrate co-consumption, operating at 
low glucose concentrations also reduces the concentra-
tion of the inhibitors inside the reactor, as glucose is only 
consumed after the inhibitors have been detoxified below 
an inhibitory threshold. This indicates that the increased 
productivity reached in the fed-batch fermentations, is 
not only the result of promoting the co-consumption of 
glucose and xylose, but also of controlling the inhibitory 
pressure inside the reactor (as some inhibitors such as 
furfural or 5-hydroxymethylfurfural are detoxified inside 
the reactor into less inhibitory compounds such as fur-
furyl alcohol [16]). Moreover, the pressure of acetic acid 
(another common inhibitor present in lignocellulosic 
hydrolysates) is controlled by maintaining the fermenta-
tion pH above the pKa of acetic acid, thus reducing the 
concentration of its protonated form and preventing it 
from diffusing into the cell [17]. The capability of S. cer-
evisiae CEN.PK.XXX to co-consume glucose and xylose 
during the fed-batch phase was studied by controlling 
the glucose concentration at 10  g/L (in fermentations 1 
and 4) and 4 g/L (in fermentations 2–3). Note that while 
the set-point in fermentation 4 was 4 g/L of glucose, the 
bias in the PLS predictions resulted in an actual glucose 
concentration of 9–10 g/L (Fig. 2D.1). Whereas operating 
at a low glucose concentration clearly promoted the co-
consumption of glucose and xylose, decreasing the set-
point from 10 to 4 g/L did not improve the performance 
of the fed-batch fermentation (Table 1). This can be due 
to a reduction in the specific growth rate on glucose after 
lowering the concentration of glucose. When glucose and 
xylose are co-consumed, the total growth rate of the cell 
culture is the sum of the specific growth rate on each sub-
strate. Reducing the concentration of glucose from 10 to 
4 g/L increases the specific growth rate on xylose (due to 
lower catabolite repression), but also reduces the specific 
growth rate on glucose. These results indicate that there 
is an optimum concentration of glucose that maximises 
the overall cell growth. The results suggest that the ben-
efits gained by reducing the effects of catabolite repres-
sion after lowering the glucose concentration from 10 to 
4 g/L did not compensate for the subsequent decrease in 

the growth rate on glucose (Table  1). A risk associated 
with fed-batch operations in lignocellulosic-to-ethanol 
fermentation processes is the potential contamination by 
lactic acid bacteria (LAB). To detect potential contamina-
tions by LAB, the concentration of lactic acid was meas-
ured every hour using HPLC. The HPLC analysis did not 
show lactic acid in any fermentations, indicating that 
LAB contamination did not occur in these particular fer-
mentations runs carried out.

Predictions of the glucose concentration using the PLS 
model
The PLS predictions of the glucose concentration in fer-
mentations 1–4, were validated with off-line samples 
measured by HPLC (shown in Fig.  2A.2–D.2). The vali-
dation showed that the PLS performance drifted through 
fermentations 1–4. While in fermentations 1–3 it was 
able to accurately predict glucose concentrations below 
25, 20, and 15  g/L, respectively, the PLS did not pre-
dict the glucose concentration accurately in fermenta-
tion 4 (Fig. 2 A.2-D.2). It was not possible to determine 
what caused the drift in the prediction quality of the PLS 
model throughout fermentations 1 to 4, however, the 
authors hypothesise that it might be caused by the inef-
ficient cleansing of the flow-cell between fermentations, 
due to the impossibility to disassemble the apparatus. In 
fermentations 1–3, while the PLS model was not able to 
predict high glucose concentrations, it exhibited excellent 
performance predicting glucose below 15 g/L, so that the 
control objective in this study was met (i.e. to keep the 
glucose concentration at 10 g/L in fermentation 1 and at 
4 g/L in fermentations 2–3). The error in predicting high 
glucose concentrations can be caused by the replacement 
of the ATR crystal and light source between the calibra-
tion and the application of the PLS models. Ideally, such 
a procedure would require a re-calibration of the PLS 
model; however, due to the limited availability of media 
and the excellent performance of the PLS models in the 
concentration range of interest during fermentation 1, 
this option was discarded. Calibrating PLS models to 
monitor fermentation processes is challenging due to 
the wide variety of compounds with highly overlapping 
spectra and due to the correlated dynamics of the differ-
ent compounds [18–20]. In order to calibrate PLS models 
able to estimate glucose based on true correlations, larger 
calibration sets accounting for the variability of the dif-
ferent compounds and the fermentation matrix would be 
required [19–21]. The results showed that the calibration 
approach used in this work provides sufficiently robust 
PLS even after major changes were done to the instru-
ment (Fig. 2A.2–D.2). This consistency in the PLS mod-
els was the result of decoupling the concentrations of 
glucose, xylose, and ethanol in the calibration set, which 
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limited the interference of the fermentation dynamics 
with the PLS predictions. A limitation of the calibration 
set is the unaccounted effect of the change in the fer-
mentation matrix, which can be significant and affect the 
PLS predictions. Therefore, even though the PLS models 
performed satisfactorily to meet the control objective, an 
extended calibration set, and a better description of the 
changes in the fermentation matrix would improve the 
robustness of the models.

Performance of the controller
The controller algorithm was tuned throughout fermen-
tations 1–4 to achieve the necessary control response 
for maintaining the glucose concentration at the desired 
set-point (Table  3). To prevent the undesirable situa-
tions where glucose accumulates in the tank (limiting 
the co-consumption of glucose and xylose) or is con-
sumed below a threshold (reducing the growth rate of the 
cell culture), an operational window around the SP was 
defined in the regulatory layer. When the glucose con-
centration was outside the upper and lower bounds (UB 
and LB, respectively), the PV was manipulated within 
the regulatory layer to increase the response of the con-
troller (Table  3, Fig.  4, and Additional file  1). The non-
linearity associated with the kinetics of the process were 
accounted for in the regulatory layer by manipulating the 
PID parameters (Table 3, Fig. 4, and Additional file 1). All 
the experiments were automatically operated by the dif-
ferent controllers and did not require any intervention. 
All fermentations began with a batch phase where yeast 
consumed glucose. When the glucose concentration 
dropped below the pre-defined SP, the fed-batch started, 
and the controller fed fresh media into the reactor until 
all the media was added. Then, the remaining xylose was 
consumed in a final batch phase (Fig.  2A.1–D.1). An 
overview of the performance of the different controllers 
is shown in Fig. 2A.2–D.2.

Fermentation 1: PID controller
The operational window for the first fermentation was 
defined between 12 and 8  g/L of glucose, respectively 
(Table  3). Since the dynamic response of the system 
was unknown before starting fermentation 1, an initial 
estimate for the PID tuning parameters was made based 
on the dynamics of a batch fermentation (fermentation 
5, Table  3) using the lambda tuning method [22] and 
fundamental understanding of the process. Figure 2A.2 
shows that the controller responded immediately to 
changes in the PV and actuated as an on/off control-
ler alternating short feeding periods with longer non-
feeding periods. The fed-batch phase lasted 3  h. The 
difference in length between feeding and non-feeding 
intervals revealed the different dynamics of the process. 

Although this configuration allowed for some control 
of the glucose concentration, the PV oscillated around 
the SP with a wide amplitude, and the controller let 
the PV exceed the pre-defined boundaries (Fig.  2A.2), 
creating an undesirable fluctuating environment that 
pushed the cell culture to change its metabolic activity 
continuously.

Fermentation 2: three PI controllers
In the second fermentation, the SP, UB, and LB were 
decreased to 4, 10, and 2  g/L, respectively, to study 
if operating at a lower glucose concentration would 
improve the co-consumption of glucose and xylose. 
Three different configurations of the controller algorithm 
were implemented to correct the deficiencies found in 
controller 1 (controllers 2.1, 2.2, and 2.3 in Table 3). The 
first controller implemented in the second fermentation 
(controller 2.1) had the following modifications:

•	 $$Kp$$ was decreased to 1/3 of the $$Kp$$ used in 
fermentation 1 to reduce the magnitude of the con-
troller response.

•	 $$Ki$$ was manipulated within the regulatory layer 
to account for the different dynamics between feed-
ing and non-feeding periods. $$Ki$$ was set to the 
average time of the feeding periods if PV was below 
SP, and to the average time of non-feeding periods if 
PV was above SP.

•	 $$Kd$$ was set to zero, turning the PID controller 
into a PI controller.

In contrast to the controller used in fermentation 1, 
controller 2.1 responded smoothly, and fed media con-
tinuously during the entire fed-batch phase, bringing the 
PV close to the SP with a small off-set error of approxi-
mately 1.5  g/L (Fig.  2B.2, blue-shaded area). However, 
the response was slow, and the controller let the PV 
drop below the LB on several occasions. An increase of 
Kp from 0.31 to 0.62 resulted in a reduction of the off-
set error to 1 g/L and in a faster response when the PV 
dropped below the lower boundary (controller 2.2, 
Table 3). This situation is illustrated in Fig. 2B.2 (yellow 
shaded area). In order to eliminate the off-set error with-
out compromising the stability of the response, the third 
controller (2.3) also manipulated Kp within the regula-
tory layer (Table 3, Additional file 1). However, this strat-
egy overshot the controller causing the PV to fluctuate 
around the SP (Fig. 2B.2, red-shaded area).

Fermentation 3: PI controller
In fermentation 3, the SP and operational window were 
defined as in fermentation 2. Increasing the Kp from 0.62 
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to 0.72 (in controller 3, Table  3) resulted in a smooth 
response of the controller that successfully reduced the 
off-set error to 0.5  g/L during the first 3  h of the fed-
batch phase. Also, when the PV fell below the lower 
boundary, the controller responded strongly to bring the 
glucose concentration back to the operational window 
(Fig. 2C.2). The dramatic drop in the glucose concentra-
tion, below the LB, at 8.5, 9, and 10.25 h of fermentation 
3 caused a strong response of the controller resulting in 
the accumulation of glucose above the SP. These sudden 
changes in the PV, probably caused by noise in the PLS 
predictions, can compromise the stability of the control-
ler, especially when the PV drops below the SP. Despite 
the noisy measurements, the controller was able to main-
tain the glucose concentration inside the operational 
window.

Fermentation 4: PI controller with rate regulator
Fermentation 4 was operated with the same SP, opera-
tional window, and controller configuration as fermenta-
tion 3 (Table  3). However, the rate of change in the PV 
between two successive iterations was limited to 2 g/L to 
increase the robustness of the controller towards noisy 
measurements (i.e. it was assumed that glucose could not 
change more than 2  g/L per minute, Fig.  4b). Although 
the PLS model did not predict the real glucose concen-
tration accurately, the results of fermentation 4 still pro-
vide information about the performance of the controller. 
The rate regulator successfully improved the robustness 
of controller 4, which was able to keep the PV close to 
the SP and to re-conduct the PV back to the operational 
window without overshooting (Fig.  2C.2 and D.2). Even 
though the rate regulator was an efficient way to increase 
the robustness of the controller against noise in the 
measurements, other more advanced signal filters such 
as the Savitzky–Golay smoothing algorithm or exten-
sions of the Kalman filter to non-linear systems would be 
a more suited approach.

Discussion
The work presented in this manuscript shows how a new 
generation of “information rich” process measurements 
that are not the traditional temperature, flow and pres-
sure measurements can add tangible value to fermen-
tation processes when combined with targeted use of 
data-driven process monitoring methods and established 
closed-loop process control methods. To this end, this 
work differs from the traditional sensor/measurement 
development and process monitoring developments, 
which shows the potential benefits of a given monitoring 
strategy, but in general, fail to show tangible benefits by 
using the data monitored on-line to carryout closed-loop 

control [23–25]. Some recent studies have used glucose 
measurements taken using Raman spectroscopy [26] or 
total sugars content measured with the refractive index 
[27] together with P-controllers to adjust the feed flow-
rate in ethanol fermentations. Although this resulted in 
faster fermentation processes, P-controllers often show 
off-set errors that prevent the present value from reach-
ing the set-point and thus from the optimal conditions. 
Moreover, processes that only use the refractive index to 
monitor total sugar concentration are not able to meas-
ure the concentration of glucose alone, but only the total 
concentration of sugars instead. This can become a limi-
tation, especially in processes that require operating at 
low glucose concentrations or in strains with a high sen-
sitivity to changes around the set-point. The need for a 
fine control of the glucose concentration is illustrated 
in Table 1, where the drop in the glucose set-point from 
10 g/L to 4 g/L caused a significant reduction in the pro-
cess productivity. The PI controller implemented in the 
present work allowed for reducing the off-set error to 
match the glucose set-point. This allows tightening the 
fermentation operation to the metabolic requirements of 
the yeast strain to increase the productivity. In the pre-
sent implementation, a single-input single-output (SISO) 
approach was used to effectively control the feed-rate 
of substrate during anaerobic fed-batch fermentations. 
However, if the PLS models were able to accurately moni-
tor other state variables such as the xylose or ethanol 
concentrations, this opens up for the implementation of 
multiple-input single-output (MISO) or multiple-input 
multiple-output (MIMO) approaches, where several vari-
ables are considered to coordinate the response of the 
controller. At the same time, even in a SISO configuration 
these state variables can be used to better manipulate the 
feed-rate taking into account effects such as non-lineari-
ties caused to the glucose consumption. In lignocellulosic 
ethanol processes, it is common that the initial concen-
tration of sugars differs between and within feedstocks, 
depending on the pretreatment. Ideally, higher sugar 
concentrations in the feed are desired to reduce the costs 
associated to the downstream operations. Higher sub-
strate concentrations in the feed would result in longer 
fed-batch phases, which would extend the co-consump-
tion of glucose and xylose.

This work also shows the value proposition of this tar-
geted process automation, that is despite the relatively 
time-consuming control set-up and the need for a dedi-
cated sensor and automated feed dosing capabilities, a 
20–33% increase in productivity recorded justifies these 
efforts. To this end, this example stands as a proponent 
to value proposition for megatrends such as digitalisation 
and big data in the biomanufacturing industry.
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Conclusions
In the present work, a novel data-driven closed-loop 
feed-back controller of the feeding rate was implemented 
in order to promote the co-consumption of glucose and 
xylose during fed-batch cellulose-to-ethanol fermenta-
tions. The controller was based on on-line measurements 
of the glucose concentration inside the fermenter. This 
allowed for the automatic adjustment of the feed-rate to 
tightly meet the metabolic requirements of the cell cul-
ture, which promoted consuming glucose and xylose 
simultaneously, limiting the effect of the inhibitors, 
and increasing the fermentation productivity consider-
ably. The closed-loop feed-back controller implemented 
in this work only needed four fed-batch fermentations 
to tune the PID parameters making it a practical and 
straightforward approach for ‘real-time’ based control of 
fed-batch fermentations. Since the controller responds 
to on-line measurements of the process variable, it can 
detect and respond in ‘real-time’ to disturbances in the 
process variable, and it is more robust to changes in the 
substrate composition than other control schemes such 
as open-loop approaches. The flexibility and robustness 
of the current experimental set-up allow for testing other 
advanced closed-loop controllers such as model-pre-
dictive approaches and pave the way towards the imple-
mentation of digital representations of the fermentation 
processes updated with ‘real-time’ data (digital twins).

Materials and methods
Cell culture propagation
One colony of the xylose-consuming Saccharomyces cer-
evisiae CEN.PK.XXX [28] strain was transferred from a 
YPX-agar plate (yeast extract 10 g/L (Microbiology Fer-
mtech, Merck, New Jersey, USA), peptone from casein, 
20  g/L (Microbiology Fermtech, Merck, New Jersey, 
USA) and xylose 20 g/L (Sigma Aldrich, Missouri, USA)), 
to a 250 mL shake flask containing 100 mL of liquid YPX 
media, and incubated at 30 ºC and 180 rpm. After 36 h 
of incubation, 2 mL of cell culture was transferred to two 
500 mL shake flasks (1 mL each), containing 250 mL of 
YPX media and incubated at 30 ºC and 180 rpm for 36 h 
prior to inoculation.

Fermentation experiments
Four fed-batch experiments (fermentations 1–4) and one 
batch (fermentation 5) experiment were conducted in a 
2.5 L BIOSTAT® A bioreactor (Sartorius, Göttingen, Ger-
many), equipped with two 6-bladed Rushton impellers, 
and pH, temperature and stirring speed control. The fer-
mentation medium consisted of wheat straw hydrolysate, 
supplemented with 5  g/L of yeast extract and 10  g/L of 

peptone. The preparation and the composition of the 
wheat straw hydrolysate are described in the Additional 
file 1 and in Table 2, respectively. The fed-batch fermen-
tations had an initial volume of 1 L to ensure the media 
covered the lower impeller. The feed-rate was adjusted 
automatically with the control algorithm actuating on a 
Watson-Marlow 114D peristaltic pump head (Watson 
Marlow, Falmouth, UK). Different control schemes were 
tested in fermentations 1–4 to understand the dynam-
ics of the system and to tune the PID controller (Table 3) 
appropriately. The pH was kept at 6 using 5 M H2SO4 and 
2 M NaOH, while the temperature and stirring rate were 
controlled at 30 ºC and 450 rpm, respectively. 250 mL of 
grown cell culture grown in YPX media (see Sect.  5.1) 
were inoculated to 750  mL of wheat straw hydrolysate 
media, resulting in an initial dry weight of ~ 2.5  g/L 
(measured as described in [29]). The fermentation was 
stopped when the xylose concentration dropped below 
0.5 g/L. The amount of media supplied to the fermenter 
oscillated between 1.8 and 2.2 kg, depending on the fer-
mentation. The batch fermentation had a constant vol-
ume of 1.4 L and the same inoculum size. On an hourly 
basis, 1.5  mL of fermentation media were withdrawn 
from the fermenter, filtrated through a 0.20  µm cellu-
lose acetate filter (Labsolute, Renningen, Germany) and 
stored at – 20  °C until analysis with high-performance 
liquid chromatography (HPLC).

Analysis with high‑performance liquid chromatography 
(HPLC)
An UltiMate3000 HPLC (Thermo Scientific, Massachu-
setts, USA) loaded with an Aminex HPC-87 H column 
(BIORAD, California, USA) was used to measure the 
concentration of glucose, xylose, ethanol, acetic acid, and 
furfural off-line. The samples were derivatised by diluting 
950 µL of the sample with 50 µL of 5 M H2SO4 and were 
run for 80 min at 50 °C with 5 mM H2SO4 as the mobile 
phase at a flow rate of 0.6 mL/min. All compounds were 
detected using the refractive index (RI) detector (ERC 
RefractoMax 520, Prague, Czech Republic).

Table 2  Composition of the wheat straw hydrolysate

Compound Concentration 
(g/L)

Glucose 39

Xylose 22

Furfural 0.62

5-HMF 0

Acetic acid 3.05
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FERMENTER ATR-MIRPUMP COMPUTER 2 COMPUTER 3 SCALECONTROLLED
PUMP

CONTROL
TOWER

COMPUTER 4COMPUTER 1

1 2 3 4 5

1

2

3

4

5

Computer 3 is connected to Computer 2 using a Local Area Network (LAN) cable.

Computer 1 is connected to the control tower using a Local Area Network (LAN) cable. 
Computer 1 uses Sartorius BIOSTAT A® software to receive and store measurements of pH and temperature.
Computer 1 uses Sartorius BIOSTAT A® to control the pH and temperature using PID controllers.

Computer 2 is connected to the ATR-MIR spectrophotometer using a Universal Series Bus (USB 3.0) cable.

Computer 2 uses the LabView2016® Runtime Engine to operate the ATR-MIR spectrophotometer. 

Computer 2 uses the LabView2016® Runtime Engine to collect a spectrum every minute. 
Computer 2 stores each collected spectrum as a sp.txt local shared directory Computer2:\K.

Computer 3 uses Python 3.7 in an iterative loop to perform the following actions every minute: 
- to access the shared directory in Computer 2, Computer2:\K.
- to predict the process variable (PV) of glucose from the collected spectra using PLS regressions.
- to use the predicted PV and a PID controller to calculate the value of the manipulated variable (MV).
- to store the calculated MV as a MV.txt Computer3:\F .

Computer 3 uses LabView 2013® in an iterative loop to perform the following actions every 10 seconds:
- to read the MV.txt.

 - to send the signal to the controlled pump. 

Computer2:\K

COMPUTER 2

LabView

sp.txt

COMPUTER 3

Python 3.7

MV.txt

LabView

Contoller
algorithm

Read sp.txt

MV.txt

1 minute 1 minute 10 seconds

From ATR-MIR To controlled 
pump

Write MV.txt

Computer 3 is connected to Computer 2 using a Local Area Network (LAN) cable.

Computer 3 is connected to the controlled pump using a NI-6008 Multifunction I/O device
and digital I/O). The signal is sent from Computer 3 using a USB 3.0 cable, and it is received by the pump using a 
D-subminiature port (DE-9).

The controlled pump actuates according to the MV sent by Computer 3.

The Scale is connected to Computer 4 using a Universal Series Bus (USB 3.0) cable.

The Scale uses Matlab 2019® to log the weight of the feeding bottle every 5 seconds.

Fermenter
Control tower

ATR-MIR 

Scale

Controlled pump

Computer 2

Computer 4
Computer 3

Computer 1

Feed bottle

Tubing

Signal transmission

Fig. 4  Experimental implementation of the controller. Note that four computers were required due to incompatibilities between the different 
softwares used in this process
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Spectroscopic analysis and calibration of the PLS 
regression model
The spectrum of the media was monitored on-line using 
an ATR-MIR spectrophotometer (NLIR APS, Farum, 
Denmark) which was provided by CellView IVS (Hill-
erød, Denmark) and equipped with a flow-cell connected 
to the fermenter using a closed recirculation loop. The 
residence time inside the closed recirculation loop was 
between 20–25  s with a flow-rate of 90  mL/min. Back-
ground and reference measurements were taken using air 
and having the laser turned off and on, respectively. The 
calibration samples were measured using an exposure 
time of 120  ms and 100 ATR spectra/min. The on-line 
measurements were performed using an exposure time of 
85 ms and 80 averages. The different instrument settings 
used to calibrate the models and during the experiments 
were due to the replacement of the lamp and ATR crystal. 
The spectral range of the instrument was between 428 
and 1833  cm−1 with a resolution of 1  cm−1. The mod-
els were built in Python 3.7 using the MBPLS [30]. The 
calibration set consisted of 21 semi-synthetic samples 
thoroughly designed following a design of experiments 
approach to minimise any correlation between the con-
centrations of glucose, xylose, and ethanol, which were 
considered the major contributors to the covariance of 
the spectral matrix [18, 19]. The pairwise Pearson cor-
relation coefficient of glucose, xylose, and ethanol of 
100,000 randomly generated Latin hypercubes [31] were 
calculated, and the design with a lower averaged corre-
lation was selected. Real fermentation samples were not 
included within the calibration set to ensure that process 
dynamics did not interfere with the PLS predictions. A 
‘static’ fermentation matrix (fermentation media without 
glucose, xylose, and ethanol taken at the end of the fer-
mentation) was obtained by first fermenting 1 L of wheat 
straw hydrolysate (as described in “Materials and meth-
ods”, “Fermentation experiments”) and then stripping out 
the ethanol using sterile air for 24 h, and was used to cre-
ate the semi-synthetic calibration set. The experimental 
space used to calibrate the PLS models was 0–40 g/L for 
glucose, 0–25 g/L for xylose and 0–22 g/L for ethanol. A 
PLS1 model with 4 latent variables was selected by mini-
mising the root-mean square error during a leave-one-
out cross validation routine (the RMSECV was equal to 
1.45 g/L).

The experimental set‑up, the flow of data 
and the controller algorithm
The physical implementation of the controller, includ-
ing the required hardware, the communication schemes 
between the different components, and the flow of data 
throughout the system, is explained in detail in Fig. 4.

The ATR-MIR spectrophotometer, Computers 2 and 
3, and the controlled pump comprise the core compo-
nents for feed-rate control, while Computers 1 and 4 are 
used to operate the fermenter and to record the weight 
of media fed into the reactor, respectively (Fig. 4). Every 
minute, the ATR-MIR spectrophotometer [operated 
from Computer 2 using LabView2016® Runtime Engine 
(National Instruments, Texas, USA)] stores a new spec-
trum as an ‘sp.txt’ file in a local folder shared with Com-
puter 3. Then, the controller algorithm, written in Python 
3.7 and implemented in Spyder 4.0.0 (https​://www.spyde​
r-ide.org/), runs iteratively every minute in Computer 
3 to read the spectral data stored in Computer 2 and to 
generate a control output. The controller algorithm is 
shown in Fig. 5.

The system is initialised by importing the calibrated 
PLS models, and by defining the set-point, the upper and 
lower boundaries and the control parameters. Then, the 
control loop starts and sequentially imports the spectra 
from the shared folder in Computer 2. The computer 3 
then calculates the PV (i.e. the glucose concentration) 
using the calibrated PLS model and inputs this informa-
tion to the supervisory control layer. The supervisory 
control layer then conditions the PV according to the reg-
ulatory layer and passes it to the PID controller (using the 
python library simple-PID) for the generation of the MV 
(output) in the form of an ‘MV.txt’ file. These actions hap-
pen in “real time” during batch operations. The supervi-
sory layer is coded using if-logic and allows to define the 
operational window and to manipulate both, the PV and 
the PID controller parameters ( Kp , Ki , and Kd ), in each 
iteration depending on the measured PV and the upper 
and lower boundaries. This strategy helps to account for 
the different dynamics occurring when the PV is below or 
above the SP. Different configurations of the supervisory 
layer and tuning parameters for the PID algorithm were 
tested in fermentations 1–4 to optimise the performance 
of the controller (an overview of the different controllers 
is shown in Table  2, the control schemes for fermenta-
tions 3 and 4 are shown in Fig. 6, and the remaining con-
trol schemes are shown in Additional file 1.

The output of the controller algorithm was an MV 
signal scaled between 0 and 10, which corresponded 
to a flow-rate between 0 and 31.05  mL/min. The lin-
earity between the MV and the flow-rate was assessed 
experimentally with four replicates to account for pos-
sible non-linearities in the pump’s behaviour (Addi-
tional file  1). The output MV (stored as an ‘MV.txt’ 
file) is accessed every 10 s by LabView2013® (National 
Instruments, Texas, USA) and forwarded first to the 
NI-6008 Multifunction I/O Device (National Instru-
ments, Texas, USA) and then to the controlled pump. 
In order to prevent errors in accessing simultaneously 

https://www.spyder-ide.org/
https://www.spyder-ide.org/
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Start controller

Import python modules

Import Pandas, numpy, MBPLS, PID 

Import calibrated PLS models 

Set PID control parameters

SP, Kp, Ki and Kd

Pre-allocate variables for data storage

glucose_array, mv_array

Set timer to zero

Start control loop

Computer2:\K directory

Select wavenumbers between 950-1550 cm-1 of the X-block

Preprocess each spectrum in the X-block

Savitzky-Golay 1st derivative

Mean center

Use PLS  to predict the glucose concentration for each spectrum in the X-block

Prepare spectral matrix: X-block ~ M(nr. of spectra, wavenumbers)

glucose_current = median of the previous 15 values

glucose_array[iteration_counter] = glucose_current

process_time = 0

iteration_counter = 0

iteration_counter = iteration_counter + 1

PV = glucose_current

Set upper and lower boundaries

MV is calculated using the PID algorithm

MV.txt

Write MV in MV.txt

Close MV.txt

Print process_time and iteration_counter

Print PV and MV

Wait 50 seconds

Stop control loop

Manually stop the control loop

Store glucose_array and mv_array

mv_array[iteration_counter] = mv_current

Regulatory layer to manipulate PV, and the control parameters (Kp, Ki, Kd)

Fig. 5  Structure of the controller algorithm. Note that different regulatory layers were used in fed-batch fermentations 1–4
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the shared ‘MV.txt’ file (it is accessed by the control-
ler algorithm and by LabView2013®), the file is only 
opened right before writing or reading the MV sig-
nal and closed immediately after. On a technical note, 
to avoid slow response times caused by phase delay 
between timers, LabView2013® iterates at a faster rate 
(every 10  s) than the controller algorithm (every min-
ute), ensuring a fast response of the system.

Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1306​8-020-01829​-2.

 Additional file 1. Supplementary material.
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