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Abstract 

Non-model microorganisms often possess complex phenotypes that could be important for the future of biofuel and 
chemical production. They have received significant interest the last several years, but advancement is still slow due 
to the lack of a robust genetic toolbox in most organisms. Typically, “domestication” of a new non-model microorgan-
ism has been done on an ad hoc basis, and historically, it can take years to develop transformation and basic genetic 
tools. Here, we review the barriers and solutions to rapid development of genetic transformation tools in new hosts, 
with a major focus on Restriction-Modification systems, which are a well-known and significant barrier to efficient 
transformation. We further explore the tools and approaches used for efficient gene deletion, DNA insertion, and het-
erologous gene expression. Finally, more advanced and high-throughput tools are now being developed in diverse 
non-model microbes, paving the way for rapid and multiplexed genome engineering for biotechnology.
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Introduction
The world’s energy and chemical demand is ever-increas-
ing, and currently, the demand for fuels and chemicals is 
primarily met with fossil fuels. Fossil fuels like petroleum 
not only provide the raw materials to make liquid fuel for 
the transportation sector, they also provide the building 
blocks needed for a wide variety of heavily utilized chem-
icals and materials, including plastics, perfumes, paints, 
fertilizer, and detergents [1]. However, fossil-derived car-
bon is inherently unsustainable, and a promising alter-
native is microbial conversion of renewable feedstocks. 
Microorganisms often have the ability to make drop-in or 
functional replacements for the fuels and chemical build-
ing blocks used today, but metabolic engineering is typi-
cally required to reach the titers, rates, and yields needed 

for a commercial process as well as to diversify the chem-
icals that can be produced.

Currently, model organisms like Saccharomyces cerevi-
siae and E. coli are most commonly used for metabolic 
engineering research and are often used for industrial 
biochemical production. Model organisms are attractive 
because they are industrially robust, decades of research 
have enabled deep understanding of the organisms, and 
they have a large genetic toolbox to enable rapid and 
simple modifications. However, engineering of synthetic 
pathways into these organisms is often most successful 
with short heterologous pathways, while long synthetic 
and heterologous pathways are generally not as robust 
and can cause a large metabolic burden [2]. To overcome 
the challenges with current industrial biochemical pro-
duction and to make next-generation fuels and chemicals 
profitable, recent research has focused on non-model 
organisms that natively have phenotypes of interest for 
each unique feedstock and processing method [3].
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Industrial bioproduction of fuels and chemicals initially 
focused on first generation feedstocks such as starch 
and sucrose. These feedstocks are easy to breakdown 
and convert, but potential competition with food crops, 
limited greenhouse gas emission benefits, and environ-
mental sustainability concerns makes these feedstocks 
problematic [4]. Alternate feedstocks such as the sugars 
and aromatics in lignocellulosic biomass [5], sunlight or 
renewable electricity coupled with  CO2 fixation [6, 7], 
syngas [8], and waste plastic [9] have the potential to be 
cheaper. These feedstocks are also more environmentally 
friendly sources of carbon for fuel and chemical produc-
tion, but bioconversion of these substrates is much more 
challenging. However, many non-model microbes often 
have evolved to utilize these feedstocks efficiently, mak-
ing them potentially attractive platforms for bioconver-
sion. Unfortunately, many of the organisms with these 
native capabilities have poorly characterized metabo-
lisms and are challenging to modify genetically, hindering 
metabolic engineering efforts.

Other traits potentially beneficial to industrial pro-
cessing methods include tolerance to low pH, tolerance 
to high salt, or the ability to grow at high temperatures. 
These traits could streamline chemical production by 
reducing contamination, reducing the need for pH con-
trol and buffering, and increasing enzymatic reaction 
speed. These abilities are multigene, complex phenotypes 
that are difficult or impossible to engineer into model 
organisms. The more widespread use of non-model 
organisms could leverage these phenotypes to usher 
in a new era of biotechnology for biofuel and chemical 
production.

Two major barriers to the use of non-model organisms 
for metabolic engineering include a lack of genetic tools 
and limited knowledge of the organism’s physiology. Tra-
ditionally, physiological characterization of a new organ-
ism was time-consuming and labor-intensive, with much 
of the new knowledge generated through biochemistry 
and characterization of substrate utilization and prod-
uct formation. It was difficult to gain additional in-depth 
physiological information to uncover cell metabolism 
and regulation [2, 10]. However, genomic knowledge has 
become easier to acquire due to the rise of next-gener-
ation sequencing techniques and the dramatic drop in 
the cost of genome sequencing [11, 12]. Using basic 
genomic knowledge, the groundwork can quickly be laid 
for systems-level biological analyses, or “omics” in non-
model microbes. Enabling tools like transcriptomics and 
proteomics are straightforward to apply to new micro-
organisms, and they assist in addressing fundamental 
questions and provide measurements for all cellular com-
ponents [10]. The cost and time associated with these 
tools are also dropping, and the major challenge is now 

turning these large datasets into usable knowledge. Inte-
gration of multi-omics data to models helps give a more 
comprehensive dataset and helps to link the genotypes 
associated with the complex phenotypes of interest [13, 
14]. Having comprehensive knowledge of a microorgan-
isms’ metabolic pathways and flux is important to suc-
cessful metabolic engineering [15]. With the increased 
availability of affordable -omics analyses and DNA syn-
thesis, the major remaining barrier to widespread adop-
tion and “domestication” of non-model microbes is the 
lack of robust genetic tools.

Barriers to genetic modification and enabling 
transformation
In order to develop non-model organisms for bioprocess-
ing, genetic modification is typically needed. The devel-
opment of genetic tools requires the ability to efficiently 
transform DNA into a target organism. There are four 
primary barriers to overcome for successful transforma-
tion of bacteria: cellular uptake of foreign DNA, evasion 
of native immune systems that degrade foreign DNA, 
selection for transformants, and stable maintenance of 
foreign DNA by the microbial host. Each poses a chal-
lenge, and the largest barrier is often the evasion of host 
defense systems.

DNA entry into the cell
The first challenge, introducing DNA into cells, requires 
DNA to get past one or two membranes, as well as other 
physical barriers, such as peptidoglycan, to reach the 
cytoplasm. Depending on the organism, a variety of tech-
niques can be utilized, including commonly used meth-
ods such as electroporation, conjugation, protoplast 
transformation, and natural competence. For electropo-
ration, an electrical field is applied to a mixture of DNA 
and washed cells, which opens holes in the membrane, 
and enables the uptake of DNA [16, 17]. Electropora-
tion works broadly across phylogenetic groups [18–23], 
including in diverse bacteria, eukaryotes, and archaea, 
and therefore is often the first method attempted by 
researchers trying to transform a new organism. Conju-
gation enables DNA transfer through direct cell to cell 
contact from a donor cell to the recipient. This tech-
nique has been used in diverse organisms using a donor 
E. coli strain carrying broad host range conjugation 
machinery [24–26]. DNA is transported into the cell as 
single stranded DNA (ssDNA), which is usually highly 
recombinogenic, making it an especially good method 
of transformation when homologous recombination is 
desired [27–29]. Conjugation can be more challenging 
into microorganisms that have a vastly different optimal 
growth conditions than E. coli, such as halophiles or ther-
mophilic anaerobes. In protoplast transformation, the 
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bacterial cell wall is degraded through the introduction 
of lysozyme. Removal of the cell wall allows for cells to 
uptake DNA without a barrier. This is a technique that 
has seen wide use the actinomycetes [30–33]. Natural 
competence, on the other hand, is a mechanism driven by 
suite of genes that allows some bacteria to uptake DNA 
from their environment [34], and this imported DNA 
is also single stranded. Transformation using this tech-
nique is often relatively simple in strains containing the 
natural competence genes, where the strain of interest is 
incubated with DNA under conditions where the compe-
tence genes are expressed. Prominent examples of hosts 
that use natural competence for transformation include 
the Firmicute Bacillus subtilis and the Gammaproteobac-
terium Acinetobacter baylyi [35, 36]. In strains that are 
not naturally competent, conjugation and electropora-
tion are the most common methods of transformation, 
with electroporation often enabling the highest transfor-
mation efficiencies [37]. Though these three techniques 
are the most commonly used, there are many less com-
monly used techniques reported in the literature, includ-
ing phage-enabled transfer [38], chemically induced 
competence [39], sonoporation [40], biolistic bombard-
ment [41], liposome-mediated fusion [42], and nanofiber 
piercing [43]. Because these methods are not used as 
widely, their application to new organisms is relatively 
underexplored.

Host defense systems
Prokaryotic organisms have evolved multiple defenses 
against foreign DNA, which can present a major barrier 
to DNA transformation. Restriction-Modification (RM) 
systems act as innate immune systems and are one of the 
primary systems used by prokaryotes to protect them-
selves against foreign DNA. Cells recognize and degrade 
DNA that is methylated differentially from that of its own 
DNA [44]. Almost 90% of prokaryotes encode RM sys-
tems, with most encoding two or more [45]. Microbes 
often also encode adaptive immune systems, including 
clustered regularly interspaced short palindromic repeats 
(CRISPR). CRISPR systems natively protect prokaryotes 
against foreign DNA, for instance from bacteriophage. 
Viral derived DNA sequences are acquired during an 
infection and inserted into the chromosome where they 
may be transcribed to prevent against repetitive infection 
[46]. Native CRISPR systems are unlikely to pose a major 
barrier to DNA transformation in most cases because the 
specific sequences acquired by the host CRISPR system 
are unlikely to be present in the DNA that is being trans-
formed. Therefore, CRISPR will only be further discussed 
in this review in relation to their use as genetic tools. 
Several other defense systems have been discovered, but 
they are rare and/or poorly characterized. These include 

abortive infection (Abi), BREX, Dnd, Dpd, DISARM, 
pAgos, and others [47, 48]. The impact of these systems 
on genetic transformation is currently unknown, but not 
yet observed to present major barriers.

To enable genetic modification, transformed DNA 
must evade the native immune systems of the host. RM 
systems are the most important immune system that 
DNA needs to evade, and many studies have shown the 
importance of this for successful transformation (e.g., 
49–58). Of the four classes of RM systems, Types I, II, 
and III typically comprised two primary components, a 
restriction enzyme and a methyltransferase. The meth-
yltransferase modifies a specific base within a specific 
motif throughout the host chromosome so that the 
genome is protected from restriction enzyme cleavage, 
with modifications including 6-methyladenine  (m6A), 
4-methylcytosine  (m4C), or 5-methylcytosine  (m5C). The 
restriction enzyme cleaves the same motif in unmethyl-
ated DNA that enters the cell. Type IV systems, on the 
other hand, only consist of a nuclease that cleaves meth-
ylated DNA, with the recognized motifs different than 
those targeted by native methyltransferases from Types I, 
II, and III. The sequence specificity of Type IV systems is 
typically poorly characterized and is a ripe area for future 
research.

To evade RM systems, the first step is to identify the 
methylated motifs within a cell. Microbial methylation 
sites are most commonly determined through genome 
sequencing with single molecule real-time (SMRT) 
sequencing on the PacBio platform [59, 60]. SMRT 
sequencing routinely identifies  m6A and  m4C motifs and, 
with a significantly lower efficiency,  m5C motifs through 
kinetic delays in nucleotide incorporation at modified 
bases during sequencing. While eukaryotic methylome 
analysis often employs whole genome bisulfite sequenc-
ing (WGBS) to detect  m5C motifs, it has rarely been used 
in bacteria. However, robust detection of  m5C is criti-
cal for complete methylome analysis [50]. Other emerg-
ing techniques, such as nanopore sequencing, may also 
be used for methylome analysis [61, 62]. New England 
Biolabs (NEB) has created a database, REBASE, of all 
known RM systems (both experimentally determined 
and computationally predicted) and publicly available 
microbial methylomes to help in the identification of RM 
systems [63]. Not all methyltransferases are associated 
with restriction enzymes; they can also play a regulatory 
role in DNA replication, gene expression, and DNA mis-
match repair [64]. However, the methylated motifs reveal 
the maximum number of sites that could be subject to 
restriction in a given host.

Once the methylated motifs are identified, several 
methods have been used to evade the corresponding RM 
systems. One approach is transforming DNA that lacks 
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the identified motifs, or mutating DNA so that it no 
longer contains the motif [50, 65, 66]. Recently, software 
has been designed to aid in the process of eliminating 
restriction sites [67]. This can often be done for uncom-
mon motifs, but it cannot always be used for shorter, 
more common motifs, like four base pair recognition 
sequences that may exist in plasmid origins of replication 
or other DNAs that require a specific sequence, such as 
those needed for homologous recombination.

Another way to overcome RM systems is by methylat-
ing DNA of interest in the same way as the target host 
prior to transformation, such that the organism does not 
recognize it as foreign. The most common approach to 
achieving methylation is to express the target organism’s 
restriction-associated methyltransferases in E. coli, and 
then isolate the DNA of interest from this E. coli strain to 
properly methylate it prior to transformation. Early pio-
neering work demonstrated transformation of Clostrid-
ium acetobutylicum by first methylating plasmid DNA in 
E. coli with the methyltransferase from B. subtilis phage 
phi3T [49]. This approach was expanded with a method 
called plasmid artificial modification (PAM), which 
introduced all the methyltransferases from a given strain 
into E. coli using plasmid-based expression, followed by 
isolation of the DNA of interest out of the PAM host to 
properly methylate it prior to transformation of the tar-
get organism [68]. More recently, informed by methyl-
ome analysis, only those methyltransferases identified as 
important were introduced to the E. coli chromosome to 
more stably express the enzymes and to only mimic the 
methylome data.

DNA can also be properly methylated through in vitro 
methylation [69]. Some enzymes are commercially avail-
able, which can be especially useful for 4-base motifs 
that are targeted by commercially available methyltrans-
ferases. For those motifs that are not methylated by com-
mercially available enzymes, cell-free extracts can be 
used, as demonstrated in Helicobacter pylori [70] and 
Saccharopolyspora spinosa [71], to increase transforma-
tion efficiency.

RM systems can also be partially evaded by the trans-
formation mechanism chosen. Often, electroporation is 
unsuccessful when using improperly methylated DNA 
and, in these cases, using conjugation can yield success-
ful transformation. The conjugation machinery transfers 
single stranded DNA (ssDNA) that can avoid restric-
tion enzyme cleavage until it has time to become prop-
erly methylated [72]. Similarly, natural competence also 
imports ssDNA and can reduce the impact of restriction 
systems [73].

Another important consideration when transforming 
a new bacterial strain is the presence of Type IV restric-
tion systems, which degrade methylated DNA motifs. 

Researchers typically isolate plasmid DNA from E. coli 
prior to transformation into their desired host, and com-
monly used laboratory E. coli strains encode two major 
DNA methylases, dam and dcm, targeting G(m6A)TC 
and C(m5C)WGG, respectively. Many potential target 
strains encode dam, either as part of an RM system or as 
a housekeeping methyltransferase, and a few encode dcm, 
but many do not. Therefore, it is important to isolate 
plasmid DNA from an appropriate E. coli genetic back-
ground, using strains deleted for dam and/or dcm when 
the target organism does not methylate the same site. 
This prevents unnecessary DNA methylation and subse-
quent degradation by Type IV systems, which has been 
demonstrated in many strains [74–76]. It is also impor-
tant to utilize an E. coli strain that lacks the native Type 
IV systems (mcrA, mcrBC, and mrr) when expressing 
methyltransferases. Methylation of motifs recognized by 
the native type IV systems would cause E. coli to restrict 
its own chromosome, which would kill the E. coli strain.

RM systems are frequently acquired via horizontal gene 
transfer [48], and therefore methods to improve transfor-
mation in one strain typically do not directly translate to 
closely related strains. These systems tend to be hyper-
variable within an environmental community of closely 
related strains, such that if a phage happens to avoid one 
cell’s restriction systems and becomes methylated like 
that host, it does not eliminate the entire population [45]. 
Therefore, methylome analysis and RM system evasion 
must be developed for each desired host, even if they are 
strains of the same species.

Maintaining and selecting for DNA
Once DNA has entered the cell and evaded degradation, 
it needs to be maintained during cell division, and trans-
formed cells must be selected from the untransformed 
cells that constitute the majority of the population. DNA 
can be maintained either through autonomous repli-
cation or through chromosomal integration. Plasmid-
based autonomous replication is typically the best way 
to achieve the highest transformation efficiency for a 
new microbe and is the most commonly used method to 
demonstrate initial transformation. For metabolic engi-
neering, however, plasmid-based gene expression has 
drawbacks, such as high copy number artifacts, variable 
plasmid copy number, the need for continuous antibiotic 
selection, and a high metabolic burden. Therefore, chro-
mosomal integration is also an important tool, and dif-
ferent approaches to developing DNA integration genetic 
tools will be discussed in more detail below.

Development of a plasmid-based DNA maintenance 
system relies on identification of an origin of replication 
that functions in the target organism. The most com-
mon vectors used for cloning and replication in E. coli 
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use origins such as pUC, ColE1, and p15a, each with 
varying copy numbers [77], but often these origins do 
not replicate in non-model bacteria. Therefore, origins 
that function in diverse bacteria are needed. Broad host 
range plasmids are capable of transfer and maintenance 
in bacteria from different phylogenetic subgroups, exam-
ples include pBBR1, pRK2, pBC1, and many others [78]. 
Plasmid libraries have been formed around the broad 
host-range origins of replication and used in a variety 
of organisms [79]. Alternatively, origins can come from 
native plasmids of the strain or close relatives [80, 81]. 
If none are present, replicating plasmids may be con-
structed by cloning the chromosomal origin of replica-
tion to create a mini-chromosome [82, 83].

Next, one must select for cells that were transformed 
and eliminate cells that were not. The most common 
positive selectable markers are antibiotic resistance 
genes (Table  1). To determine the marker(s) most likely 
to work, the minimum inhibitory concentration (MIC) is 
determined by exposing the host bacteria to increasing 
levels of a panel of antibiotics. This is most easily done 
in liquid growth medium, but higher concentrations of 
antibiotic may be needed for selection on agar plates. 
Another consideration when choosing antibiotic resist-
ance markers is compatibility with an organism’s growth 
conditions. For example, when working with thermo-
philes, one should focus on antibiotics that are more 
stable at higher temperatures like thiamphenicol and 
kanamycin [84] and thermotolerant selectable markers 
[85]. A less commonly used alternative to antibiotics is 
nutritional selection. In this case, an auxotrophic strain 

is generated by deletion of an essential nutrient gene and 
transformed with a plasmid encoding the missing biosyn-
thesis gene(s). The resulting transformants are selected 
on media lacking the target nutrient [86, 87]. Libraries of 
modular plasmids combining antibiotic resistance mark-
ers, origins of replication, multiple cloning sites (MCS), 
and other genetic parts have been developed for differ-
ent classes of organisms, and they are very useful for the 
rapid testing of genetic parts [88–90].

Chromosome modification tools in non‑model 
microorganisms
After demonstration of initial transformation, more 
advanced tools can be developed to enable efficient 
genome editing and ultimately high-throughput strain 
engineering. Genome editing can allow for gene dele-
tions, insertion of heterologous pathways, point muta-
tions, and altered gene regulation. Enabling genome 
integration and deletion tools facilitates rational meta-
bolic engineering, where competing production path-
ways can be eliminated, and new pathways can be stably 
introduced. Development of more sophisticated tools is 
critical to the engineering of non-model organisms for 
high rates and titers of desired products.

Homologous recombination
Homologous recombination is a naturally occurring 
mechanism essential for DNA repair in bacteria, and it 
can be leveraged to rationally introduce modifications 
to an organism’s chromosome. The most commonly 
deployed method uses a non-replicating plasmid-based 
technique to create a scar-less mutation [91]. Typically, 
this is mediated by nuclease–helicase complex, RecBCD, 
and the single stranded DNA-binding DNA repair pro-
tein, RecA [92]. To use homologous recombination 
for gene deletion, a plasmid is required that contains a 
selectable maker, a counter-selectable marker, and DNA 
that is homologous to the upstream and downstream 
regions of the gene targeted for deletion (Fig.  1a). The 
lengths of homologous DNA regions are often around 
500–1000  bp each. After transformation of the plas-
mid into the microbe, the plasmid recombines into the 
chromosome at one region of homology to integrate the 
entire plasmid, which is selected via the positive selecta-
ble marker contained on the plasmid. A second recom-
bination event will resolve the merodiploid into either 
the parent chromosome or a gene deletion. If the first 
recombination event is repeated, the strain reverts to 
wild type, but if the recombination event occurs in the 
second region of homology, the targeted gene is deleted. 
When there is no fitness defect associated with the dele-
tion, the frequency of deletion should be approximately 
50%, which can be easily screened via PCR.

Table 1 Commonly used antibiotics and  corresponding 
selectable markers

Native antibiotic resistance levels can vary widely between strains. Therefore, an 
MIC experiment should be performed with each target organism to determine 
the level of antibiotic needed for selection.

Antibiotic Marker Class

Kanamycin/neomycin neo Aminoglycoside

Chloramphenicol/thiamphenicol cat Chloramphenicol

Erythromycin ermB, ermF Macrolide

Ampicillin/carbenicillin bla Beta-lactam

Tetracycline tetA Tetracycline

Bleomycin ble Glycopeptide

Gentamicin aacC1 Aminoglycoside

Streptomycin and spectinomycin aadA Aminoglycoside

Zeocin zeo Glycopeptide

Apramycin apr Aminoglycoside

Thiostrepton tsr Cyclic oligopeptide

Puromycin pac Aminonucleoside

Hygromycin hph Aminoglycoside

Nourseothricin nat Aminoglycoside
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Selection for resolution of the merodiploid requires a 
counter-selectable marker, which allows selection for loss 
of DNA. Numerous counter-selections have been dem-
onstrated (Table  2), including sacB in Gram-negative 
bacteria and pyrF and hpt in Gram-positive bacteria [91, 

93–96]. Some of the markers are less desirable than oth-
ers, though. Markers such as sacB often do not function 
well in Gram-positive bacteria [93]. There are also mark-
ers such as pyrF that can act as both a selectable and 
counter-selectable marker making them more flexible 
[97–99], but in many cases, they also result in auxotro-
phy, requiring growth on minimal medium for proto-
trophic selection of transformants. Many genes used as 
counter-selectable markers are natively encoded in the 
host genome. In these cases, the native copy must first 
be deleted before it can be used as a counter-selectable 
marker. However, the presence of a native counter-
selectable marker also presents an opportunity for met-
abolic engineering, as it can serve as a simple site for 
insertion of heterologous DNA with a direct selection 
for gene replacement. Importantly, inactivating muta-
tions (e.g., frameshifts, active site mutations, etc.) in 
counter-selectable markers have the same phenotype 
as recombinants and arise spontaneously, resulting in a 
background of cells that do not contain the targeted dele-
tion. Therefore, counter-selections often require more 
screening to find correct clones relative to positive selec-
tion. In the absence of reliable counter-selectable mark-
ers, screens can be used, but this is much less efficient 
and should be avoided if possible [100].

Another approach is to place the antibiotic resist-
ance marker between the homology arms, allowing for 
direct selection of the gene deletion (Fig. 1b) [116]. This 
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Fig. 1 Methods using homologous recombination for gene 
deletions, with details for each method described in the text. a 
Basic homologous recombination using a non-replicating plasmid 
where 50% of colonies will be the desired deletion. b Homologous 
recombination using the positive selectable marker between the 
homology arms, flanked with recombination sites, and c homologous 
recombination using a replicating vector and three homology 
regions. Orange, homology regions, with “up” representing the DNA 
region upstream of the target gene, and “down” representing the DNA 
region downstream of the target gene; blue, target gene for deletion; 
green, counter-selectable markers; gray, positive selectable marker; 
crossed lines, sites of recombination

Table 2 Commonly used counter‑selectable markers 
and  associated selections for  homologous recombination 
in bacteria

a Can be used as a positive selectable marker with uracil prototrophy and 
tetracycline resistance, respectively

Marker Counterselection Reference

sacB Sucrose [101]

upp 5-Fluorouracil [102]

hpt 8-Azahypoxanthine, others [103]

tdk 5-Fluorodeoxyuridine [104]

pyrF/ura3a 5-Fluoroorotic acid [105]

pheS*(A294G) p-Chloro-phenylalanine [106]

codA 5-Fluorocytosine [107]

Inducible mazF N/A; expression is toxic [95]

galK 2-Deoxygalactose [108]

apt 2-Fluoroadenine [109]

rpsL(strA) Streptomycin [110]

tetARa Fusaric acid [111]

thyA Trimethoprim [112]

Inducible ccdB Expression is toxic [113]

oroP 5-Fluoroorotate [114]

pta-ack Chloroacetate [115]
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approach is especially useful when the mutant pheno-
type is deleterious, which would make the approach in 
Fig. 1a challenging. This approach can also work in the 
absence of a counter-selectable marker when using con-
jugation or natural competence and selecting directly 
for the double-recombination event that replaces the 
gene target with the antibiotic resistance gene. Often 
the antibiotic resistance marker is flanked by recom-
bination sites, like frt or lox, so that the marker can 
be removed after integration into the chromosome by 
introduction of the corresponding recombinase, like 
Flp or Cre [116–118].

The frequency of homologous recombination var-
ies widely in bacteria and in some cases is a rare event, 
making the transformation efficiency of integrating 
plasmids multiple orders of magnitude lower than for 
replicating plasmids. Therefore, replicating plasmid-
based homologous recombination methods can be an 
attractive approach when the combination of transfor-
mation efficiency and homologous recombination in 
the target organism is low. However, because the plas-
mid replicates autonomously, it can be challenging to 
select chromosomal modifications; therefore, alternate 
approaches are needed.

One option is to use a conditional origin of replica-
tion, such as a temperature-sensitive plasmid. This 
allows the transformation event and the homologous 
recombination event to be uncoupled, where the plas-
mid can be transformed at a permissive temperature, 
generating a whole population of cells that contain the 
plasmid. Upon moving the culture to the non-permis-
sive temperature, one can select for the cells that have 
performed recombination. Selection then can proceed 
as in Fig. 1a.

Alternatively, introduction of a third region of homol-
ogy and a second counter-selectable marker can allow 
for selection of each recombination event and plasmid 
loss (Fig. 1c) [20]. In this approach, the replicating plas-
mid is first transformed into the strain. Then, while 
maintaining selection for the antibiotic resistance gene, 
selection is performed against the counter-selectable 
marker that is on the plasmid backbone. This selects for 
two recombination events to insert the antibiotic resist-
ance onto the chromosome and simultaneous plasmid 
backbone loss. The resulting merodiploid can then 
be resolved by selecting against the second counter-
selectable marker, resulting in the desired deletion.

Homologous recombination based genetic tools 
have been used in a variety of non-model organisms 
to increase biochemical production and enable non-
native carbon catabolism though the deletion of com-
peting pathways and insertion of heterologous genes 
[119–122].

Recombineering
Methods to increase the efficiency of homologous 
recombination have been developed, often called 
recombination-mediated genetic engineering, or recom-
bineering [123, 124]. By increasing the recombination 
efficiency, construction of gene deletions, insertions, 
and point mutations is more efficient. Recombineering 
uses proteins like those derived from the lambda bacte-
riophage Red complex, Beta, Exo, and Gam, to integrate 
single stranded and linear DNA into the genome, often 
using short homology arms to guide recombination. 
Recombineering is widely used in E. coli, and the genes 
associated with lambda Red have also been demonstrated 
to function in other proteobacteria, like Pseudomonas 
putida [125]. Recombineering can be difficult to develop 
in non-model organisms because lambda Red genes are 
often not functional in those hosts. Considerable effort 
has gone towards identifying genes analogous to lambda 
Red and the recombination protein RecT in phylogeneti-
cally diverse organisms [126, 127]. Using this approach, 
recombineering has been demonstrated in a variety of 
other strains, including Clostridium acetobutylicum 
[128], Lactococcus lactis [129], Clostridium thermocel-
lum [130], and others [126, 131, 132]. The recombinases 
can then be used to enable ssDNA recombination for a 
recombination techniques often requires 300–1000  bp 
of homology for efficient recombination, while recom-
bineering techniques can shorten this to as few as 20 bp.

Random DNA insertion
Non-homology-based approaches are also useful when 
engineering non-model microbes. One such approach is 
transposition. Transposons allow random integration of 
DNA segments throughout the genome with no required 
homology. Therefore, transposition is traditionally used 
to create a library of insertional disruptions that can be 
screened for particular phenotypes. These phenotypes 
can then be correlated with genotypes by identifying 
the site of insertion [133]. Commonly used transposons 
include Tn5, which inserts mostly randomly but is known 
to favor “hotspots”, and Himar1, which can insert ran-
domly between any TA dinucleotide [134, 135]. Recently, 
random transposon mutagenesis has been combined with 
high-throughput sequencing for genome-scale analyses, 
called TnSeq [136]. Further combination with randomly 
barcoded transposons simplifies reverse genetics, where 
a pooled library of barcoded insertional mutants can be 
created, and the bar codes can be mapped to the genome 
to identify disrupted genes [137]. A barcoded library can 
be an incredibly powerful tool for genome-scale analy-
ses. A list of putatively essential genes can be compiled 
by identifying the genes that were not disrupted in the 
library. Furthermore, genes related to phenotypes such 
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as solvent and organic acid resistance, product forma-
tion, and carbon assimilation can be identified by finding 
barcodes that increase or decrease in abundance under 
selective conditions [136, 138, 139].

Transposons can also be used to insert heterologous 
pathways into bacteria [140], which have been applied to 
non-model microbes such as C. ljungdahlii for acetone 
production [141] and Acidothiobacillus ferroxidans for 
isobutyric acid biosynthesis [142]. Transposons have also 
been combined with the Cre-lox site-specific recom-
bination system to insert a landing pad, followed by 
site-specific insertion of heterologous pathways [143]. 
Transposons are especially useful for application in 
organisms that lack other genetic tools such as homolo-
gous recombination for integrating DNA into the chro-
mosome. Integrating DNA randomly has its drawbacks, 
however. The transposon often integrates into coding 
regions of the genome, which can interfere with the fit-
ness of the strain, and identifying the location of transpo-
sition requires additional effort. Random integration also 
does not enable comparison of a construct across genetic 
backgrounds because the transposition event occurs in 
different loci, which can result in differing levels of gene 
expression for the construct [144].

Site‑specific DNA integration
Site-specific recombinases have been a valuable tool for 
DNA insertions and excisions where the enzyme cata-
lyzes a recombination event between two specific DNA 
sequences, sometimes called attachment (att) sites. The 
most commonly used site-specific recombinases are the 
Cre and Flp that enable a reversible recombination (inte-
gration or excision) reaction at identical sites, loxP and 
frt, respectively [145]. Both systems have been used to 
remove antibiotic resistance markers by integrating a 
cassette into the chromosome with loxP or frt flanking 
the marker followed by transient expression of the cor-
responding recombinase [123]. For example, Flp/frt is 
widely used in the E. coli lambda Red system to remove 
the antibiotic resistance marker, and it has also been used 
in a variety of non-model organisms, including thermo-
philes, methanotrophs, and biofuel producing Clostrid-
ium species [94, 116, 122, 146]. One drawback to using 
Cre and Flp, however, is that the loxP or frt scar left 
behind can cause genetic instability when multiple modi-
fications are stacked into a single strain, leaving behind 
multiple, identical copies of the scar that can all serve 
as future substrates for the recombinase. Using mutated 
sites can help overcome the genome instability [147, 148].

A second group enables a site-specific recombination 
event at non-identical attachment sites, typically called 
attB (bacterial) and attP (phage), reflective of the fact 
that these recombinases often derive from bacteriophage 

that lysogenize their hosts. Recombination creates two 
new sites, attL (left) and attR (right). The integration 
event is unidirectional because the attL and attR are not 
substrates for recombination, so the recombinase can-
not excise the construct from the genome [149]. Some 
unidirectional recombinases, including the lambda 
integrase, require host machinery to function, which 
limits use outside of their native host or very close rela-
tives. Lambda phage also has relatively large attachment 
sites of 350–450  bp each. Alternatively, the large serine 
recombinases, as exemplified by the archetypical ΦC31 
integrase, can function in a broad-host range because 
they do not require host machinery. This has led to their 
development as genetic tools in a wide variety of micro-
bial hosts, especially in the actinomyces [150–153]. Due 
to their utility for rapid and high efficiency integration 
of DNA, they have been used to test genetic libraries at 
single copy on the chromosome, such as promoter librar-
ies [150], and to integrate heterologous DNA [154–156]. 
Genetic tools developed with serine integrases can rely 
on native or pseudo-att sites that are present in the 
genome [157] or non-native att sites that have been pre-
viously integrated into the genome [154, 158, 159]. One 
of the most commonly used integrases is ΦC31, which 
was identified from Streptomyces and is commonly used 
in a DNA integration system in this genus [28, 153]. Mul-
tiple orthogonal recombinases have been identified and 
characterized [149, 153], setting the stage for them to be 
used much more broadly. Another type of site-specific 
recombinase includes transposases that target highly 
conserved sequences like Tn7 and Tn1545 [144]. Tn7 has 
been demonstrated to function in more than 20 bacterial 
species. It enables integration into the highly conserved 
attTn7 site downstream of the glmS gene. This makes the 
use of site-specific transposons more desirable for some 
applications than the random transposons for integration 
of heterologous constructs [144].

CRISPR/Cas
A recent and potentially universal tool for engineering 
non-model microbes uses clustered regularly interspaced 
palindromic repeats (CRISPR) and CRISPR-associated 
(Cas) proteins. Native CRISPR–Cas systems comprise 
a CRISPR array containing spacers separated by short 
repeats. Spacers become incorporated into the array 
when the microorganism encounters invading DNA to 
enable the microorganism to recognize and attack that 
same sequence when they encounter it again [160]. Many 
of the systems cleave DNA at this sequence using a Cas 
nuclease that is directed by a guide RNA (gRNA). Cas9 
was first identified in Streptococcus pyogenes (spCas9), 
and it introduces a double-stranded break (DSB) at 
a specific sequence guided by a sgRNA adjacent to a 
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protospacer adjacent motif (PAM) [161, 162]. Natively, 
the gRNA is derived from the CRISPR array, and in the 
case of the most utilized type II Cas nuclease, Cas9, the 
array is transcribed and processed (crRNA) with trans-
acting RNA (tracrRNA) into a single guide RNA (sgRNA)
[163]. In heterologous systems, the sgRNA can be tran-
scribed as a single RNA, simplifying the number of 
genetic parts needed for engineering. If a template con-
taining the desired modification is also included, the DSB 
can be repaired, resulting in an edited genome.

CRISPR–Cas systems have been leveraged in a wide 
variety of organisms to introduce scarless point muta-
tions, insertions, and deletions in the genome. The most 
widely used CRISPR nuclease is spCas9 because, unlike 
many of the other Cas proteins, it is a single enzyme that 
only requires the introduction of a synthetic gRNA and 
the Cas9 nuclease to enable genome editing. CRISPR-
spCas9 was first introduced as a genome engineering 
tool for bacteria in E. coli [162, 164] and has now been 
implemented in a wide variety of species using a plasmid 
for the repair template and an organism’s native homolo-
gous recombination machinery, as recently reviewed in 
[162]. Cas9-based editing has been further developed 
by combination with recombineering machinery to 
enhance the efficiency of DSB repair, and allowing use of 
a linear recombineering template with homology to the 
edited region [164, 165]. The combination of CRISPR 
and recombineering can increase the rate of mutation 
close to 100% due to the lethality of the DSB. Function-
ally, this makes CRISPR–Cas a potent and targetable 
counter-selectable marker [166]. The combination of 
recombineering and CRISPR has been used in many pro-
teobacteria, but it can take substantial effort to transfer 
to organisms where transformation efficiency is low and 
recombineering tools do not yet exist.

The nuclease spCas9 is most commonly used for 
genome editing across many types of bacteria. How-
ever, Cas9 expression can be toxic in a variety of hosts 
[159, 167]. Toxicity can be overcome by placing the gene 
under an inducible promoter so that it is only expressed 
when needed [168], but this is only possible in organisms 
where inducible promoters have been developed. Toxic-
ity can also be overcome in some organisms by mutating 
one of the active sites, resulting in Cas9n, so that it can 
only nick one strand of DNA rather than creating a DSB 
[169, 170]. Another issue with the commonly used Cas9 
enzymes is that they are unable to function in thermo-
philes; therefore, thermophilic Cas9 enzymes have been 
identified and implemented along with thermophilic 
recombineering machinery for engineering thermo-
philes [130]. Although spCas9 is the most widely used 
nuclease, other CRISPR–Cas systems have been identi-
fied to overcome problems with spCas9. These nucleases 

also have different cleavage patterns and target different 
PAM sequences. Cpf1, a member of the Cas12a group, 
has been used in several organisms for genome editing, 
including those where spCas9 did not function [159, 
171, 172]. Native CRISPR systems have also been lever-
aged for genome editing [173, 174]. There is significant 
interest in CRISPR based tools for non-model organisms, 
and it has been used wildly and in more depth elsewhere 
[161, 162, 175, 176].

CRISPR/Cas for gene regulation
While CRISPR–Cas9 has been widely demonstrated for 
DNA insertions and deletions, it can also be used for 
gene regulation by silencing or activating transcription 
using a catalytically inactive Cas9 (dCas9). In this case, 
the dCas9 is unable to act as a nuclease but is still able 
to bind DNA at a targeted sequence. In CRISPR interfer-
ence (CRISPRi), a gRNA-targeted dCas9 binds to either 
the promoter of the desired gene or the open reading 
frame (ORF), therefore blocking either transcription 
initiation or elongation and inhibiting gene expression 
(177). This enables gene knockdowns in a regulated and 
reversible way, and expression of multiple gRNAs can 
allow multiplexing of gene knockdowns [178]. Research-
ers have developed CRISPRi tools in a wide variety of 
non-model microorganisms to both study the activity of 
essential genes and to knockdown expression of compet-
ing pathways to increase production of fuels and chemi-
cals [179–182].

While CRISPR can be a powerful genome engineer-
ing and gene regulation tool, it is often difficult to opti-
mize in non-model bacteria. Therefore, research has 
gone into developing a modular CRISPRi system that 
can be deployed across phylogenetically diverse bacteria. 
Mobile-CRISPRi has demonstrated the gene knockdown 
efficacy in a diverse set of pathogenic microbes, though 
this system has yet to be used in organisms of interest 
for industrial use [183]. While CRISPRi represses tran-
scription, dCas9 can also be used to activate transcrip-
tion via CRISPR activation (CRISPRa). In CRISPRa the 
dCas9 is fused to a transcriptional activator so that when 
dCas9 binds upstream of a gene it recruits RNA polymer-
ase leading to increased transcription. While CRISPRa 
has been used in E. coli using both PolII [184] and SoxS 
[185], this tool is still in the early stages of being applied 
to other prokaryotes [186].

Gene expression tools in non‑model 
microorganisms
The ability to reliably fine-tune gene expression is an 
important synthetic biology tool and can play an impor-
tant role in increasing biofuel and chemical yields from 
engineered pathways. Transcription and translation 
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levels can be controlled by several different components 
including promoters, riboswitches, ribosome binding 
sites (RBS), and terminators. Genes can be constitutively 
expressed, where protein production levels are largely 
determined by the strengths of the promoter and RBS, or 
genes can be regulated where expression can be turned 
“on” or “off” by inducible promoters and riboswitches. 
Reporter genes can provide an easily assayed output to 
help determine the impact of different genetic parts on 
expression levels, and they also having applications in the 
development of biosensors for the detection and control 
metabolite levels during bioconversion. Developing these 
gene expression tools for non-model microbes is critical 
to enabling rational metabolic pathway optimization for 
improved product formation.

Constitutive gene expression
The simplest way to modulate gene transcription is 
through the evaluation of promoters with varying activ-
ity levels. Often, strong characterized promoters from 
model organisms, like  Ptac from E. coli, are used but they 
do not always confer robust gene expression in non-
native hosts. Identifying and implementing native pro-
moters can overcome this issue. Strong promoters often 
drive expression of genes in central metabolism and iden-
tifying those genes in a target organism may help in iden-
tifying useful promoters. RNAseq can be employed on 
cells grown under desired culture conditions [187–189], 
where genes with high transcript levels may be indica-
tive of a strong promoter. Further characterization of the 
identified promoters through a time course study under 
various growth conditions may identify those that are 
constitutive [189].

Overexpression with strong promoters is not always 
desirable, especially if an intermediate in the pathway is 
toxic or if a protein is membrane-bound. Furthermore, 
when many genes need to be expressed, the metabolic 
burden of protein production can become substantial 
[190]. Therefore, the development of a promoter library 
with a range of promoter strengths is also useful. Typi-
cally, the closer the − 35 and − 10 sequences are to con-
sensus, the stronger the promoter is. Mutating each of 
the bases in the sequence and varying the space between 
them has been shown to vary promoter strength [191, 
192]. Mutated promoters can also be obtained through 
error-prone PCR or through site-directed mutagenesis 
[188]. Promoter libraries have been characterized in a 
wide variety of non-model organisms [193–196]. Other 
regions that impact gene expression and can be var-
ied include the UP element and the ribosome binding 
site (RBS). UP elements are sequences upstream of the 
−  35 box in the promoter that bind to the alpha subu-
nit of the RNA polymerase, greatly increasing expression 

levels [197]. While underexplored for many non-model 
microbes, UP elements can bring an additional boost 
to expression when very high transcription levels are 
desired [198–200]. The RBS recruits the ribosome and 
it is an important control point for translation initia-
tion. The RBS is commonly used to tune gene expres-
sion through alterations of the sequence and the space 
between the sequence and the start codon. Libraries of 
RBSs have been created in combination with promoters 
to fine-tune gene expression for fuel and chemical pro-
duction [195, 201, 202]. An RBS calculator has been cre-
ated to aid in the creation of RBS libraries and to predict 
translation initiation rates [203].

Regulated gene expression
The ability to regulate gene expression is an important 
tool for both strain engineering and bioproduction. 
Applications include expression of a toxic gene (e.g., 
Cas9) for a short period [168, 204], balancing of meta-
bolic flux with a biosensor [205], or turning on a produc-
tion pathway once cell growth has reached stationary 
phase to reduce the metabolic burden [206–208]. They 
are also important to determine whether a gene is essen-
tial under the conditions being tested. One mechanism 
of creating inducible promoters involves the use of tran-
scription factors. Well-characterized promoters from E. 
coli such as lactose- and arabinose-inducible promot-
ers have been transferred, sometimes with mutations to 
enable functionality, to a wide variety of other organisms, 
including species of Clostridium, Pseudomonas, Bacil-
lus, and Ralstonia [79, 209]. Other inducers have also 
been commonly used such as tetracycline [210], xylose 
[211], and nisin [94]. Newer promoters such as the Jun-
gle Express expression system for proteobacteria [212], 
and less commonly used ones such as laminaribiose [213] 
also have the potential to be useful for engineering vari-
ous non-model organisms. However, transferring well 
characterized promoters into non-model bacteria can 
still be challenging. Many result in “leaky” expression 
or lack regulatory proteins, such as repressors or activa-
tors, not present in heterologous hosts. In addition, even 
if regulatory proteins are transferred with the promoter, 
transport of the inducer molecule may be an issue.

Gene expression can also be regulated post-transcrip-
tionally. Riboswitches are regulatory mRNA elements in 
the 5′ untranslated region that are capable of regulating 
gene expression through small molecule-induced struc-
tural switching [214]. They add a layer of regulation, 
but are less explored for the engineering of non-model 
microbes relative to model organisms like E. coli. In this 
mechanism, mRNA forms two distinct shapes depend-
ing on the presence of a specific small molecule, which 
either blocks or allows translation. Examples of the use 
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of riboswitches for engineering of non-model microbes 
include theophylline for inducible production of bio-
fuels and other compounds [215], lysine to balance flux 
for competing pathways [214, 216], and flavonoids such 
as naringenin for increased production of flavonoids 
[217]. Recently, thermophilic riboswitches have also been 
identified and used to regulate biofuel production [218]. 
Riboswitches are particularly beneficial for regulating 
gene expression in non-model microbes because they 
function independently of host-associated proteins and 
without the need for organism-specific promoters. For 
example, a set of theophylline riboswitches have been 
demonstrated to function in a many species including 
multiple cyanobacteria, Mycobacterium, and Streptomy-
ces. These switches have also proven to be superior for 
regulation of gene expression when compared to tradi-
tional IPTG-inducible promoters [215].

Terminators
Transcriptional terminators in E. coli have been well 
characterized and are an important tool for gene expres-
sion. Terminators can impact mRNA stability and 
expression levels of adjacent genes [219] Simple termi-
nators that do not require additional termination factors 
have been used widely in diverse genera. Some termi-
nators, like those from bacteriophage T7, can be ineffi-
cient at termination, causing read through on multigene 
constructs. However, several commonly used termina-
tors contain repeats that increase the stability of tran-
scriptional pausing and increase reliability, though this 
can cause issues when using the same terminator repeat-
edly use within a single construct [173]. Efficient and 
reliable control of multigene constructs for metabolic 
engineering of bacteria therefore requires several well 
characterized terminators. Libraries [174] and termina-
tor prediction programs [175] have been developed, but 
terminator research in non-model bacteria lags behind 
other parts for gene expression like promoters.

Reporter genes
Reporter genes encode proteins that can be tracked or 
quantified, often visually or spectrophotometrically. They 
have many applications in flow cytometry, microscopy, 
protein localization, and microbial co-cultures, and they 
are particularly useful when screening promoter and gene 
expression libraries. Enzymes can act as reporter genes, 
including common ones such as lacZ (β-galactosidase) 
and uidA/gusA (β-glucuronidase), where a substrate 
(e.g., X-gal) is cleaved to generate a colored compound, 
and enzyme activity is proportional to enzyme abun-
dance. Other enzymes include chloramphenicol acetyl-
transferase (catP) [220] and alcohol dehydrogenase 
(adhE) [221, 222]. Determining enzymatic activity can be 

laborious, which makes these enzymatic reporter genes 
less useful, and they are typically used only as end-point 
assays [223].

Genes encoding fluorescent proteins are the most 
commonly used type of reporter gene because they can 
provide real-time measurements of gene expression. 
In aerobic microbes, several different genes encoding 
fluorescent protein have been engineered, including the 
green fluorescent protein, gfp, and the red fluorescent 
protein mCherry. Each of the fluorescent proteins has 
different characteristics from color to brightness to sta-
bility [224]. These genes have been used in a wide variety 
of applications. The fluorescent genes are used in tran-
scriptional fusions to indicate the strength of promoters 
and expression vectors during bacterial cell growth [191, 
225]. The simplicity and non-invasive nature of fluores-
cent proteins allow easier tracking of the dynamics of 
gene expression and allow much higher throughput. This 
higher throughput enables the use of these genes as bio-
sensors by fusing the fluorescent reporter to regulated 
promoters that respond to the presence of metabolites, 
such as the target product molecule, metabolic interme-
diate, or toxic compound [226–228]. One caveat is that 
reporters are only a proxy for gene expression, and the 
expression level of heterologous genes can depend on 
the exact genetic context, especially if mRNA secondary 
structure or stability changes. These fluorescent reporter 
genes are incredibly useful in aerobic bacteria because 
they require  O2 to form the fluorescent chromophore.

Many biotechnology-relevant organisms are strict 
anaerobes, where  O2-dependent reporters can be more 
challenging to use. The use of fluorescent proteins 
requires that anaerobic cultures be brought into an aero-
bic environment, which can be lethal, and the cells often 
need to be washed in a time-consuming process. There-
fore, they cannot be used in real-time growth experi-
ments anaerobically. Flavin-binding fluorescent proteins 
(FbFPs) do not require  O2 for fluorescence, making them 
potentially useful tools for anaerobes. Examples of FbFPs 
include iLOV, BsFbFP, PpFbFP, and EcFbFP which have 
been demonstrated in a variety of organisms including 
many species of clostridia [229]. However, FbFPs are not 
as bright as aerobic fluorescent genes, which make them 
more difficult to quantify. To overcome the limitation of 
FbFPs, a fluorescence-activating and absorption-shifting 
tag (FAST) protein has been developed. FAST relies on 
the presence of an exogenously added ligand that is only 
fluorescent when bound to FAST. Two color signals have 
been developed, a green yellow (YFAST) signal where 
4-hydroxy-3-methylbenzylidine-rhodanine (HMBR) 
binds FAST and a red signal (rFAST) where 4-hydroxy-
3,5-dimethoxybenzylidene-rhodanine (HBR3,5DOM) 
binds. FAST produces a fluorescence signal similar to 
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that of GFP and has recently been used in a few organ-
isms [230, 231]. This tool has the potential to revolution-
ize the use of reporter genes in anaerobic microbes. This 
includes the ability to monitor real-time gene expression, 
screen promoter libraries, study protein localization, and 
develop other high-throughput tools such as biosensors.

Conclusion
We are entering an era of both rational and systematic 
design of genetic tools for the metabolic engineering of 
diverse non-model bacteria. Transformation methods 
that overcome native RM systems via targeted DNA 
methylation and the utilization of libraries of genetic 
parts is enabling the manipulation of numerous new 
hosts to harness their native complex phenotypes. Here 
we outline an approach to “domesticate” non-model 
organisms by rapidly developing a genetic toolbox to 
enable both rational and untargeted metabolic engi-
neering. As more bacteria become genetically tractable 
and more tools are established in these hosts, advanced 
genome engineering tools like CRISPR–Cas, biosensors, 
and phage recombinases will further accelerate metabolic 
engineering efforts. The ability to fine-tune metabolic 
pathways in organisms that have beneficial, complex phe-
notypes will enable engineering for increased titer, rate, 
and yield for a range of important products to build a 
biobased, sustainable future.
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