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Abstract 

Background:  Pseudomonas putida is a promising candidate for the industrial production of biofuels and biochemi-
cals because of its high tolerance to toxic compounds and its ability to grow on a wide variety of substrates. Engi-
neering this organism for improved performances and predicting metabolic responses upon genetic perturbations 
requires reliable descriptions of its metabolism in the form of stoichiometric and kinetic models.

Results:  In this work, we developed kinetic models of P. putida to predict the metabolic phenotypes and design 
metabolic engineering interventions for the production of biochemicals. The developed kinetic models contain 775 
reactions and 245 metabolites. Furthermore, we introduce here a novel set of constraints within thermodynamics-
based flux analysis that allow for considering concentrations of metabolites that exist in several compartments as 
separate entities. We started by a gap-filling and thermodynamic curation of iJN1411, the genome-scale model of P. 
putida KT2440. We then systematically reduced the curated iJN1411 model, and we created three core stoichiometric 
models of different complexity that describe the central carbon metabolism of P. putida. Using the medium complex-
ity core model as a scaffold, we generated populations of large-scale kinetic models for two studies. In the first study, 
the developed kinetic models successfully captured the experimentally observed metabolic responses to several 
single-gene knockouts of a wild-type strain of P. putida KT2440 growing on glucose. In the second study, we used the 
developed models to propose metabolic engineering interventions for improved robustness of this organism to the 
stress condition of increased ATP demand.

Conclusions:  The study demonstrates the potential and predictive capabilities of the kinetic models that allow for 
rational design and optimization of recombinant P. putida strains for improved production of biofuels and biochemi-
cals. The curated genome-scale model of P. putida together with the developed large-scale stoichiometric and kinetic 
models represents a significant resource for researchers in industry and academia.
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© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/publi​cdoma​in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Pseudomonas putida recently emerged as one of the 
most promising production hosts for a wide range of 
chemicals, due to its fast growth with a low nutrient [1] 

and cellular energy [2] demand, considerable metabolic 
versatility [3], ability to grow in wide range of chemicals 
[4, 5], suitability for genetic manipulations [6], and its 
robustness and high flexibility to adapt and counteract 
different stresses [7]. One of the main advantages of P. 
putida compared to heavily used industrial workhorses 
like E. coli is its superior tolerance to toxic compounds 
such as benzene, toluene, ethylbenzene, xylene, n-hexane 
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and cyclohexane [8, 9]. For example, Ruhl et al. in 2009 
showed that some P. putida strains such as DOT-T1E, 
S12, and VLB120 are able to grow in high concentra-
tions of n-butanol [5] up to 6% (vol/vol), whereas the 
concentrations of 1.5% (vol/vol) cause significant growth 
decrease in E. coli [8].

Recent efforts toward understanding and improving 
the behavior and systemic properties of P. putida metab-
olism resulted in several genome-scale reconstructions. 
The first reconstructed Genome-Scale Model (GEM) of 
P. putida KT2440, iJN746, was published in 2008 and it 
comprised 911 metabolites, 950 reactions, and 746 genes 
[10]. It was rapidly followed by the publication of iJP815 
[11] and other reconstructions [12, 13]. The inconsisten-
cies among these models motivated Yuan et  al. in 2017 
to build so-called pathway-consensus model PpuQY1140 
[14]. The so far most complete GEM of P. putida KT2440, 
iJN1411, was reconstructed in 2017 by Nogales et  al. 
[15], and it contains 2057 metabolites, 2581 reactions, 
and 1411 genes. The GEMs have been used for studying 
metabolic features of P. putida including the enhanced 
production of poly-hydroxyalkanoates [16], reconcilia-
tion of key biological parameters for growth on glucose 
under carbon-limited conditions [17], and identifica-
tion of essential genes for growth on minimal medium 
[18]. However, stoichiometric models cannot be used to 
describe the dynamic metabolic responses to changes in 
cellular and process parameters nor they can consider 
regulation at the enzyme and post-translational level 
[19]. Therefore, kinetic metabolic models are needed to 
address these requirements.

Multiple small-scale kinetic models of P. putida metab-
olism were developed to model the growth and changes 
in extracellular concentrations [20–29]. Bandyopadhyay 
et  al. in 1998 used a simple Monod model to study the 
effect of phenol degradation in P. putida MTCC 1194 
[22]. Wang and Loh in 2001 modeled the co-metabo-
lism of phenol and 4-chlorophenol in the presence of 
sodium glutamate in P. putida ATCC 49451 [29], and 
their kinetic model accounted for cell growth, the toxic-
ity of 4-chlorophenol, and cross-inhibitions among the 
three substrates. Other models were used for studying 
growth during benzene [20], toluene [20, 24–26, 28] and 
phenol biodegradation [20], growth and biosynthesis of 
medium-chain-length poly-(3-hydroxyalkanoates) [21] 
and dibenzothiophene desulfurization [23, 27].

More recently, Sudarsan et  al. in 2016 developed a 
kinetic model of the β-ketoadipate pathway in P. putida 
KT2440 that contained mass balance equations for both 
extracellular and intracellular metabolites described by 
mechanistic rate expressions based on in vitro investiga-
tion of the participating enzymes [30]. Chavarria et  al. 
in 2016 modeled the dynamics of fructose uptake in P. 

putida KT2440 while taking into account the dynamics 
of gene expression, protein stability, enzymatic activity 
and the concentrations of intracellular and extracellular 
metabolites [31].

All these kinetic models are of limited size and with ad 
hoc stoichiometry, i.e., their stoichiometry was built for 
a specific purpose and without justifications how their 
metabolites and reactions were chosen [32, 33]. There-
fore, a need for developing large-scale kinetic models 
capable of reliably identifying metabolic engineering 
targets for production of the desired chemicals exist 
[19]. However, construction of large-scale kinetic mod-
els remains a challenging task. Each reaction in a kinetic 
model requires a matching kinetic rate expression along 
with values of kinetic parameters, which are frequently 
unknown. Moreover, even if the values of kinetic param-
eters are available in the literature and databases, their 
reported values are often spanning several orders of mag-
nitude. Additionally, partial experimental fluxomic and 
metabolomic data and estimation errors in related ther-
modynamic properties [19] hinder determining unique 
steady-state metabolic fluxes and metabolite concentra-
tions [34]. As a consequence, there is no unique model 
capable of describing the observed physiology. Instead, 
to overcome this issue, a population of kinetic models is 
constructed, and statistical methods are used to analyze 
and predict the metabolic responses in the system [19, 
34].

In this work, we first performed a thermodynamic 
curation of the iJN1411 GEM, i.e., we estimated the 
standard Gibbs energy of formation of metabolites, 
adjusted these values for pH and ionic strength in the 
studied physiological condition, and used these values 
together with the concentrations of metabolites to cal-
culate the transformed Gibbs free energy of reactions 
[35–40]. We then performed the gap-filling of iJN1411 
and systematically reduced this model to derive three 
different-complexity core models of P. putida central car-
bon metabolism. We provide the models of three differ-
ent sizes to allow modelers to make a trade-off between 
the accuracy of the models and the model complexity. 
The level of details of important metabolic interactions 
described in the model affects the model accuracy. The 
more detailed model, the better is its accuracy. However, 
as the model complexity increases, the portion of avail-
able data of intracellular metabolite concentration and 
metabolic flux is rapidly decreasing, i.e., uncertainty in 
the system is increasing [19]. Next, we applied ORA-
CLE [34, 41–50], a computational framework based on 
Monte Carlo sampling, to construct large-scale kinetic 
metabolic models of P. putida KT2440. The potential of 
developed kinetic models for the design of improved pro-
duction strains of P. putida was demonstrated through 
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two studies: (i) predicting metabolic responses of a wild-
type P. putida strain to single-gene knockouts; and (ii) 
improving the responses of this organism to the stress 
conditions of increased ATP demand.

Results and discussion
Thermodynamically curated genome‑scale model of P. 
putida
Integration of thermodynamics data
Methods that use thermodynamic data such as the ther-
modynamics-based flux analysis TFA [35–39] allow to: 
(i) integrate the metabolomics and fluxomics data into 
models, and compute values of metabolic fluxes and 
metabolite concentrations whose experimental measure-
ments are not available; (ii) eliminate in silico designed 
biosynthetic pathways not obeying the second law of 
thermodynamics [51, 52]; (iii) eliminate infeasible ther-
modynamic cycles [53–55]; and (iv) identify how far 
reactions operate from thermodynamic equilibrium [46, 
56]. Despite the fact that usefulness of thermodynamics 
has been demonstrated in many applications, only a few 
reconstructed GEMs are curated for this important prop-
erty [46, 57–60].

We used Group Contribution Method (GCM) [61, 62] 
to assign the standard Gibbs free energy of formation to 
62.3% metabolites and the standard Gibbs free energy 
of reaction to 59.3% reactions from the iJN1411 model. 
We calculated the standard Gibbs free energies for all 
metabolites and reactions participating in the pathways 
of central carbon metabolism (glycolysis, gluconeo-
genesis, pentose phosphate pathway, tricarboxylic acid 
(TCA) cycle). In contrast, we could estimate the standard 
Gibbs free energy of reaction for only 3.3% reactions in 
the poly-hydroxyalkanoates (PHA) metabolism because 
the majority of involved metabolites from these pathways 
have the structures with unknown residuals which pre-
cluded computation of the thermodynamic properties.

Integration of physiology data and gap‑filling
We integrated experimental measurements of glucose 
uptake and biomass yield on glucose [63] and metabo-
lite concentrations [64] into the thermodynamically 
curated model iJN1411. The performed TFA indicated 
that the model predicted ranges of ATP concentrations 
(Additional file  1: Table  S9) could not match the val-
ues reported in the literature [64, 65]. A reason for this 
mismatch could lie in the fact that the H+/ATP stoi-
chiometry in the electron transport chain (ETC) of P. 
putida might be inaccurately determined in iJN1411 
which would lead to large discrepancies in ATP yield 
on glucose [3, 66]. Here, we investigated another venue 
and hypothesized that iJN1411 is missing a critical reac-
tion in the ATP-related metabolism. Therefore, to make 

model predictions consistent with the experimental 
observations, we used the gap-filling procedure proposed 
by Chiappino-Pepe et  al. in 2017 [60] and later used by 
Hadadi et  al. in 2019 [67]. The gap-filling procedure is 
metabolic-task-driven [68, 69], where a metabolic task 
such as the production of a biomass precursor is defined 
and mixed-integer linear programming (MILP) is used 
to identify a minimal number of gap-filling reactions 
required to perform the task. The candidate reactions for 
gap-filling can be taken from: (i) databases such as KEGG 
[70], MetaCyc [71], and Atlas of Biochemistry [72]; (ii) 
genome-scale models of similar organisms; or (iii) an ad 
hoc set of reactions chosen by experts. Here, we defined a 
metabolic task of matching experimentally measured val-
ues of glucose uptake, specific growth rate, and ATP con-
centration (“Methods”). The set of candidate reactions 
was taken from iJO1366 GEM of E. coli, a well-studied 
species of Gram-negative rod-shaped bacteria [73]. The 
solution of the MILP problem indicated that one reac-
tion, sulfate adenyltransferase (SADT2), is missing in the 
iJN1411. SADT2 plays a role in cysteine formation, and 
similarly to sulfate adenylyltransferase (SADT), which 
already exists in the iJN1411, it catalyzes the production 
of cysteine precursor adenosine 5′-phosphosulfate from 
ATP and SO4. The production of adenosine 5′-phospho-
sulfate catalyzed by SADT2 is coupled with GTP con-
sumption, whereas this coupling is absent in SADT. Since 
the experimental evidence supports that GTP hydrolysis 
enhances the rate of adenosine 5′-phosphosulfate forma-
tion [74], we included this reaction into iJN1411. The 
thermodynamically curated, gap-filled, model iJN1411 
was consistent with the experimental values of both 
fluxomics and metabolomics data. Interestingly, when 
we replaced SADT2 with SADT in iJO1366 (E. coli), the 
iJO1366 could not predict experimentally measured val-
ues of ATP in E. coli [75].

Core reduced stoichiometric models of P. putida
Reconstruction of core reduced models
Using as a basis the curated iJN1411, we employed the 
redGEM [76] and lumpGEM [77] algorithms to construct 
a family of three core reduced stoichiometric models of P. 
putida of different complexity. The reduced models were 
constructed in two steps.

In the first step, the redGEM algorithm produced core 
networks focused around six central carbon subsystems 
of iJN1411: glycolysis and gluconeogenesis, pentose 
phosphate pathway, pyruvate metabolism, TCA cycle and 
oxidative phosphorylation (Fig. 1). The core networks of 
the three reduced models differed in the size depending 
on the number reactions in the pairwise interconnections 
between the subsystems (“Methods”). In the smallest 
core network, the D1 core network, the subsystems were 
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Fig. 1  The core networks generated by the redGEM algorithm from iJN1411 genome-scale model. The core network was built around reactions 
(grey) that belong to the six subsystems of central carbon metabolism (glycolysis and gluconeogenesis, pentose phosphate pathway, pyruvate 
metabolism, TCA cycle and oxidative phosphorylation). Reactions belonging to one-reaction step, two-reaction-step, and three-reaction-step 
pairwise connections between the six subsystems are marked in red, cyan and magenta, respectively. The stoichiometry of the reduced models and 
a complete list of reactions and metabolites are provided in Additional file 9: File S2, Additional file 10: File S3 and Additional file 13: File S1
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pairwise interconnected by up to one reaction. In the 
D2 and D3 core networks, the subsystems were pairwise 
interconnected by up to two and three reactions, respec-
tively. The D1, D2, and D3 core networks contained 278, 
307, and 343 reactions, and 286, 306, and 336 metabo-
lites, respectively (Table 1).

In the second step, the lumpGEM algorithm was 
used to connect the metabolites of the three core net-
works with 102 biomass building blocks (BBB) of the 
iJN1411 biomass reaction (Methods). lumpGEM gener-
ates lumped reactions that account for the production 
of BBBs from the metabolites of the core metabolic net-
works, i.e., it allows for modeling the fate of all metabo-
lites along the synthesis routes and quantifying the cost 
of all precursor metabolites and cofactors [77]. Moreo-
ver, it allows capturing the flexibility in the metabolic 
network of P. putida by generating alternative lumped 
reactions towards BBBs. The lumpGEM appended to the 
D1, D2, and D3 core networks 550, 397, and 407 lumped 
reactions, respectively (Table 1).

The resulting D1 model contained 828 reactions and 
286 metabolites distributed over cytosol, periplasm 
and the extracellular space (Table 1). For 583 out of 828 
(70.4%) reactions and 234 out of 286 (81.8%) metabolites 
from D1 we could calculate the thermodynamic prop-
erties (Table  1). The D2 model contained 704 reactions 
and 306 metabolites. Out of these, we could calculate 
the thermodynamic properties for 498 (70.8%) reactions 
and 253 (82.7%) metabolites. The D3 model had a total of 
750 reactions and 336 metabolites with calculated ther-
modynamic properties for 467 (62.3%) reactions and 276 
(82.1%) metabolites (Table 1).

We performed the consistency checks of D1, D2, and 
D3 against their genome-scale counterpart iJN1411 
according to the procedure proposed in Ataman et  al. 
[76], and we found that they were consistent with the 

GEM in terms of biomass yields, gene essentiality, and 
flux and concentration variability (“Methods”).

Essentiality of genes encoding for EDA and EDD
The Entner–Doudoroff (ED) pathway is essential for 
the growth of P. putida on glucose, which is experimen-
tally confirmed by the absence of the growth in mutants 
lacking the key enzymes 2-dehydro-3-deoxy-phospho-
gluconate aldolase (EDA) and 6-phosphogluconate dehy-
dratase (EDD) [63, 78, 79]. Using TFA, we found that 
these genes are not essential on glucose minimal medium 
(Additional file  1: Table  S7) in D2 and iJN1411 because 
these models can replenish the pool of triose phosphates 
through the pentose phosphate pathway. Interestingly, 
Nogales et al. in 2017 have used the minimization of met-
abolic adjustment (MOMA) method [80] and found that 
EDA and EDD are essential on glucose minimal medium 
in iJN1411 [15]. The previous GEMs of P. putida were not 
able to predict the essentiality of these genes [18].

We analyzed how the directionalities of reactions from 
the pentose phosphate pathway impact the essentiality of 
EDA and EDD in D2. We found that the directionalities 
of three reactions that have glyceraldehyde 3-phosphate 
(g3p) as reactant (transaldolase, TALA, and two transke-
tolases, TKT1 and TKT2) determine if EDD and EDA 
are in silico essential. When directionality of TKT2 was 
imposed towards production of g3p, TALA and TKT1 
became exclusively unidirectional towards consump-
tion of g3p and production of g3p, respectfully (Fig. 2a), 
and EDA and EDD were not essential. In contrast, when 
TKT2 operated towards consumption of g3p EDA and 
EDD were essential regardless the directionality of the 
other two reactions (Fig.  2b). Therefore, to ensure the 
consistency of in silico and experimentally observed gene 
essentiality of EDD and EDA in the subsequent stud-
ies we imposed the directionality of TKT2 towards con-
sumption of g3p.

Kinetic study of wild‑type P. putida physiology
Model responses to six single‑gene knockouts
The reduced D2 model was used as a scaffold for con-
structing a population of thermodynamically feasible 
kinetic models. We preconfigured this model for kinetic 
studies (“Methods”) and we performed TFA with a 
novel set of constraints that allow for considering con-
centrations of metabolites across several compartments 
to integrate 57 experimentally measured intracellular 
metabolite concentrations [64] (“Methods”). We found 
that all reaction directionalities within the obtained ther-
modynamically feasible steady-state flux and metabolite 
concentration profile were in agreement with the pre-
assigned directionalities from iJN1411 [15] (Additional 
file 1: Table S1).

Table 1  Three reduced core models D1, D2 and D3

D1 D2 D3

Reactions 828 704 750

 Core 278 307 343

 Lumped 550 397 407

% of reactions with estimated 
standard Gibbs free energy

70.4 70.8 62.3

Metabolites 286 306 336

 Cytosolic 156 174 200

 Periplasmic 70 71 74

 Extracellular 60 61 62

% of metabolites with esti-
mated standard Gibbs free 
energy

81.8 82.7 82.1



Page 6 of 19Tokic et al. Biotechnol Biofuels           (2020) 13:33 

We used ORACLE [34, 41–50] to construct a popu-
lation of 50,000 nonlinear kinetic models around the 
computed steady-state flux and concentration profile 
(“Methods”). The constructed models contained the 
experimental values for 21 Michaelis constants (Km’s) 
available for the Pseudomonas genus in the Brenda data-
base [81–84]. The resulting structure of kinetic mod-
els consisted of 775 enzymatic reactions and 245 mass 
balances for metabolites distributed over cytosol and 
periplasm.

To evaluate the predictive capabilities of the con-
structed models, we computed the flux control coef-
ficients of the intracellular fluxes in the metabolic 
network. The flux control coefficients quantify the rela-
tive steady-state change in fluxes in response to relative 
changes in parameters, and allow us to identify how 
control of the carbon and energy flows within the met-
abolic networks is redistributed [43, 85, 86]. We com-
pared the flux control coefficients of glucose uptake 
and specific growth rate with respect to six enzymes 
(glucose dehydrogenase, GLCDpp, hexokinase, HEX1, 
gluconokinase, GNK, EDA, EDD, and phosphogluco-
nate 2-dehydrogenase, PGLCNDH) with the experi-
mentally measured responses of the glucose uptake and 
specific growth rate to single-gene knockouts of these 
six enzymes [63]. The computed control coefficients 
for the glucose uptake and specific growth rate were 
in a qualitative agreement with the data reported by 

del Castillo et al. [63] (Additional file 1: Table S2), i.e., 
a decrease in the enzyme activity of the six enzymes 
would lead to a decrease in both the glucose uptake 
and specific growth rate (Fig.  3a, b). In contrast, the 
results of in silico gene knockouts performed with FBA 
and TFA on iJN1411 and D2 have shown no reduc-
tion in growth for four knockouts, ∆GLCDpp, ∆HEX1, 
∆GNK, and ∆PGLCNDH (Additional file  1: Table  S2). 
For ∆EDD and ∆EDA knockouts, iJN1411 and D2 with 
bidirectional TKT2 have shown a moderate decrease 
in growth, whereas, as discussed previously, D2 with 
imposed TKT2 directionality has correctly predicted 
the growth arrest for ∆EDD and ∆EDA knockouts.

A closer inspection of the flux control coefficients of 
glucose uptake revealed that for four enzymes (GNK, 
EDD, EDA and PGLCNDH) the error bars were spread 
around zero values (Fig.  3a). This meant that there was 
a subpopulation of models with inconsistent predic-
tions with some of the six knockouts. In fact, only 4999 
(~ 10%) out of 50,000 computed models were able to cor-
rectly predict responses to all six knockouts reported 
in del Castillo et  al. [63] due to the large uncertainty in 
the assigned values of the kinetic parameters. This type 
of uncertainty is common in biochemical systems and 
recently proposed computational method iSCHRUNK 
allows to investigate and reduce the uncertainty, and 
therefore, to improve the predictive strength of kinetic 
models [19, 87, 88].

a b

Fig. 2  The directionality of transketolase 2 (TKT2) impacts the in silico essentiality of two genes encoding EDD and EDA from the Entner–Doudoroff 
pathway. a If TKT2 operates towards production of g3p, then due to the stoichiometric coupling transketolase 1 (TKT1) and transaldolase (TALA) 
are unidirectional and EDD and EDA are not in silico essential. b If TKT2 operates towards consumption of g3p, EDD and EDA are in silico essential 
irrespectively of the directionalities of TKT1 and TALA
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Refinement of model responses to six single‑gene knockouts
We used iSCHRUNK to eliminate the inconsistencies 
with the experimental data observed for some of the 
predicted responses (“Methods”). The method allowed 
identifying seven kinetic parameters and their ranges 
that ensure the consistency of model responses with the 
experimental observations, and interestingly, all param-
eters were related to the ED pathway (Table 2).

We generated a novel population of kinetic models with 
ORACLE with constrained ranges of these seven param-
eters as defined by iSCHRUNK, and with integrated 
experimental values for 21 km’s from the Brenda database, 
and we then computed the distributions of correspond-
ing control coefficients for the glucose uptake and specific 
growth rate. Out of 50,000 models, 29,979 (~ 60%) models 
correctly predicted the changes in the glucose uptake rate 
to six single-gene knockouts [63] (Fig.  3c), while 35,955 
(~ 72%) models agreed with the experimental data for 

Fig. 3  Distribution of the control coefficients of glucose uptake (GLCtex) and specific growth rate (growth) for the wild-type physiology of P. putida. 
The control coefficients of glucose uptake (a) and specific growth rate (b) were first computed using an unbiased sampling in ORACLE, and then 
further refined using the machine learning methodology iSCHRUNK (c, d). The green bars represent the mean values of the control coefficients, 
whereas the error bars correspond to the 25 and 75 percentiles of the distributions

Table 2  Ranges of  the  original set of  parameters 
computed by ORACLE and of the refined set of parameters 
inferred by the iSCHRUNK method

2DHGLCNtex, ketogluconate transport via diffusion extracellular to periplasm; 
GAD2ktpp, gluconate 2 dehydrogenase periplasm; GLCDpp, glucose 
dehydrogenase ubiquinone 8 as acceptor periplasm; GLCNt2rpp, d-gluconate 
transport via proton symport reversible periplasm; GNK, gluconokinase; 
2dhglcn, 2-dehydro-d-gluconate; 6pgc, 6-phospho-d-gluconate; adp, ADP; glcn, 
d-gluconate; q8, ubiquinone-8

Parameter Original ranges (mM) Refined ranges (mM)

K
2DHGLCNtex
m,2dhglcn

6.83 ·× 10−5–0.68 6.83 ·× 10−5–2.34 · 10−3

K
GAD2ktpp
m,2dhglcn

6.83 ·× 10−5–0.68 6.83 ·× 10−5–0.133

K
GLCDpp
m,q8

3.81 ·× 10−3–37.71 3.81 ·× 10−3–0.899

K
GLCDpp
m,glcn

0.01–107.37 0.01–5.76

K
GLCNt2rpp
m,glcn

2.63 ·× 10−5–0.26 6.54 ·× 10−4–9.49 · 10−4

K
GNK
m,adp

2.03 ·× 10−3–20 3.84 ·× 10−2–20

K
GNK
m,6pgc

4.26 ·× 10−5–0.42 4.26 ·× 10−5–8.37 · 10−2
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the specific growth rate (Fig. 3d). In total, 26,120 (~ 52%) 
models were consistent with both the experimental data 
for the glucose uptake and the specific growth rate.

We discovered with iSCHRUNK that operating regimes 
of only a few enzymes determine metabolic responses to 
multiple single-gene knockouts. This emphasizes the sig-
nificance of accurately determining the kinetic parame-
ters of such important enzymes in order to obtain model 
responses consistent with the experimental observations. 
It will also be interesting to consider complex kinetic 
phenomena such as crowding when modeling kinetic 
properties of certain enzymes [89].

Assessment of estimated kinetic parameters
To obtain an unbiased assessment of the accuracy of our 
estimates, we computed a novel population of 50,000 
models without imposing the experimentally available 
values of Km’s from the BRENDA database [81–84]. 
Comparison of our estimates against available values of 
Km’s from BRENDA showed that ORACLE could cap-
ture the ranges for 17 out of 21 km’s (Fig. 4). Consider-
ing that in the estimation process we did not use any 
kinetic parameters values and that the underlying system 
is underdetermined, this result is remarkable because it 
indicates that ORACLE with integrated fluxomics and 
metabolomics data together with the physico-chemical 
laws is capable to provide consistent estimates for a large 
number of kinetic parameters. This further suggests that 
ORACLE estimates can be used as hypothetic values 

for studies where the unknown kinetic parameters are 
required.

For the four remaining parameters such as Michae-
lis constant of l-threonine in Threonine aldolase or 
oxaloacetate in Oxaloacetate decarboxylase, ORACLE 
underestimated experimental values up to one and half 
orders of magnitude (Fig. 4). The discrepancies between 
the estimated and measured values of these parameters 
can originate from different sources: (i) the Km values 
from BRENDA were measured on several different spe-
cies from the Pseudomonas genus, whereas our Km values 
were estimated using a P. putida model and the experi-
mental data were acquired on P. putida (fluxomics data) 
and P. taiwanensis (metabolomics data); and (ii) large 
uncertainty in available and partially available experi-
mental data. In general, the more experimentally meas-
ured data are available for integration in the models by 
ORACLE, the better their predictive capability will be.

Kinetic study of increased ATP demand in P. putida
The robustness of microorganisms to environmental 
stresses encountered in industrial processes is a signifi-
cant factor for choosing hosts for the production of bio-
fuels and biochemicals. While stress-specific responses 
differ between various stresses such as product toxicity, 
heat, or osmotic stress, and different organisms can have 
different mechanisms for stress adaptation, counteracting 
stress requires energy [90]. For example, it was observed 
that a common factor in responses of S. cerevisiae to high 

AL
DD
2x
@a
ca
ld

AS
PT
@a
sp
-L

CS
@a
cc
oa

CS
@o
aa

ED
A@
2d
dg
6p

ED
D@
6p
gc

FB
A@
fd
p

GL
NS
@a
tp

GN
D@
6p
gc

GN
D@
na
dp

GN
K@
at
p

IC
L@
ic
it

MA
LS
@a
cc
oa

MA
LS
@g
lx

MD
H@
ma
l-
L

OA
AD
C@
oa
a

PG
K@
3p
g

PG
K@
at
p

PG
LC
ND
H@
6p
2d
hg
lc
n

PP
C@
pe
p

TH
RA
r@
th
r-
L

10-5

100

K
m

[
m
M
]

Fig. 4  Estimates of Michaelis constants, Km’s, predicted by ORACLE. Distribution of Km’s estimated with ORACLE (red boxplots) without imposing 
experimental values from BRENDA (black circles denote experimental values of Km’s with consistent ORACLE estimates, whereas orange circles 
denote the ones with inconsistent ORACLE estimates). Whiskers represent minimal and maximal value predicted by ORACLE. Notation, e.g., PPC@
pep denotes the Michaelis constant, i.e., the concentration of Phosphoenolpyruvate (pep) at which the reaction rate of Phosphoenolpyruvate 
carboxylase (PPC) is half of Vmax. Full names of reactions are provided in Additional file 1: Table S3



Page 9 of 19Tokic et al. Biotechnol Biofuels           (2020) 13:33 	

ethanol concentration, osmotic stress, and high temper-
ature is an increased demand for ATP [91]. The active 
removal of toxic compounds by energy-driven efflux 
pumps also significantly increases the energy demand in 
cells [7].

Ebert and co-workers investigated how increased ATP 
demand affects the P. putida metabolism by titrating 
2,4-dinitrophenol (DNP), and they demonstrated that 
DNP concentrations below 300 mg/l did not impact the 
specific growth rate of P. putida [7]. Above the concen-
tration of 300 mg/l, DNP caused a significant reduction 
of P. putida’s specific growth rate and increase of the glu-
cose uptake (Fig. 5a, b). At the concentration of 700 mg/l 
of DNP, glucose uptake reached the maximum of 
~ 11  mmol/gDCW/h. For larger values of DNP concen-
tration, both the glucose uptake and the specific growth 
rate declined.

In comparison, E. coli shows a significant reduction in 
the specific growth rate already at the concentrations of 
138 mg/l [92]. It is argued in the literature that, compared 
to E. coli, P. putida superior capability of counteracting 
different types of stress and in particular oxidative stress 
stems from the specific metabolic arrangement of its gly-
colysis [65, 78, 93]. P. putida catabolizes glucose predom-
inantly through Entner–Doudoroff pathway, whereas the 
Embden–Meyerhof–Parnas (EMP) pathway operates 
in a gluconeogenic fashion [78]. In contrast, E. coli has 
functional both EMP and ED pathway. However, the glu-
cose metabolism in this organism is carried out through 
the EMP pathway, while the ED pathway remains mostly 
inactive. Hollinshead et  al. in 2016 showed that about 
90% of flux in E. coli is channelled through EMP pathway 
while the flux through ED pathway was negligible [94]. 
The active ED pathway allows to P. putida to generate 

a b

c d

e f

Fig. 5  Fermentation profile of P. putida metabolism under increased ATP demand. Experimentally measured specific growth rate (a) and glucose 
uptake rate (b) of P. putida as the ATP demand induced by titration of 2,4 dinitrophenol (DNP) increases. The profiles of specific growth rate (c), 
glucose uptake rate (d), flux through ATP synthase (e) and oxygen uptake rate (f) computed by TFA using the reduced D2 model. The identical (c–f) 
profiles were obtained when iJN1411 was used in TFA, which further demonstrates the consistency of the reduced D2 model with iJN1411
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NAPDH which is required to counteract environmental 
stresses [65, 78].

We undertook to investigate does the biochemical net-
work of P. putida has the potential to produce enough 
ATP to cope with the stress. To this aim, we first used our 
stoichiometric model to assess the stoichiometric capac-
ity of this organism to produce ATP, and then, we used 
the developed kinetic model to identify metabolic engi-
neering strategies to steer the system towards attaining 
that capacity.

Assessing the stoichiometric capacity of P. putida for ATP 
production
We preconfigured the model for this study (Methods) and 
used it to simulate the impact of increased ATP demand 
on the P. putida metabolism by gradually increasing the 
minimally required flux through ATP hydrolysis in incre-
ments of 1  mmol/gDCW/h (Fig.  5). We set the upper 
bound of the specific growth rate to 0.73 1/h, as reported 
in Ebert et  al. [7] for the DNP concentration of 0  mg/l. 
Based on the performed sensitivity analysis of model 
responses to upper constraints on the oxygen uptake rate 
and ATP synthase (“Methods”), we set the upper bounds 
on the oxygen uptake rate and ATP synthase to 40 mmol/
gDCW/h and 70 mmol/gDCW/h, respectively. The glu-
cose uptake rate was left unconstrained.

In agreement with the experiments, the model pre-
dicted that the minimal glucose uptake of 7.51  mmol/
gDCW/h is required to attain the specific growth rate of 
0.73 1/h when the lower bound of the flux through ATP 
hydrolysis is set to 0  mmol/gDCW/h (Fig.  5c, d). Also 
consistent with the experiments, with the increase of the 
minimally required ATP hydrolysis flux, the required 
minimal glucose uptake was increasing (Fig.  5d) simul-
taneously with an increase of the ATP synthesis flux 
and minimal oxygen uptake (Fig.  5e, f ), while the spe-
cific growth rate remained stable (Fig.  5c). For the ATP 
hydrolysis flux of 37  mmol/gDCW/h, the minimal glu-
cose uptake was 9.56  mmol/gDCW/h and the slope of 
the minimal glucose and oxygen uptake became steeper 
(Fig.  5d, f ). When the ATP hydrolysis flux reached 
44  mmol/gDCW/h, the oxygen uptake rate and ATP 
synthase flux simultaneously attained their upper 
bounds (Fig.  5e, f ). The corresponding minimal glucose 
uptake was 11.89  mmol/gDCW/h, which was consist-
ent with Ebert et  al. [7] (11.6 ± 1.2  mmol/gDCW/h). 
After this point, the required minimal glucose uptake 
started to decline (Fig.  5d) together with a decline in 
the specific growth rate (Fig.  5c). For the ATP hydroly-
sis flux of 73  mmol/gDCW/h, the model predicted the 
specific growth rate of 0.25 1/h and the minimal glucose 
uptake rate of 8.54  mmol/gDCW/h, which was slightly 

more than what was reported in the Ebert et  al. [7] 
(7.5 ± 0.8 mmol/gDCW/h).

The thermodynamically curated core stoichiometric 
model described well the qualitative behavior of P. putida 
in the stress condition of increased ATP demand. How-
ever, the model failed to capture a decrease of the spe-
cific growth rate for DNP concentrations in the range 
of 300–700 mg/l (Fig. 5c). Possible explanations for this 
discrepancy are that the decrease of specific growth rate 
in this region might be due to: (i) kinetic effects that can-
not be captured by stoichiometric models; (ii) the intrin-
sic toxicity of DNP, which was not modeled. It is also 
important to observe that in Ebert et al. [7] the increased 
ATP demand was indirectly induced by tittering differ-
ent levels of DNP, whereas we simulated that effect by 
increasing the ATP hydrolysis flux. Since P. putida does 
not necessarily respond to a linear increase in the DNP 
levels by linearly increasing the ATP hydrolysis, the exact 
correspondence of the data points in the graphs obtained 
through experiments and computational simulation was 
not expected.

Improving the robustness of P. putida under stress conditions
We devised a metabolic engineering strategy that will 
allow P. putida to maintain the specific growth rate for 
more severe stress conditions. To this end, we computed 
the steady-state metabolic flux and metabolite concen-
tration vectors for the ATP hydrolysis flux of 44 mmol/
gDCW/h. We then built a population of 50,000 kinetic 
models around the computed steady-state, and computed 
the control coefficients for all fluxes and concentrations 
in the metabolic network.

Analysis of the control coefficients for the specific 
growth rate revealed several strategies for maintaining 
high growth in the presence of stress agent 2,4-dinitro-
phenol that increases ATP demand (Fig.  6). The major 
positive control over the specific growth at this stress 
condition have the key enzymes from the Entner–Dou-
doroff pathway (EDA, EDD and GNK), e.g., the twofold 
increase in activity of EDA would improve the specific 
growth by more than 50%. That is, the extra ATP demand 
is balanced with higher glucose uptake and glucose catab-
olism through ED pathway (Additional file 2: Figure S4, 
Additional file 3: Figure S5 and Additional file 4: Figure 
S6). Furthermore, these enzymes have a positive control 
over NADPH production (Additional file  5: Figure S7), 
which is necessary to fuel proton-motive-force-driven 
efflux pumps, the major mechanism of solvent tolerance 
in P. putida [95] or to reduce stress through antioxidant 
systems that utilize NADPH [96].

Similarly, our analysis suggests that an increase in 
the activity of GLCDpp that catalyzes the conversion 
of glucose to periplasmic gluconate would increase the 
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specific growth, i.e., the twofold increase in GLCDpp 
activity would result in improved specific growth by 
~ 40% (Fig.  6). The twofold decrease in the activity of 
triose-phosphate isomerase (TPI) would result in a 13% 
increase in the specific growth. Furthermore, the two-
fold decrease in the activity of aspartate transaminase 
(ASPTA) and succinate dehydrogenase (SUCDi) would 
also increase the specific growth by 9.5% and 9.9%, 
respectively. The reason for these effects is coupling 
through redox, protons, and electrons, which is in part 
stoichiometric. However, if one observes closer the mass 
balances for redox, protons, and electrons, they allow 
more flexibility in the coupled reactions as opposite to 
main carbon balances. This result further demonstrates 
the values of kinetic models, which for a given set of 
kinetic parameters can unambiguously the responses to 
genetic and environmental perturbations.

Interestingly, our results also show a positive control of 
malic enzyme (ME2) over the specific growth. Together 
with pyruvate carboxylase (PC), ME2 forms the pyruvate 
shunt that in P. putida grown on glucose channels malate 
to oxaloacetate [63, 97]. Since PC hydrolyzes ATP and 
ME2 produces NADPH, the pyruvate shunt is considered 
to be energetically costly, thus affecting cellular growth, 
but potentially useful for the redox metabolism [97]. 
However, in the studied stress condition, the flux con-
trol coefficients show that ME2 activity increase results 
in an increase of the flux through PC (Additional file 6: 
Figure S8) but impacts also other fluxes in the metabolic 
network, including the remaining reactions related to the 
ATP metabolism (43 reactions from the core network 
and the majority of the lumped reactions). Additionally, 

ME2 activity increase causes increase in the glucose 
uptake, and GLCDpp and EDA/EDD fluxes (Additional 
file  2: Figure S4, Additional file  3: Figure S5, Additional 
file 4: Figure S6 and Additional file 7: Figure S9), which 
results in increased ATP production and specific growth 
(Additional file 8: Figure S10 and Fig. 6). The overall posi-
tive effects of increased ME2 activity on ATP production 
and growth outweigh the negative effect of ATP hydroly-
sis by PC. Without large-scale kinetic models it would be 
difficult to uncover such complex and unintuitive inter-
actions in the metabolic network.

We found a strong correlation between the control 
coefficients of the specific growth and the concentra-
tion control coefficients of the cytosolic ATP (Addi-
tional file  1: Table  S6). Indeed, the Pearson coefficient 
was 0.8 between these two sets of control coefficients 
with respect to their top controlling enzymes. Moreo-
ver, the top enzymes had a consistent control over the 
specific growth and the cytosolic ATP concentration. 
That is, the enzymes that had a positive control over the 
specific growth had a positive control over the cytosolic 
ATP concentration, and similarly for the enzymes with 
a negative control. This indicated that the key factor for 
improving the specific growth under severe stress condi-
tions is to improve the ATP production in cytosol.

Conclusions
This study presents the first thermodynamically curated 
genome-scale model of P. putida. Thermodynamic cura-
tion makes the curated GEM iJN1411 amenable for 
integrating metabolomics data. The integration of ther-
modynamics data into models restricts the available flux 
and concentration spaces [35, 39] because thermody-
namics determines the directionality in which reactions 
can operate [35, 37]. For example, Flux Balance Analysis 
(FBA) performed on iJN1411 indicated that 108 reactions 
could operate in both forward and reverse direction (bi-
directional reactions) while still being consistent with 
the integrated fluxomics data [63]. However, when addi-
tional metabolomics data [64] were integrated with TFA, 
21 out of these 108 reactions could not operate in both 
directions due to thermodynamic constraints (Additional 
file 1: Table S4). The thermodynamically curated iJN1411 
was further used to develop a family of three systemati-
cally reduced models of P. putida central carbon metabo-
lism that lend themselves for a wide gamut of metabolic 
engineering studies.

Current metabolomics measurement techniques do 
not allow for distinguishing concentrations of the same 
species in different compartments. Consequently, when 
integrating metabolomics data in constraint-based 
techniques that consider thermodynamics such as the 
energy balance analysis [98], the network-embedded 
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thermodynamic analysis [99] and the thermodynam-
ics-based flux analysis [35, 36, 38, 39], it is commonly 
assumed that the concentrations of a metabolite appear-
ing in several compartments are identical and con-
strained within experimentally measured values. We 
proposed here a novel set of constraints within TFA that 
enable integration of metabolomics data without impos-
ing this restrictive assumption. In this formulation, we 
model concentrations of metabolites that exist in several 
compartments as distinct quantities, and, at the same 
time, we preserve the consistency of their values with 
experimentally measured values for the whole cell. This 
way, we ensure that the set of possible metabolic out-
comes predicted by the model encompasses the actual 
cellular physiology.

Finally, we derived here the kinetic models of P. putida’s 
central carbon metabolism containing 775 reactions and 
245 metabolites that comprise pathways from glycolysis 
and gluconeogenesis, pentose phosphate pathway, pyru-
vate metabolism, TCA cycle, and oxidative phosphoryla-
tion. Considering their size, scope, and level of details, 
the derived models are the largest kinetic model of this 
organism available in the literature to this date. The 
potential applications of the developed kinetic models 
were illustrated in two studies of P. putida metabolism.

Methods
Considering cellular compartments while integrating 
metabolomics data
Here we propose a novel set of constraints that allow for 
considering concentrations of the same species across 
different compartments while maintaining the consist-
ency with the experimental measurements.

For the concentration CM of a metabolite M measured 
in the range CM ∈

(

CM ,CM

)

 we have:

where Nt is the number of moles of M and Vt is the 
total volume of the cell. NCi and VCi are the correspond-
ing quantities in compartments i. Considering that 
∑

i
VCi = Vt , i.e., 

∑

i

VCi

Vt
=

∑

i
αi = 1 , by dividing (1) 

with Vt we obtain

where CMi is the concentration of metabolite M in the 
compartment i and αi is the volume fraction of the com-
partment i with respect to the entire cell. Observe that αi 
and CMi are positive quantities.

If we apply logarithm to (2), we have:

(1)CM =
Nt

Vt

=

∑

i
NCi

∑

i
VCi

,

(2)CM =

∑

i

NCi

Vt

VCi

VCi
∑

i

VCi

Vt

=

∑

i
αiCMi

∑

i
αi

,

Considering that log is a concave function, we can 
use Jensen’s inequality [100] where for a concave func-
tion ϕ and positive weights αi it holds that:

Therefore, by combining (3), (4) we get:

Moreover, if we denote the physiological lower and 
upper bound on intracellular metabolite concentrations 
as LB= 1  μM and UB=50  mM, respectively, then the 
upper bound on CMi , CMi  , can be derived from the fol-
lowing expression:

hence

To prevent the case CMi > UB for some values of αi , 
we set the upper bound on CMi  as follows:

Analogously for the lower bound on the concentra-
tion of the metabolite M in the compartment i, CMi  , we 
have:

Therefore, instead of using i constraints on the 
compartment species of metabolite M in the form of 
logCM ≤ logCMi ≤ logCM  , we propose to use i + 2 
constraints providing more flexibility and relaxing the 
assumption on equal concentrations of metabolite M in 
all compartments:

together with (5) and

where CMi and CMi are computed as in (8), (9).
The volume fractions of cytosol, α1 , and periplasm, 

α2 , were taken respectively as 0.88 and 0.12 [101].

(3)logCM = log

∑

i
αiCMi

∑

i
αi

.

(4)ϕ

(
∑

i
αixi

∑

i
αi

)

≥

∑

i
αiϕ(xi)
∑

i
αi

.

(5)logCM = log

∑

i
αiCMi

∑

i
αi

≥

∑

αi logCMi.

(6)CM = αiCMi + (1− αi) ∗ LB,

(7)CMi =
CM − (1− αi) ∗ LB

αi
.

(8)CMi = min

(

CM − (1− αi) ∗ LB

αi
, UB

)

.

(9)CMi = max

(

CM − (1− αi) ∗ UB

αi
, LB

)

.

(10)logCMi ≤ logCMi ≤ logCMi

(11)logCM ≤ logCM ≤ logCM ,
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Gap‑filling of thermodynamically curated iJN1411
In the gap-filling procedure [60], we carried out MILP 
using the matTFA toolbox [102] to find a minimal set 
of reactions that should be added to iJN1411 to match 
experimentally measured values of glucose uptake, spe-
cific growth rate, and ATP concentration. The candidate 
reactions for the gap-filling were taken from iJO1366 
GEM of E. coli. More precisely, we appended reactions 
from iJO1366 into iJN1411 to obtain a composite model. 
We then removed duplicate reactions from the compos-
ite model along with phosphofructokinase (PFK) that is 
experimentally shown to be absent from P. putida metab-
olism [65]. Compared to iJN1411 the composite model 
had additional 1201 reactions originating from iJO1366. 
We performed MILP for the imposed task, and we found 
that it is sufficient to add one out of 1201 reactions (sul-
fate adenyltransferase (SADT2)) from iJO1366 to iJN1411 
to obtain consistency of iJN1411 TFA solutions with the 
experimental data.

Systematic reduction of iJN1411
We used the redGEM [76] and lumpGEM [77] algo-
rithms to deliver reduced models of three different sizes 
(referred in “Results and discussion” section as D1, D2 
and D3). The first step in the redGEM algorithm is to 
select the metabolic subsystems of interest around which 
the reduced models are built. We selected the following 
six metabolic subsystems from iJN1411: glycolysis and 
gluconeogenesis, pentose phosphate pathway, pyruvate 
metabolism, TCA cycle, and oxidative phosphorylation. 
From the reactions belonging to these six subsystems, we 
removed all cofactor pairs and small metabolites such as 
protons, phosphate groups, and inorganics. We then used 
a graph search algorithm to identify all one-reaction, 
two-reaction, and three-reaction steps pairwise connec-
tions between six subsystems and formed the core meta-
bolic networks of D1, D2 and D3 model, respectively. We 
next performed another graph search to find the con-
nections of D1–D3 core networks with the extracellular 
space. With this step the core networks of D1, D2 and D3 
models were finalized.

We then used the lumpGEM [77] algorithm to con-
nect the core networks of D1, D2 and D3 with the build-
ing blocks of the iJN1411 biomass reaction. For each of 
102 iJN1411 biomass building blocks (BBBs), lumpGEM 
identified a set of alternative minimal subnetworks that 
were able to connect precursors belonging to the core 
network and the BBB. The size of minimal networks is 
denoted Smin [77]. For some studies it is of interest to 
identify subnetwork of higher sizes. Herein, we identified 
subnetworks of the size Smin + 2. Finally, lumpGEM col-
lapses the identified subnetworks into lumped reactions, 

which together with the core networks constitute the 
core reduced model.

The D1 model consisted of: (i) the D1 core network 
formed by the reactions and metabolites from the six 
subsystems and the reactions that belonged to one-
reaction-step pairwise connections between these six 
subsystems [76] (Fig.  1); and (ii) lumped reactions that 
connected the D1 core network with the BBBs. The D2 
model contained: (i) the D2 core network containing 
the D1 core network and the reactions and metabolites 
that belonged to two-reaction-step pairwise connec-
tions between the six subsystems (Fig. 1); and (ii) lumped 
reactions that connected the core network of D2 and 
the BBBs. The reactions that belonged to the two-reac-
tion-step pairwise connections between the subsystems 
were predominantly from the fatty acid and amino acid 
metabolism (Additional file 9: File S2). The core network 
of the highest complexity model, D3, included also the 
reactions and metabolites from the three-reaction-step 
pairwise connections between the six subsystems (Fig. 1). 
The reactions included into the D3 core network were 
mostly from glyoxylate and dicarboxylate metabolism 
and folate biosynthesis (Additional file 10: File S3).

Consistency checks of core reduced models
We performed a battery of tests to validate the consist-
ency of the systemic properties of the core reduced mod-
els D1, D2 and D3 with their GEM counterpart, iJN1411. 
Here we present and discuss results for D2, the results for 
D1 and D3 are provided in Additional file 11: File S4.

We first performed FBA and TFA for the glucose 
uptake of 10 mmol/gDCW/h, and we found the identical 
maximum specific growth rate of μ = 0.94  h−1 for both 
D2 and iJN1411, meaning that D2 was able to capture 
well the physiology of the growth on glucose.

We then carried out the comparison of essential genes 
between D2 and GEM. In silico gene deletion represents 
one of the most common analysis of metabolic networks, 
and it is used to assess the predictive potential of the 
model [10] or to identify main genetic targets for strain 
engineering [16, 103]. Out of 314 genes that D2 shared 
with GEM, we identified 47 as in silico essential. Out of 
these 47, 36 were essential in both D2 and GEM and 11 
were essential in D2 only (Additional file  1: Table  S5). 
These 11 genes were essential in D2 because this model 
was missing some of the alternative pathways from GEM. 
For example, aceF PP_0338 (encoding for acetyltrans-
ferase component of pyruvate dehydrogenase complex) 
and aceE PP_0339 (encoding for pyruvate dehydrogenase, 
E1 component) are essential in D2 because they encode 
for enzymes necessary for synthesizing acetyl-CoA from 
pyruvate, whereas GEM contains additional alternative 
pathways for this synthesis. Interestingly, among the 11 
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genes is tpiA  PP_4715 encoding for triose-phosphate 
isomerase, which is reported as essential in the literature 
[78].

We next performed thermodynamic-based variability 
analysis (TVA) on all common reactions and metabolites 
of D2 and GEM and compared their thermodynamically 
allowable ranges. We obtained consistent flux ranges for 
the majority of the reactions, and 131 reactions were less 
flexible in D2 than in GEM (Additional file 12: Figure S3). 
Most of these reactions were in the upper glycolysis such 
as GAD2ktpp (gluconate 2 dehydrogenase periplasm), 
GLCDpp (glucose dehydrogenase), HEX 1 (hexokinase) 
and GNK (gluconokinase), and gluconeogenesis such as 
PGK (phosphoglycerate kinase), PGM (phosphoglycerate 
mutase) and ENO (enolase). Additional flexibility of these 
reactions in GEM comes from the pathways of starch and 
sucrose metabolism and cell envelope biosynthesis cellu-
lose metabolism, which are absent in D2. The allowable 
ranges of concentrations of common metabolites of D2 
and GEM were consistent. Similar result was reported for 
the case of E. coli where the discrepancy in concentration 
ranges was reported for only few metabolites [76].

Preconfiguring stoichiometric model for kinetic studies 
of wild‑type physiology
We expanded the stoichiometric network of D2 by add-
ing the reactions that model free diffusion to extracellu-
lar space of all intracellular metabolites that: (i) have less 
than 10 carbon atoms and do not contain phosphate or 
CoA; and (ii) do not have an existing transport reaction 
in the model. This was done to model a possibility that 
small amounts of these metabolites were produced dur-
ing fermentation but in insufficient quantities for experi-
mental detection. The expanded model contained 768 
reactions and 339 metabolites across cytosol, periplasm, 
and extracellular space.

Based on the data provided in del Castillo et  al. [63], 
we integrated into the model the experimentally meas-
ured rates of glucose uptake and biomass growth and 
we forced the secretion of d-gluconate and 2-dehydro-
d-gluconate by putting a lower bound on their exchange 
reactions to 0.3  mmol/gDCW/h. For the remaining 
carbon-based by-products, we allowed only their basal 
secretion by constraining their transport rates to the 
extracellular space (10−6–10−3  mmol/gDCW/h) fol-
lowing the common observation in the literature that P. 
putida can break the carbon down almost without any 
by-product formation [7]. Furthermore, we integrated 57 
experimentally measured intracellular metabolite con-
centrations [64]. In the model, 12 out of the 57 measured 
metabolites appear in both cytosol and periplasm. The 
concentration values of these 12 metabolites were meas-
ured per cell and not per compartments, and as discussed 

previously, to integrate this information for each species 
in the two compartments only two additional constraints 
were added in TFA. Overall, these 57 measurements pro-
vided constraints for 69 metabolite concentrations in the 
model.

We then imposed constraints based on several addi-
tional assumptions: (i) TCA cycle was complete [7, 78]; 
(ii) two glutamate dehydrogenases (GLUDx and GLUDy) 
were operating towards production of l-glutamate; (iii) 
dihydrolipoamide S-succinyltransferase was generat-
ing NADH from NAD+ [104]; (iv) acetaldehyde dehy-
drogenase (ACALD) was producing acetaldehyde; (v) 
ribulose 5-phosphate 3-epimerase (RPE) was converting 
d-ribulose 5-phosphate to d-xylulose 5-phosphate; (vi) 
adenylate kinase (ADK1) and nucleoside-diphosphate 
kinase (NDPK1) were consuming ATP; and (viii) GTP-
dependent adenylate kinase (ADK3) was consuming 
GTP.

Preconfiguring stoichiometric model for kinetic studies 
of stress conditions
The stoichiometric model was reconfigured in the fol-
lowing way: (i) we constrained the specific growth rate 
in the range 0.43 ± 0.2 1/h and the glucose uptake in 
the range 11.6 ± 1.2  mmol/gDCW/h. These values cor-
respond to the concentration of 700 mg/l of DNP in the 
experimental study or 44 mmol/gDCW/h in the simula-
tion study (Fig. 5d); (ii) the directionalities of 26 reactions 
from the glycolysis, gluconeogenesis, PPP and TCA were 
constrained by putting lower and upper bounds from 
Ebert et al. [7] Interestingly, the reported directionality of 
TKT2 in this physiological condition was opposite than 
it was assumed in the study of wild-type physiology; (iii) 
two glutamate dehydrogenases were operating towards 
production of l-glutamate; (iv) dihydrolipoamide S-suc-
cinyltransferase was operating towards production of 
NADH from NAD+ [104].

We performed TFA with so configured stoichiomet-
ric model, and we found that six reactions (acetaldehyde 
dehydrogenase acetylating, adenylate kinase, adenylate 
kinase GTP, sodium proton antiporter, nucleoside 
diphosphate kinase ATP:GDP and phosphate transport 
via symport periplasm) could operate in both directions 
whilst still satisfying the integrated data. To fix the direc-
tionalities of these six reactions, we performed another 
TFA where we minimized the sum of the fluxes in the 
metabolic network under the constraint that at least 99% 
of the observed specific growth rate should be attained.

Sensitivity analysis of metabolic responses to maximal 
rates in the oxygen uptake and ATP synthesis
Depending on physiological conditions, maximal rates 
of oxygen uptake and ATP synthase in P. putida can 
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take a wide range of values. For instance, in optimally 
grown P. putida, oxygen uptake rate is about 15  mm/
gDCW/h [10], while in the stress conditions it can go 
above 50 mm/gDCW/h [7]. To investigate the effects of 
the maximal rates on model predictions, we constrained 
upper bound on biomass growth to 0.73 1/h and we per-
formed multiple TFAs for different combinations of max-
imal allowed rates of oxygen uptake and ATP synthesis.

We varied the allowed maximal oxygen uptake 
between 30 and 70  mm/gDCW/h (the range between 

40 and 60  mm/gDCW/h was reported in [7]), and the 
allowed maximal flux through ATP synthase between 
40 to 100  mm/gDCW/h. For each combination of oxy-
gen uptake/ATP synthase maximal rates, we com-
puted changes of minimal required glucose uptake with 
the respect to changes in flux through ATP hydrolysis 
(Fig. 7).

For the allowed maximal oxygen uptake of 30 mmol/
gDCW/h, the peak of the minimal glucose uptake rate 
was at 10.22  mmol/gDCW/h, which is slightly under 

Fig. 7  Minimal glucose uptake rate as a function of ATP hydrolysis flux for different combinations of allowed maximal rates of the oxygen uptake 
and ATP synthesis. The sensitivity analysis indicates that models with the maximal oxygen uptake rate of 40 mmol/gDCW/h and the ATP synthesis 
rate of 70 mmol/gDCW/h (red box) are providing the best qualitative agreement with the experimental data [7] while maintaining the model 
flexibility



Page 16 of 19Tokic et al. Biotechnol Biofuels           (2020) 13:33 

the value reported in Ebert et al. [7] (11.6 ± 1.2 mmol/
gDCW/h) (Fig.  7). For the allowed maximal oxygen 
uptake of 40  mmol/gDCW/h, the peak of the minimal 
glucose uptake rate was at 11.89 mmol/gDCW/h which 
was within the bounds reported in [7], whereas for the 
allowed maximal oxygen uptake of 50 mmol/gDCW/h, 
the peak of minimal glucose uptake rate was above the 
experimental values (13.56  mmol/gDCW/h). Conse-
quently, we used the bound on allowed maximal oxy-
gen uptake rate of 40  mmol/gDCW/h for our kinetic 
studies.

Interestingly, the constraint on the allowed maximal 
ATP synthase rate did not have an effect on the mag-
nitude of the peak value of the minimal glucose uptake 
rate. Instead, it affected the position of the peak with 
the respect to the ATP hydrolysis flux (Fig.  7). The 
higher the ATP synthase rate, the higher ATP hydrol-
ysis flux was required to attain the peak value of the 
minimal glucose uptake. For example, in the case of the 
allowed maximal oxygen uptake of 30 mmol/gDCW/h, 
the ATP hydrolysis flux of 9 and 19  mmol/gDCW/h 
was required to attain the peak of the minimal glucose 
uptake of 10.22  mmol/gDCW/h for the allowed maxi-
mal ATP synthase rates of 40 and 50  mmol/gDCW/h, 
respectively. Based on these observations and com-
parison with the experimental data, one can equally 
consider values of 50, 60 or 70 mmol/gDCW/h for the 
upper bound on ATP synthase since all three values 
describe qualitatively well the experimental data [7] 
(Figs. 5 and 7). We set the upper bound of ATP synthase 
to 70 mmol/gDCW/h to keep the maximal flexibility in 
the model.

Construction of large‑scale kinetic models
To construct the kinetic models, we employed the ORA-
CLE framework. In ORACLE, we remove the mass 
balances for the extracellular metabolites from the stoi-
chiometry because we consider the concentrations of 
extracellular metabolites as parameters. The mass bal-
ances for water and the corresponding transport reac-
tions were also removed. We then assigned a kinetic 
mechanism to each of the enzyme catalyzed reactions 
in the model, and we integrated experimental values for 
21 Michaelis constants (Km’s) that we found for the Pseu-
domonas genus in the Brenda database [81–84]. We next 
employed the Monte Carlo sampling technique to com-
pute the saturation states of enzymes, and these quanti-
ties were used to back-calculate the unknown values of 
Michaels constants (Km’s) [41, 43, 45].

The details about this framework are discussed else-
where [34, 41–50].
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