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Quantitative visualization of subcellular 
lignocellulose revealing the mechanism of alkali 
pretreatment to promote methane production 
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Abstract 

Background:  As a renewable carbon source, biomass energy not only helps in resolving the management problems 
of lignocellulosic wastes, but also helps to alleviate the global climate change by controlling environmental pollution 
raised by their generation on a large scale. However, the bottleneck problem of extensive production of biofuels lies 
in the filamentous crystal structure of cellulose and the embedded connection with lignin in biomass that leads to 
poor accessibility, weak degradation and digestion by microorganisms. Some pretreatment methods have shown sig-
nificant improvement of methane yield and production rate, but the promotion mechanism has not been thoroughly 
studied. Revealing the temporal and spatial effects of pretreatment on lignocellulose will greatly help deepen our 
understanding of the optimization mechanism of pretreatment, and promote efficient utilization of lignocellulosic 
biomass. Here, we propose an approach for qualitative, quantitative, and location analysis of subcellular lignocellulosic 
changes induced by alkali treatment based on label-free Raman microspectroscopy combined with chemometrics.

Results:  Firstly, the variations of rice straw induced by alkali treatment were characterized by the Raman spectra, and 
the Raman fingerprint characteristics for classification of rice straw were captured. Then, a label-free Raman chemical 
imaging strategy was executed to obtain subcellular distribution of the lignocellulose, in the strategy a serious inter-
ference of plant tissues’ fluorescence background was effectively removed. Finally, the effects of alkali pretreatment on 
the subcellular spatial distribution of lignocellulose in different types of cells were discovered.

Conclusions:  The results demonstrated the mechanism of alkali treatment that promotes methane production in 
rice straw through anaerobic digestion by means of a systemic study of the evidence from the macroscopic measure-
ment and Raman microscopic quantitative and localization two-angle views. Raman chemical imaging combined 
with chemometrics could nondestructively realize qualitative, quantitative, and location analysis of the lignocellulose 
of rice straw at a subcellular level in a label-free way, which was beneficial to optimize pretreatment for the improve-
ment of biomass conversion efficiency and promote extensive utilization of biofuel.
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Introduction
Biomass energy, as a renewable carbon source, has 
attracted a lot of research interest in response to the 
energy crisis of recent years. It can, not only, help for 
resolving the management problems of lignocellulosic 
wastes, but also helps to alleviate the global climate 
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change by controlling environmental pollution raised 
by their generation on large scale [1–3]. The bottleneck 
problem of extensive utilization of many biofuels lies in 
the intrinsically refractory nature of biomass, the fila-
mentous crystal structure of cellulose, and the embedded 
connection with lignin in biomass such as in the straw 
cell wall that that leads to poor accessibility, weak degra-
dation and digestion by microorganisms. This results in 
inefficient conversion of biomass [1, 4, 5]. To make lig-
nocellulosic biomass less refractory, chemical pretreat-
ments (the application of strong acids or bases), physical 
pretreatments such as ball milling [6], and other methods 
such as thermal and biological (application of micro-
organisms to decompose lignin and lignocellulose) pre-
treatments have been extensively studied and applied in 
recent years. Some pretreatment methods showed a sig-
nificant improvement of gas yield and production rate [4, 
7–11].

However, the promotion mechanism of pretreatment, 
especially the effect on lignocellulose in different types 
of cells in biomass tissues, has not been thoroughly stud-
ied. There is a typical heterogeneous structure of biomass 
material, in which there are approximately 35 cell types, 
with distinctive shapes, sizes, locations, and cell wall 
characteristics. Revealing the temporal and spatial effects 
of pretreatment on lignocellulose in diversified cells 
of heterogeneous biomass tissue will thus greatly help 
deepen our understanding of the optimization mecha-
nism of pretreatment, and promote efficient utilization of 
lignocellulosic biomass.

The development of micro-spectrometers, which fuse 
the chemical specificity of vibrational spectrums with 
the power of optical magnification by the acquirement 
of high-quality spectra with subcellular resolution, has 
also contributed to further exploitation and utilization 
of biomass [2]. Microscopy based on infrared absorp-
tion offers chemical specificity, but the spatial resolution 
is limited by long infrared wavelengths, and the penetra-
tion depth into aqueous plant samples is limited [12, 
13]. Raman microspectroscopy with advantages such as 
label-free chemical contrast, high spatial resolution, and 
chemical specificity, which are free from water distur-
bance, has been widely used in visualizations of subcel-
lular lignocellulose [14]. Segmehl et  al. adopted Raman 
spectroscopy to image the spatial alternation of lignin in 
CAD deficient transgenic poplar during delignification 
[15]. Toru Kanbayashi et  al. used Raman microscopy to 
reveal the lignocellulose variation of wood under artifi-
cial weathering [16]. Ji et  al. illustrated the distribution 
of lignin and cellulose in wood based on confocal Raman 
microscopy [17]. Foston et al. used coherent anti-Stokes 
Raman scattering (CARS) to image lignin distribution in 
cross sections of tension wood [18]. Sarr et  al. adopted 

stimulated Raman scattering (SRS) microscopy to study 
the spatiotemporal variation of lignin and cellulose in the 
transection of core stover stems during the degradation 
of biomass [19]. Richter et al. used the Raman spectros-
copy to image lignin, cellulose, and pectin distributions 
and conduct semi-quantification analyses [20]. The above 
results indicate that Raman spectra have been success-
fully used to analyze the changes of lignocellulose in 
biomass. However, lignocellulosic compositional distri-
bution by mapping of integrated areas or intensities at a 
diagnostic spectral band of the compound in the current 
researches may be affected by severe disturbance. Raman 
spectrum is a typical weak signal, its probability of occur-
rence is about one in ten million compared to Rayleigh 
scattering [14], and is especially susceptible to back-
ground fluorescence interference of plant tissues, which 
makes it difficult to achieve reliable quantitative and 
location analysis based on single-band Raman intensity 
[21]. So, single-band Raman spectral image often resulted 
in an obvious deviation from macroscopic quantitative 
measurement results, and highly similar distribution 
maps of different lignocellulosic compositions.

Therefore, more reliable Raman chemical imaging 
methods should be developed to deepen understanding 
of the reactions of pretreatment to subcellular lignocel-
lulose. In this study, we proposed a hybrid of the confo-
cal Raman microspectroscopy technique and the spectral 
unmixing algorithm with full-range spectral constraints 
to illustrate the temporal and spatial variation of lignocel-
lulose induced by alkali pretreatment. The main goals of 
this study were to: (1) nondestructively explore the dif-
ference in cell wall structure or morphology of rice straw 
before and after alkali treatment based on the Raman 
fingerprint spectral and statistical analysis; (2) establish 
a label-free Raman chemical imaging approach based 
on spectral unmixing with a full-range of spectral con-
straints of lignocellulosic reference standards; (3) visu-
alize and quantify the temporal and spatial variation of 
subcellular lignocellulose in the transection of rice straw 
during alkali treatment in a label-free way.

Materials and methods
Anaerobic fermentation experiment
Raw substrate and inoculum
Rice straw was collected from the Changxing Agricul-
tural Science and Technology Park experimental farm 
of Zhejiang University in October 2013. After natural 
air-drying the straw was cut to 2–4 cm and then stored 
in PE plastic bags to be reserved. The straw’s total solid 
content (TS) was 89.8% (wet base, wb) and volatile sol-
ids content (VS) was 77.9% (wb). Anaerobic fermented 
inoculated sludge was taken from the Zhengxing biogas 
plant in Hangzhou (pig manure was used as fermentation 
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material) and the TS of the inoculated sludge was 15.4% 
(wb), while VS was 7.8% (wb), and the pH value was 7.6.

Sodium hydroxide pretreatment
A total of 6 g of sodium hydroxide (with a purity level of 
97%), 1300  ml distilled water, and 100  g chopped straw 
were added to a 2000-ml beaker. It was then put in a 
water bath at 100 °C for 1 h. Then, the pH was adjusted to 
neutral with a hydrochloric acid solution. After pretreat-
ment with sodium hydroxide, the TS of the rice straw was 
15.6% (wb) and VS was 12.8% (wb).

Anaerobic fermentation
Batch anaerobic fermentation was carried out for rice 
straw pretreated with sodium hydroxide, and for straw 
without pretreatment, respectively. Rice straw with a 
total solid content of 27 and 180  g of inoculated sludge 
were added to a 1000-ml anaerobic fermentation flask, 
and an appropriate amount of carbamide was added to 
adjust the C/N ratio to 25. A certain amount of purified 
water was added to the rice straw in the untreated group, 
making the moisture content of the rice straw consist-
ent with that of the sodium hydroxide treated group. 
The total volume of the mixture in the bottle was 300 ml. 
After connecting the fermentation device, argon gas was 
injected into the device to remove air, and then fermenta-
tion flask was placed in a water bath cauldron at a tem-
perature of 35 ± 1 °C. Biogas was collected by discharging 
saturated salt water (adjusting salt water with sulfuric 
acid to make its pH < 3) and stored in a 1000-ml glass 
storage cylinder. The daily biogas production was calcu-
lated and converted into the gas volume under standard 
conditions (0  °C, 101 kPa) according to the temperature 
and pressure at that time.

Measuring indices and methods
The gas composition of biogas was detected by a gas 
chromatograph every 5  days. The conditions of the gas 
chromatograph (Shimadzu-GC 2014, Japan) were as fol-
lows: the temperature of the TCD detector and packed 
chromatographic column were 80  °C and 60  °C, respec-
tively. Argon was used as a carrier gas and the flow rate 
was 30 ml/min. Column box, sample inlet, and heat con-
duction detector temperatures were 100  °C, 120  °C and 
120 °C, respectively. The injection volume was 200 μl. The 
measurement of TS (dried in an oven at 105 ± 1  °C for 
24 h) and VS (mass loss at 600 ± 2 °C for 2 h) of chopped 
rice straw was based on the 2540G standard method [22]. 
The concentration of hemicellulose, cellulose, and lignin 
were measured according to the Van Soest method [23]. 
Before measurement, all the samples were dried and 
ground into powder with a diameter of less than 400 
microns.

Microscopic sample preparation
Sample blocks of 1 × 2 cm2 were cut off from untreated 
and alkali-treated rice straw and fixed in a 2.5% glutar-
aldehyde solution at 4  °C. After conventional treatment, 
Spurr resin was embedded [24]. Then, semi-thin trans-
verse sections with a thickness of 2 μm were cut from the 
embedding block by a microtome (11800 Pyramitome, 
Sweden) for Raman micro-spectroscopic acquisition.

In terms of electron microscopic observation, the 
samples were sliced in an ultramicrotome (Reichert, 
Germany), and 70–90  nm sections were obtained. The 
sections were stained with a lead citrate solution and a 
50% ethanol-saturated solution of uranyl acetate for 
15 min, and then observed in a Hitachi H-7650 transmis-
sion electron microscope (Japan) [25].

Raman spectrum acquisition
Raman spectrum was collected using a Renishaw confo-
cal Raman spectrometer (Renishaw Plc., Wotton-Under-
Edge, UK) with a focused Nd:Yag laser (λ = 532  nm). 
The prepared sample slices were fixed on the object 
stage under a 50 × objective lens, and the Raman micro-
spectroscopy of transection was acquired using the 
point-by-point scanning mode in the spectral range of 
580–3062 cm−1. The exposure time and the laser inten-
sity were 50  s and 0.5  mv, respectively, the experiment 
was carried out at ambient temperature of 25 °C.

Spot scanning: a total of 574 samples, including 235 
untreated and 339 alkali-treated samples, were obtained. 
Each sample was generated by averaging 25 spectra 
acquired from a microscopic region with a size of about 
10 × 10 μm, and these microscopic regions covered vari-
ous types of cells in cross-sectional tissues of the rice 
straw, including epidermis, chlorenchyma, collenchyma, 
parenchyma, phloem, sclerenchyma, spongy paren-
chyma, vascular bundle, and xylem.

Map scanning: four randomly selected transections 
were taken for Raman micro-spectra mapping, two for 
each treatment. For the alkali-treated transection, two 
mapping scanning images were, respectively, obtained, 
one with 1950 spectra and 39 × 50 pixels, and another 
with 11,495 spectra and 95 × 121 pixels. For untreated 
samples, the two mapping scanning images were 
obtained with 3685 spectra and 55 × 67 pixels, and with 
4992 spectra and 78 × 64 pixels acquisition, respectively. 
The sampling spatial resolution was 2.5 × 2.5  μm. The 
mapping area is illustrated in “Raman spectrum acquisi-
tion” in Fig. 1.

To better understand the effects of alkali treatment on 
the spatial and temporal distribution of lignocellulosic 
components in straw, three lignocellulosic compounds 
of lignin (CAS: 8068-05-1, Sigma Aldrich), cellulose 
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(CAS: 9004-34-6, microcrystalline, powder, ca. 20  μm, 
Sigma Aldrich) and xylan (CAS: 9014-63-5, xylan from 
beechwood, Sigma Aldrich) were taken as references. 
Their Raman spectra were acquired in the range of 580-
3062 cm−1 under the same acquirement conditions as the 
sample.

Data analysis
The system framework diagram of this study is shown 
in Fig.  1. After Raman spectrum acquisition, the data 
preprocess was adapted to eliminate disturbances from 
random noise and fluorescent backgrounds. Then the 
processed spectra of the average Raman response of 
various tissues and the map scanning of transections 
were taken for statistical analysis, respectively. In terms 
of classification, qualitative and quantitative classifica-
tions of untreated and alkali-treated straw based on spot 
scanning spectra were developed, and fingerprint bands 
for classification were also obtained. Moreover, spectral 

chemical imaging was realized by spectral unmixing 
analysis of fully constrained least-squares (FCLS) with a 
full-range spectral constraint of lignocellulosic standards; 
therefore, a visualization and quantification of subcel-
lular lignocellulose from FCLS was obtained and com-
pared to the single-band spectral images and Safranine 
O–Fast Green staining image. Finally, these qualitative, 
quantitative, and location analyses were integrated with 
the results of traditional methods including the electron 
microscope image, lignocellulosic content, and biogas 
production, revealing the mechanism of alkali pre-
treatment increasing the methane yield of rice straw in 
anaerobic digestion. All procedures were implemented in 
Matlab R2013b (The Math Works, Natick, MA, USA).

Noise reduction
The non-sample region (background) had a negative 
effect on the subsequent characterization of the sam-
ple images (foreground) [12]. As there were obvious 

Fig. 1  System framework diagram of this study
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spectral differences between the samples tissues (rice 
straw) and the background (spurr resin), and as such a 
threshold segmentation method was used in this study 
to remove the background.

Cosmic ray spikes often occur in Raman spectra, 
which seriously distort the Raman spectra of the sub-
stances to be measured, and affect the acquisition of 
attribute information of the measured samples, need to 
be removed in advance. Adaptive iteratively reweighted 
penalized least-squares (airPLS) can be used to elimi-
nate high-frequency noise, cosmic rays and correct the 
baseline background [26, 27]. AirPLS was used to elimi-
nate cosmic rays in this paper.

To improve the signal-to-noise ratio, principal com-
ponent analysis (PCA), which can extract main infor-
mation through projecting data into several orthogonal 
variable spaces with the greatest extent of data vari-
ance, was carried out for noise elimination [28]. The 
Raman spectra were firstly decomposed into its prin-
cipal components, and then de-noising spectra were 
reconstructed using the first three principal compo-
nents with more than a 99.99% explained variation of 
the original spectra.

Normalization is often used to correct spectral 
changes caused by minute optical path differences. 
Area normalization was used in this study. The princi-
ple is as follows:

where xij represents the spectral intensity value in pixels i 
and band j, x′ij represents the spectral intensity after area 
normalization.

Feature extraction
Wavelet transform (WT) is a powerful feature extrac-
tion algorithm that deconstructs the signal (spectrum) 
into the sum of its functions (wavelet) with different spa-
tial and frequency properties [29–31]. By deconstruct-
ing the spectra data of different scales and frequencies, 
the inherent structure and characteristic information of 
spectral data can be discovered [32, 33]. The data can 
be accurately constructed by wavelet analysis with rela-
tively few components [34]. Among them, discrete wave-
let transform (DWT) is widely used [35]. A flowchart of 
the process of extracting characteristic information from 
spectra by wavelet transform is shown in Fig.  2. Tak-
ing the spectrum of the red point in the map scan as an 
example (Fig.  2a), the profile of this spectrum is shown 
in Fig.  2b. Firstly, the spectrum was deconstructed into 
nine sets of wavelet coefficients at level 8 by discrete 
wavelet transform (DWT) (Fig. 2d). Then inverse discrete 
wavelet transform (IDWT) was used to reconstruct the 
spectral signal from the nine sets of wavelet coefficients 

(1)x′ij =
xij

/

∑

j xij
,

Fig. 2  Extraction of spectral characteristic with wavelet transform
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respectively (Fig.  2e). Furthermore, spectral image of 
1089  cm−1 was produced, pixel by pixel, based on the 
reconstructed spectral information based on D6 (Fig. 2e), 
while spectral image of 1089 cm−1 based on the raw spec-
tra also developed as shown in Fig. 2c. In this paper, WT 
was used to extract features and eliminate the influence 
of high-frequency noise and low-frequency fluorescence 
interference.

Classification
Principal component analysis (PCA) was adopted to clus-
ter the analysis of samples before and after alkali treat-
ment. It applies a linear transformation to decompose 
spectral data into several principal components (PCs), 
which are not correlated [36, 37]. The first two PCs are 
utilized to analyze the common features among samples 
and their grouping [38].

Two supervised classification techniques, including 
linear discriminant analysis (LDA) and K-nearest neigh-
bor (KNN) were used for quantitative differentiation of 
samples before and after alkali treatment. For the specific 
principle, previous literature can be consulted [39, 40].

Spectral unmixing with fully constrained least‑squares (FCLS)
Linear spectral mixture analysis (LSMA) is a widely used 
technique for estimating the abundance fractions of con-
stituents present in multi-spectral/hyper-spectral image 
pixels [41–44]. The principle is as follows:

where D is a (x × y)× L spectrum matrix of a spatially 
unfolded Raman micro-spectrum image (Fig. 1), x, y are 
the number of pixels of the vertical and horizontal axis 
of the map scanning area, and L is the number of spec-
tral bands. PT is a k × L matrix of k pure component spec-
tra. Here, D and PT were adjusted to [0,1] by maximum 
normalization. For the k pure component spectra, C is an 

(2)D (x× y)× L = C (x× y)× kP
T
k × L + R(x× y× L),

(x × y)× k matrix of mixing coefficients (concentrations), 
and R is the residual matrix.

The unknown abundance fractions are calculated by 
solving the inverse solution of the linear mixing model 
specified by (2), so as to complete the tasks of material 
discrimination, detection, classification, etc. [42].

Heinz and Chang [42] proposed the fully constrained 
least-squares (FCLS) method as an estimator based on 
LSMA to produce an accurate amount of constituent 
abundance. The FCLS method imposes two constraints 
on the linear mixture model used in LSMA, which are 
the abundance sum-to-one constraint and the abun-
dance non-negativity constraint [41–43, 45], expressed as 
follows:

The abundance (concentration) is corrected by the meas-
ured percentage content of the k components in the tar-
get object.

where Cj is the concentration of all k components calcu-
lated by the FCLS method. Cj cal is calibrated according to 
the sum of the concentration (W) of all the k components 
based on laboratory analysis.

Results and discussion
Raman spectral unsupervised clustering of rice straw 
before and after alkali treatment
The Raman spectra of untreated and alkali-treated 
samples after noise reduction are shown in Fig.  3a, it 
was found that there were similar spectral response 

(3)
k

∑

j=1

Cj = 1,

(4)Cj ≥ 0
(

1 ≤ j ≤ k
)

.

(5)
(

Cj

)

cal
= Cj ×W ,

Fig. 3  Raman spectral response of untreated and alkali-treated rice straw. a Noise reduction. b Noise reduction + WT
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characteristics, and many overlapping samples of the 
two types. It is worth noting that there were strong flu-
orescent backgrounds, which tended to increase with 
the increase of wave number. These fluorescent back-
grounds may be caused by chromophores (pigment) in 
plant tissues [21, 46]. WT treatment was carried out 
to eliminate the fluorescence background, and recon-
structed spectral information based on D6 is shown in 
Fig. 3b. It worth noting that the fluorescent background 
which increases along with the increase of wave num-
ber was greatly reduced by WT treatment, especially in 
the region of high wavenumbers. Although the fluores-
cence background was mostly eliminated by WT, the 
spectra were still overlapped. In order to capture the 
Raman spectral characteristics of untreated and alkali-
treated rice straw tissues, their Raman spectra after WT 
pretreatment were analyzed by PCA in the whole bands 
(580–3062  cm−1). It can be found that the cumulative 
variation of the first two principal components reached 
92%, and the projection of samples in the two principal 
component spaces is shown in Fig. 4. The abscissa indi-
cated that the first principal component (PC1) score of 
the sample and the Y-coordinate represents the second 
principal component (PC2) score value of the sample.

As is evident in Fig.  4, most of the untreated sam-
ples can be effectively distinguished from alkali-treated 
samples in the PC1 and PC2 space, except for a few 
samples that overlapped. This means that Raman spec-
troscopy could capture the difference of untreated and 
alkali-treated rice straw samples. Because the shift, 
number, and intensity of peaks in Raman spectrum 
were directly related to the molecular vibration or the 
rotational energy level of the sample, it was expected 
to reveal the changes of molecular composition and 

structure in rice straw before and after alkali treatment 
by analyzing the Raman spectral difference.

The relationship between principal component and 
Raman spectrum data can be reflected by loading weight, 
so the analysis of loading weight of principal component 
will help to reveal the differences of spectral character-
istics and corresponding components between rice straw 
before and after alkali treatment. The loading weight 
plot of the first two principal components is shown in 
Fig. 5. The peak with large loading weight is the main fac-
tor affecting the principal component. In this paper, the 
bands whose absolute value of loading weight is greater 
than 0.025 were analyzed. Among the analyzed bands, 
the Raman bands of 1089, 1508, 1620 and 1739 cm−1 are 
all related to lignocellulose. In detail, the Raman band 
of 1089 cm−1 can be assigned to C–O–C and C–C ring 
vibrations in hemicellulose [47], and C–O and C–C 
stretching in cellulose [48], the peaks of 1620  cm−1 are 
associated with the ring conjugated C=C str. of conif-
eraldehyde [49, 50], the intensity of Raman band near 
1508  cm−1 is related to asymmetric stretch vibration of 
benzene ring in lignin [51], 1739  cm−1 band region is 
associated with C=O stretching vibration in hemicel-
lulose [52]. In conclusion, lignocellulose may be the key 
to the differences of spectral characteristics and cor-
responding components between rice straw before and 
after alkali treatment.

Quantitative classifier and chemical micro‑imaging 
with fingerprint bands
Quantitative classifier
In order to quantitatively reveal the Raman spectral dif-
ference between untreated and alkali-treated rice straw 
samples, quantitative classifiers were developed based 
on the LDA and KNN algorithms. The untreated and 

Fig. 4  PCA scores plot of Raman spectra from untreated and 
alkali-treated rice straw Fig. 5  Loading weight plot of the first two principal components
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alkali-treated samples were randomly divided into train-
ing and prediction sets in a ratio of 3:1. The preproc-
essed spectral data and nine groups of single-branch 
reconstruction signals from 1-D wavelet decomposition 
coefficients at level 8 were respectively taken as input to 
establish the classifier. Except of full range, the optimal 
combination of bands was also selected for classification. 
In terms of classification algorithm, it was found that 
KNN almost outperformed LDA in classification accu-
racy and stability, as is shown in Table 1.

Interestingly, the classifiers based on the wavelet sin-
gle-branch reconstruction signals frequently obtained a 
higher accuracy than those based on the raw spectral data 
when the decomposition level was set from 5 to 7, indi-
cating that Raman spectra suffered serious interference 
from noise, although high-frequency cosmic rays and 
random noise had been reduced by the airPLS and PCA, 
respectively. Furthermore, as the level increased from 1 
to 5, the classification accuracy basically increased. This 
may be owed to the fact that the low-frequency fluores-
cence signal which was always accompanying and inter-
fering with Raman spectra of plant tissue was suppressed 
by the wavelet single-branch reconstruction at a higher 
level. The classifier based on single-branch reconstruc-
tion signals from 1-D wavelet decomposition coefficients 
at level 6 (D6) also obtained a high and stable accuracy, 
whether in full-range spectra or feature bands modeling. 
Hence, D6 were taken as optimal features when separated 
from noise to replace the spectral data for further analy-
sis. In combination with the reconstruction schematic 
diagram of WT in Fig. 2, it could be concluded that D6 
extracts the characteristic information of the raw spec-
trum through eliminating high-frequency random noise 
and low-frequency fluorescent backgrounds [32, 53, 54].

It could be concluded that the classification accu-
racy of the KNN classifier of D6 with two bands of 
1620 and 1089  cm−1 was the same as that of the full-
range spectrum, reaching 95.14%. This indicates that 
these two bands of 1620 and 1089  cm−1 were the fin-
gerprint characteristics for classification of untreated 
and alkali-treated rice straw samples. To illustrate the 
assignment of these peaks, the Raman spectra of lig-
nocellulosic reference standards were acquired, as is 

shown in Fig. 6. It could be concluded that there were 
obvious peaks (including 1089  cm−1) of cellulose, 
which were almost free from fluorescence interference, 
while a peak of lignin appeared at 1620 cm−1. Further-
more, hemicellulose and lignin were disturbed by fluo-
rescence, especially for hemicellulose without obvious 
peaks, indicating that the Raman spectra of hemicellu-
lose and lignin are accompanied by strong fluorescence. 
This may be the reason why the Raman spectra of rice 
straw samples show a large amount of fluorescent back-
grounds, as is shown in Fig. 3a.

The Raman bands of 1089 and 1620 cm−1 were iden-
tified as a lignocellulose indicator, indicating that the 
chemical compounds of cellulose, hemicellulose, and 
lignin played an important role in the differentiation 
of untreated and alkali-treated rice straw. This conclu-
sion was consistent with the macroscopic measurement 
content of lignocellulose from conventional wet chem-
istry methods (Table  2), which showed that hemicel-
lulose, lignin, and cellulose were reduced by 53%, 25% 
and 13%, respectively, by alkali treatment. The above 
results showed that the Raman spectral classification 
of the rice straw before and after alkali treatment was 
realized by capturing the characteristic spectral infor-
mation of lignocellulose.

Table 1  Classification accuracy of quantitative classifier

Algorithm Input feature Raw A8 D1 D2 D3 D4 D5 D6 D7 D8

LDA Full-range spectra 80.56 47.92 75.00 79.17 84.72 76.39 88.19 79.86 78.47 57.64

Two bands (1620 + 1089 cm−1) 87.22 90.28 85.42 84.06 85.42 84.72 86.81 88.89 88.89 90.28

KNN Full-range spectra 79.86 84.72 84.03 85.42 86.81 84.03 93.75 95.14 96.53 87.5

Two bands (1620 + 1089 cm−1) 82.64 86.11 85.42 86.11 85.42 83.33 88.89 95.14 93.75 90.28

Fig. 6  Raman spectra of lignocellulosic standards
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Chemical micro‑imaging with classification fingerprint bands
As these two bands of 1620 and 1089  cm−1 were the 
fingerprint characteristics for classification, the single-
intensity spectral images based on the two bands of 
1620 and 1089  cm−1 may reveal the intrinsic difference 
between untreated and alkali-treated samples. The spec-
tral images are shown in Fig. 7. It was found that there are 
highly similar subcellular spatial distributions between 
spectral images of 1089 and 1620  cm−1; however, these 
two bands were obvious different in their spectral inten-
sities. Because these two peaks belonged to polysaccha-
ride and lignin respectively, their spatial distribution 
should be different in theory [20]. The illogicality of the 
spectral imaging (with 1089 or 1620  cm−1) was prob-
ably due to the interference of strong background fluo-
rescence, which submerged the spectral attributes of the 
two bands (1089 and 1620 cm−1), and resulted in the high 
similarity of the single-band spectral imaging. As highly 

similar images of cellulose and lignin had also been pre-
viously reported [55], it could be concluded that fluores-
cence interference is a common phenomenon in Raman 
spectral imaging. Although various pretreatment meth-
ods including airPLS, PCA, normalization, and WT had 
been adopted, the fluorescence interference had not been 
completely eliminated. Thus, Raman single-band spectral 
imaging was inappropriate for mapping chemical distri-
butions of constituents in plant tissues with a high fluo-
rescence background.

Notably, alkali treatment reduced hemicellulose, 
lignin, and cellulose contents by 53%, 25%, and 13%, 
respectively, as is shown in Table 2; however, the deg-
radation effect of alkali treatment on the subcellular 
spatial distribution of hemicellulose, cellulose, and 
lignin could not be illustrated in the spectral images 
of 1089 and 1620 cm−1. As shown in Fig. 7, the spec-
tral images of 1089 and 1620  cm−1 for alkali-treated 

Table 2  Main composition contents of untreated and alkali-treated rice straw (%, dry base, d.b.)

CHL total contents of cellulose, hemicellulose, and lignin, ΔCHL variation of CHL, sd standard deviation

Cellulose (sd) Hemicellulose (sd) Lignin (sd) CHL ΔCHL Ash

Untreated 39.5 (3.0) 33.2 (0.5) 4.5 (0) 77.2 0 2.6(0.2)

Alkali-treated 34.4 (0.8) 15.6 (1.1) 3.4 (0.3) 53.4 15.8 2.0(0.3)

Fig. 7  Raman images at characteristic bands of transverse sections of untreated and alkali-treated rice straw
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samples exhibited a higher intensity than that of 
untreated samples. If the Raman spectral intensity at 
1089 and 1620 cm−1 were significantly linearly related 
to the contents of polysaccharide (hemicellulose and 
cellulose) and lignin respectively, it showed that the 
content of polysaccharide and lignin did not decrease, 
but increased after alkali treatment. This result contra-
dicts the macroscopic lignocellulosic content through 
wet chemical measurement method. The reason for 
the inconsistency between the single-band spectral 
imaging (1089 and 1620  cm−1) and the concentration 
of macro-detection may be that the single-band spec-
tra were still disturbed by fluorescent backgrounds, 
which destroyed the linear relationship between the 
concentration of the compound and the Raman spec-
tral intensity at the well-defined band. Furthermore, 
chemical treatment (including acid and alkali treat-
ments) often results in spectral band broadening or 
shifting. Thus, Raman single-band spectral imaging 
can’t expose compounds distribution of plant tissue 
interfered by fluorescence background, a more reliable 
method of chemical imaging of lignocellulosic distri-
bution was urgently needed.

Chemical imaging of untreated and alkali‑treated rice 
straw based on the FCLS
To obtain more reliable images of subcellular lignocel-
lulosic distribution, spectral unmixing of the FCLS was 
adopted based on the reference spectra of lignocellulosic 
standards (as shown in Fig. 6), which was used as a spectral 
full-range constraint to resolve the lignocellulosic concen-
tration at each sampling point in micro-Raman mapping. 
Chemical images of lignocellulose were obtained by the 
FCLS as shown in Fig. 8. It can be found that unpretreated 
materials showed a highly smooth, dense and uniformly 
arranged fibrous structure. However, NaOH pretreat-
ment leaded to serious damage to the surface structure, 
forming a new pattern with rough surface, more cracks 
and voids, and large surface area (the position shown in 
the dotted white box in Fig. 8), which was consistent with 
the scanning electron micrographs in previous research 
by Amir [55]. With regard to the subcellular level by elec-
tron microscopy (Fig. 9), it can be found that the outlines 
of cells in the untreated tissue were clear, and the cell wall 
had a uniform thickness and good integrity. While, there 
was swelling and thickening of cell walls in the alkali-
treated rice straw tissues, and the cell walls of many cells 

Fig. 8  Chemical imaging of lignocellulose by spectral unmixing analysis of the FCLS. (in the fourth row, the sections were stained with Safranin O–
Fast Green. Safranin O stained lignin red, Fast Green stained cellulose green). vb vascular bundle, par parenchyma, epi epidermis
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were broken to some extent. Especially, tissue expansion 
and microstructure fracture occurred in the alkali-treated 
samples compared with untreated ones. These phenome-
non may be due to the alkali treatment loosening the dense 
cross-linking structure of lignocellulose [56]. In addition, 
it was found that the subcellular cellulose, hemicellulose, 
and lignin could be visualized and quantified, which was 
highly consistent with the macroscopic concentration 
measurement results (as shown in Table 2) and the Safra-
nin O–Fast Green staining images (as shown in the fourth 
line of Fig. 8). In particular, the chemical image of lignin (in 
the third line of Fig. 8) clearly showed a severe degradation 
of lignin in epidermal cells by alkali treatment (the posi-
tion indicated by the white arrow in the third line of Fig. 8), 
which was also confirmed by Safranin O–Fast Green stain-
ing images. In Amir’s study [55], author speculated that 
NaOH pretreatment greatly reduced the proportion of 
lignin in the surface structure of biomass [57], effectively 
opened up the rigid structure of Cogongrass, and facili-
tated the direct contact between enzyme and cellulose 
[58], and this is the first time that this hypothesis has been 
confirmed by lignin imaging analysis at subcellular level in 
this study. At the same time, the changes of content and 
distribution of cellulose and hemicellulose, which could 
not be detected by Safranin–Fast Green staining, could 
also be detected in the chemical images in this study (as 
shown in Fig. 8). It can be found that for untreated sam-
ples, cellulose was well and densely distributed, and hemi-
cellulose was concentrated in parenchyma with punctate 
granules. Lignin was mainly distributed in epidermal cells, 
xylem and sclerenchyma [12]. For alkali-treated samples, 
there was a dramatic decline in the contents of lignocel-
lulose (cellulose, hemicellulose, and lignin) after alkali 
treatment, and the high orderly spatial structures of ligno-
cellulose were also destroyed. It is noteworthy that most 
of the lignin in epidermal cells, xylem and sclerenchyma 
is degraded, especially in the epidermal cells and vascular 

bundle cavities, as there’s a lot of contact with sodium 
hydroxide solution in these areas. Therefore, different 
types of cells and their spatial distribution differences in 
tissue lead to significant spatial differences in the effect of 
alkali treatment. It is worth noting that alkali treatment 
resulted in a centralized distribution of lignin in the tran-
section, with less near the upper and lower epidermis. 
This may be due to the hydrolysis of lignin being greatly 
dependent on access to the alkali solution; therefore, high 
accessibility between the epidermis and alkali solution 
lead to a significant degradation of lignin, as well as to less 
lignin degradation in the middle of cross sections along 
with less accessibility to the alkali solution. This result 
was consistent with former research [59], in which the 
lignin distribution change in fiber cells of Eucalyptus was 
illustrated by Raman images with the integration of band 
intensity (1547–1707 cm−1), however, with the exception 
of fiber cells, other types of cells had not been studied. Fur-
thermore, a distribution change of polysaccharides, the 
core components of lignocellulosic biomass transforma-
tion, had also not been studied [59]. 

From the histogram of lignocellulose contents of each 
pixel in chemical images (Fig.  8) before and after alkali 
treatment shown in Fig. 10, it was found that the distri-
bution of cellulose, hemicellulose, and lignin tend to be 
in a lower concentration range after alkali treatment. In 
other words, alkali treatment caused an obvious decline 
in the concentration of cellulose, hemicellulose, and 
lignin in microscopic transection, which was highly con-
sistent with macroscopic lignocellulosic concentrations 
measured by wet chemical measurement (as shown in 
Table 2).

In terms of the gas production as shown in Fig. 11, alkali 
treatment accelerates methane production speed in the 
first 10 days. The methane yield of the alkali-treated group 
was about three times that of the untreated group in the 
first 5  days. The results indicated that alkali treatment 

Fig. 9  Transmission electron microscope images of rice straw tissues. a Untreated rice straw tissue. b Alkali-treated rice straw tissues
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could solve the problem of slow start-up of anaerobic fer-
mentation gas production. Moonkyung et  al. found that 
alkali pretreatment improved the decomposition ability 
of lignocellulose and the production rate of methane [60]. 
This may be due to the fact that alkali treatment severely 
degraded the high concentration of lignin in the epider-
mis and increased the accessibility of the alkali solution 
and microorganisms to polysaccharides in the inner cells 
of tissues (as shown in Fig. 8). Furthermore, the methane 
yield increased by 87.1% compared to the untreated group 
(from 126.30 to 236.35, as shown in Fig.  11), which was 
consistent with previous research [61, 62], while the direct 
degradation of lignocellulose by alkali treatment was 
about 15.8%, as is shown in Table 2.

Integrating the macro-measurement with the micro-
chemical images indicated that the contribution of alkali 
treatment to gas production can be divided into two 
parts: the one is to change the chemical properties of rice 
straw by direct degradation and dissolution of lignocel-
lulose components, another is to remove the structural 
barriers of lignin in epidermal cells, xylem and scleren-
chyma. And the latter plays a greater role in promoting 
methane gas production.

The high consistency of the results of chemical imag-
ing of subcellular lignocellulose by means of the FCLS 
strategy, macroscopic concentration measurement, and 
chemical dyeing indicated that the spectral unmixing of 
FCLS with the full-range spectra constraint of the refer-
ence standard was a reliable and effective Raman chemical 
imaging method. The highlight of this strategy was get-
ting rid of the traditional single-band chemical imaging 
method based on the spectrum, with fluorescence distur-
bance eliminated thoroughly, which was difficult to realize 
without a clear understanding of the fluorescence orienta-
tion of biological tissue. Instead, with the FCLS strategy, 
fluorescent backgrounds carried by both standard refer-
ences and mapping samples were also taken as part of the 
clues for the decomposition of the micro-Raman mapping 
spectra with fluorescence signals. Therefore, fluorescent 
backgrounds, which were also frequently accompanied 
with Raman spectra, were combined with Raman spec-
troscopy to promote chemical imaging analysis.

Conclusion
It could be concluded that it is feasible to nondestruc-
tively detect changes of subcellular hemicellulose, lignin, 
and cellulose in rice straw tissue induced by alkali treat-
ment based on this Raman chemical imaging method. 
The label-free chemical imaging strategy of integrating 
FCLS with the full-range spectra constraint of the refer-
ence standard especially provided an effective approach 
to visualize and quantify the subcellular distributions of 
lignocellulose, which was highly consistent with Safranin 
O–Fast Green staining images and macroscopic concen-
trations of lignocellulose from wet chemical measure-
ments. The biggest advantage of this strategy is that 
the full-range of spectral signals, including the partial 
fluorescent backgrounds, were effectively integrated for 
chemical imaging analysis, so it was more robust and reli-
able than traditional single-band spectral imaging. More-
over, the percentage content of subcellular lignocellulose 
could be plotted based on the spectral unmixing analysis 
with spectra of standards as global constraints.

Fig. 10  Lignocellulosic content histogram of Raman chemical images based on spectral unmixing of FCLS

Fig. 11  Biogas production per kilogram vs of substrates
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The label-free chemical imaging revealed the tempo-
ral and spatial distribution characteristics of lignocel-
lulose of dozens of cells induced by alkali treatment at 
the subcellular level. There was a dramatic decline in 
the contents of hemicellulose, cellulose, and lignin in all 
cells of the transection after alkali treatment, especially 
in epidermal tissue cells and adjacent areas. These results 
indicated that the alkali treatment increased the methane 
production rate, mainly due to its effective elimination 
of structural recalcitrance of biomass by breaking down 
high lignin concentrations in the epidermis to increase 
the accessibility of alkali and microorganisms to polysac-
charide in the inner cells of the transection.

A qualitative, quantitative, and location analysis of 
subcellular lignocellulose of rice straw under alkali treat-
ments were established in this paper by combined con-
focal micro-Raman spectroscopy with chemometrics, 
which provided a new approach for deep understanding 
the mechanism of alkali treatment promoting gas pro-
duction and accelerating the initial gas production rate. 
The further development of such an approach could pro-
mote efficient utilization of biomass.
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