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Iron incorporation both intra‑ 
and extra‑cellularly improves the yield 
and saccharification of switchgrass (Panicum 
virgatum L.) biomass
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Abstract 

Background:  Pretreatments are commonly used to facilitate the deconstruction of lignocellulosic biomass to its 
component sugars and aromatics. Previously, we showed that iron ions can be used as co-catalysts to reduce the 
severity of dilute acid pretreatment of biomass. Transgenic iron-accumulating Arabidopsis and rice plants exhibited 
higher iron content in grains, increased biomass yield, and importantly, enhanced sugar release from the biomass.

Results:  In this study, we used intracellular ferritin (FerIN) alone and in combination with an improved version of cell 
wall-bound carbohydrate-binding module fused iron-binding peptide (IBPex) specifically targeting switchgrass, a 
bioenergy crop species. The FerIN switchgrass improved by 15% in height and 65% in yield, whereas the FerIN/IBPex 
transgenics showed enhancement up to 30% in height and 115% in yield. The FerIN and FerIN/IBPex switchgrass 
had 27% and 51% higher in planta iron accumulation than the empty vector (EV) control, respectively, under normal 
growth conditions. Improved pretreatability was observed in FerIN switchgrass (~ 14% more glucose release than the 
EV), and the FerIN/IBPex plants showed further enhancement in glucose release up to 24%.

Conclusions:  We conclude that this iron-accumulating strategy can be transferred from model plants and applied 
to bioenergy crops, such as switchgrass. The intra- and extra-cellular iron incorporation approach improves biomass 
pretreatability and digestibility, providing upgraded feedstocks for the production of biofuels and bioproducts.

Keywords:  Ferritin, Iron co-catalyst, Transgenic switchgrass, High-throughput hot-water pretreatment, 
Saccharification, Sugar release, Perls’ Prussian blue staining
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Background
As the demand for sustainable energy and bioproducts 
increases along with the growth of the world population 
[1, 2], the supplies of improved bioenergy crops and alter-
native feedstocks to meet escalating demands are becom-
ing important challenges [3–5]. Biomass feedstocks 
are also considered a readily available source to replace 
petroleum-based resources and provide energy, trans-
portation fuels, and bioproducts, resulting in environ-
mentally friendly alternatives for reducing net long-term 
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carbon dioxide emissions [6–8]. In contrast to first-gen-
eration biofuels that can affect food supplies, the second 
generation of biofuels relies primarily on lignocellulosic 
biomass [9]. With the advancement of interdisciplinary 
expertise in “green” technology for second-generation 
biofuels, concepts for the lignocellulosic biorefinery have 
recently emerged and are defined as the sustainable pro-
cessing of biomass and conversion to a wide range of 
bioenergy products (i.e., energy, heat, and biofuels) and 
other bioproducts (i.e., supplement, chemicals, and/or 
materials) [10–12].

Several non-food plant species have been designated 
as dedicated lignocellulosic biomass crops based on their 
high yields and/or rapid growth [9, 13–15]. Examples are 
switchgrass [16, 17], Miscanthus [18], sorghum [19], Pop-
ulus [20], and willow [21]. The main structural compo-
nent of lignocellulosic biomass is the secondary cell wall 
(SCW), which consists of 40 to 50% cellulose, 15 to 25% 
hemicellulose, and 20 to 25% lignin [22, 23]. To utilize lig-
nocellulosic biomass as a starting material, the biomass 
often requires pretreatment to loosen the interweaving 
networks of lignocellulosic fibers via thermal, chemical, 
or electrochemical processes [24], such as dilute sulfuric 
acid [25], alkaline [26], ammonia fiber explosion (AFEX) 
[27], steam explosion [28], liquid hot water [29] or pulsed 
electric field (PEF) [30, 31]. After pretreatment, the natu-
ral lignocellulosic networks are disrupted, which results 
in partial cell wall deconstruction, including wall delami-
nation and defibrillation. These pretreated and modified 
walls are more readily attacked by lytic saccharifica-
tion enzymes [32, 33]. However, biomass recalcitrance 
still poses a challenge for the cost-effective breakdown 
of plant cell walls. The current barriers for the use of 
all known pretreatment technologies include the high 
energy inputs/waste outputs and complex nature of the 
resulting pretreated biomass and liquors [34–36].

Switchgrass is a warm-season perennial C4-type grass 
species, which is native to central and north American 
[37]. Switchgrass has several advantages compared to 
other bioenergy crops, such as lower fertilizer require-
ment, higher yield potential, good pest/disease toler-
ance, better water/nutrient use efficiency, good growth 
on marginal lands, and resilience to biotic and abiotic 
stresses [38–43]. Switchgrass has an extensive root sys-
tem, which can provide excellent soil conservation and 
carbon sequestration while being compatible with con-
ventional farming practices [44]. It has been proposed 
as a potential dual-purpose crop for both bioenergy and 
forage [45]. However, switchgrass biomass has higher 
recalcitrance and requires higher severity pretreatments 
than other lignocellulosic feedstocks such as corn stover, 
which is due to the unique structure of switchgrass cell 
walls [46–48].

With the advances in genomic technologies, it is now 
possible to discover natural variations with adaptive 
traits that are beneficial for bioenergy or bioproduct pro-
duction by next-generation sequencing [49]. However, to 
rapidly and directly improve the quality of plant biomass, 
plant genetic engineering remains the most effective 
and efficient approach [50], especially considering the 
high degree of self-incompatibility of switchgrass, which 
makes it challenging to retain quantitative traits under 
conventional breeding and selection methods [51]. Many 
attempts have been conducted in planta to reduce the cell 
wall recalcitrance of plant biomass. Target genes include 
those involved in the lignin biosynthetic pathway [52–
54], lignin polymerization [55, 56], lignin manipulation 
[57–59], and polysaccharide content [60–63]. Over the 
last decade, genetic modification of switchgrass has suc-
cessfully improved the quality of switchgrass by reduc-
ing lignin content, modifying lignin structure, enhancing 
fermentable sugar release for better saccharification effi-
ciency; as well as by increasing the biomass yield [64–76].

Biomass recalcitrance is the primary barrier to the effi-
cient and economical production of advanced biofuels 
or value-added bioproducts [77]. Instead of targeting the 
biosynthesis of a specific plant cell wall component that 
might affect plant growth, we developed and patented a 
promising approach to increase cell wall pretreatability 
using iron ions as co-catalysts [78]. We identified several 
essential factors that contributed to iron ion-enhanced 
efficiency during dilute acid pretreatment of biomass and 
elucidated the enhancement mechanisms [79]. Further, 
we demonstrated the successful accumulation of iron 
in Arabidopsis plants by overexpressing soybean ferri-
tin intracellularly (referred to as FerIN) [80], while post-
harvest stems of Arabidopsis plants showed enhanced 
pretreatability (i.e., released 13–19% more glucose/xylose 
than EV control). Similarly, Yang et al. developed a novel 
strategy for in planta accumulation of iron in Arabidop-
sis and rice using a cell wall targeted iron-binding peptide 
(IBP) [81]. Our results showed enhanced iron accumula-
tion and improved biomass conversion with 20% more 
glucose and 15% more xylose release than controls [81]. 
Delivery of ferritin extracellularly into the plant cell wall 
(referred to as FerEX) resulted in increased biomass yield 
and even higher pretreatability and digestibility (released 
21% and 34% more glucose and xylose, respectively) 
than the FerIN Arabidopsis plants [82]. Moreover, this 
in planta iron accumulation is valuable when considering 
its use for iron biofortification for human nutrition. This 
point was demonstrated in rice grains by cell wall tar-
geted-IBP overexpression [81] and in wheat by increasing 
metal chelator biosynthesis [83].

Here, we translate these discoveries from model plants 
to the bioenergy crop, switchgrass. First, we introduced 
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ferritin protein intracellularly under constitutive control 
of the 35S-CaMV promoter in switchgrass (FerIN). Sec-
ond, we stacked an improved version of the extracellular 
iron-binding peptide (IBPex) into the FerIN-expressing 
switchgrass [81]. The resulting transgenic switchgrass 
lines were characterized with regard to transgene expres-
sion, biomass yield, and digestibility and pretreatabil-
ity of stems. We cite the following evidence: (1) Using 
protein engineering, we generated an improved version 
of native IBPex with improved iron-binding ability by 
combining four tandem repeats of the IBP peptide (now 
4xIBP). (2) The presence and expression of transgenes 
(ferritin and IBP) were confirmed by genomic DNA 
PCR, Southern blot, qRT-PCR, and western blot analy-
ses. (3) The phenotype of the transgenic switchgrass was 
significantly increased in both height (up to ~ 15% in 
FerIN transgenic and ~ 30% in FerIN/IBPex) and yield 
(~ 65% in FerIN transgenic and ~ 115% in FerIN/IBPex). 
(4) Improved in vitro iron-binding activity and in planta 
iron-accumulating ability were observed in both FerIN 
and FerIN/IBPex transgenic switchgrass. (5) Compared 
to the EV control, the FerIN transgenic switchgrass 
showed enhanced pretreatability by releasing ~ 14% more 
glucose, whereas FerIN/IBPex switchgrass releases up to 
24% more glucose. In conclusion, this iron incorporation 
strategy using iron-binding protein/peptide with spati-
otemporal optimization can positively impact the quality 
of switchgrass biomass.

Results
Design of an improved SP‑CBM‑IBP with enhanced 
iron‑binding ability
To overcome the recalcitrance of switchgrass, we aimed 
to design an improved version of switchgrass based on 
the success of our previous study using model plants [81]. 
We generated a unique signal peptide-carbohydrate-
binding module-iron-binding peptide (SP-CBM-IBP), 
with enhanced iron-binding ability, for genetic engineer-
ing of switchgrass. We swapped the SP from dicot exten-
sin protein with the rice glycine-rich protein (GRP) [84]. 
The extracellular secretory nature of this monocot SP has 
been successfully demonstrated in monocot plants, such 
as switchgrass [85] and sorghum [86]. Then, we retained 
CBM11 for cell wall targeting because it is an effective 
and preferential delivery system [81]. Third, we also uti-
lized the IBP fragment for iron-binding, which binds iron 
across a wide range of pH and is known to facilitate iron 
accumulation in plants [81]. Finally, to boost the iron-
binding ability of SP-CBM-IBP, we generated tandem 
repeats of the IBP fragments to increase the iron-binding 
capacity of the polypeptide. Two DNA fragments were 
synthesized encoding the triple fusion polypeptides, 

which were SPGRP-CBM11-IBP and SPGRP-CBM11-4xIBP 
(Additional file 1: Figure S1).

To evaluate the iron-binding ability of the optimized 
polypeptides, we cloned the synthesized DNA fragments 
of SPGRP-CBM11-IBP and SPGRP-CBM11-4xIBP into the 
E. coli expression vector, and expressed them individu-
ally in E. coli. The expressed fusion proteins were puri-
fied and resolved by SDS-PAGE, which showed that 
SPGRP-CBM11-IBP is smaller than SPGRP-CBM11-4xIBP. 
This result matches the predicted molecular weights of 
19.4 kDa and 22.5 kDa, respectively (Fig. 1a).

The purified fusion proteins were used for an in  vitro 
iron-binding assay using two different pH ranges to 
compare their iron-binding ability using colorimet-
ric iron-binding methods (Additional file  1: Figure S2). 
At pH 5.5, similar to cell wall pH, SPGRP-CBM11-4xIBP 
stained more intensely on the membrane than 
SPGRP-CBM11-IBP, when 40 or 80  μg of recombinant 
protein was used (Fig. 1b), indicating the improved iron-
binding ability of SPGRP-CBM11-4xIBP. At pH 7, similar 
to cytosolic pH, the SPGRP-CBM11-4xIBP showed higher 
iron binding ability, which is about ~ twofold when 40 μg 
of recombinant protein was used and ~ 2.5-fold with 
80  μg of SPGRP-CBM11-4xIBP (Fig.  1c). These results 
demonstrated successful enhancement of the iron-bind-
ing capacity by increasing the tandem repeats of IBP 
fragment using SPGRP-CBM11-4xIBP polypeptide (here-
after called IBPex).

Production of transgenic switchgrass and molecular 
analyses
Two DNA constructs were prepared: (1) intracellular fer-
ritin (FerIN), and (2) FerIN stacking with cell wall tar-
geting IBPex (FerIN/IBPex). The DNA constructs were 
transformed into Agrobacterium tumefaciens EHA105 
individually. The presences of transgenes (hygromycin 
phosphotransferase (hph), IBP, and ferritin, Additional 
file 1: Figure S3) were confirmed by PCR in the Agrobac-
terium transformants using corresponding primer sets 
(Additional file 1: Table S1A).

Using our previously established switchgrass trans-
formation protocol [43], eight independent transgenic 
lines of each construct were successfully obtained within 
6  months. The primary screening of the putative trans-
genics was conducted using genomic DNA PCR to 
detect the presence of the transgenes. Seven of the eight 
transgenic lines showed positive signals for the FerIN 
construct (Fig.  2a), as well as for FerIN/IBPex (Fig.  2b). 
Reverse transcription PCR (RT-PCR) was then used to 
verify the presence of the transgenes and eliminate the 
false-positive result from genomic PCR. The RT-PCR 
results of the FerIN transgenics showed only the tran-
scripts of the ferritin, but not IBP (Additional file  1: 
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Figure S4, left). Transcripts of both ferritin and IBP can 
be detected in the FerIN/IBPex transgenic plants (Addi-
tional file  1: Figure S4, right), which is consistent with 
the genomic DNA PCR (Fig.  2a, b). The integration of 

T-DNA was also examined by Southern blots using 
our previously optimized procedure [43], and positive 
hybridization signals were detected in all selected trans-
genic plants (Fig. 2c, d).

Expression of FerIN and IBPex in transgenic switchgrass 
lines
The expression levels of ferritin and IBP in transgenic 
switchgrass lines were tested first by real-time quantita-
tive RT-PCR (qRT-PCR). Compared to the lowest expres-
sion level of the transgenes among the transgenic lines 
tested, the expression level of ferritin varied up to three-
fold in FerIN lines and up to 35-fold in FerIN/IBPex 
lines (Fig. 3a, b); whereas the level of IBP is ~ 3.5-fold in 
FerIN/IBPex lines (Fig.  3c). Using total soluble proteins 
extracted from the stem tissues of transgenic switchgrass 
lines, we were able to detect ferritin (~ 26  kDa) in the 
FerIN transgenic lines (Fig. 3d); as well as in the FerIN/
IBPex transgenic lines (Fig.  3e, top), by western blot 
analysis, using chicken IgY polyclonal antibody against 
the synthesized soybean ferritin peptide. The expression 
of the IBP was also detected as an expected ~ 22.5  kDa 

Fig. 1  Protein purification of iron-binding fusion proteins and iron-binding assay. a The SDS-PAGE analysis of SPGRP-CBM11-IBP and 
SPGRP- CBM11-4xIBP proteins purified from recombinant E. coli cells. b Comparison of the iron-binding ability of iron-binding fusion proteins at pH 
5.5 on a PVDF membrane. c Comparison of the iron-binding ability of iron-binding fusion proteins at pH 7.0 using light absorbance at 510 nm

Fig. 2  Molecular analyses of the engineered switchgrass transgenics 
using genomic DNA PCR and Southern blot (SB). a Genomic DNA 
PCR of FerIN transformed transgenic switchgrass. b Genomic DNA 
PCR of FerIN/IBPex transformed transgenic switchgrass. c SB of the 
FerIN transformed transgenic switchgrass. d SB of the FerIN/IBPex 
transformed transgenic switchgrass. For SB, the probe for detecting 
the hph gene was used. EV empty vector, NC negative control, PC 
positive control. EV was obtained from Lin et al. [43]
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band using the commercial monoclonal His-tag anti-
body against the C-terminal 6xhis-tag epitope of IBPex 
(Fig. 3e, bottom).

Based on the high transcriptional levels and successful 
protein expression of the transgenes, three independent 
lines for each of the two constructs (FerIN and FerIN/
IBPex) were selected for further characterization: lines 
3, 6, and 7 of FerIN and lines 6, 7, and 8 of FerIN/IBPex 
transgenic plants (Fig. 3).

Plant height and biomass yield of the FerIN and FerIN/
IBPex transgenic switchgrass
Compared to the EV control, the average height of 
4-month-old greenhouse-grown plants was 15.0 ± 1.1% 
higher in FerIN transgenic lines and 29.8 ± 6.4% higher 
in FerIN/IBPex lines (Fig.  4a). Especially notable is the 
FerIN/IBPex-8, which showed a 38% increase in height 
(Fig. 4a).

We also observed a remarkable improvement in the 
average biomass yield of the transgenic lines. FerIN 
transgenic switchgrass showed 65.8 ± 5.9% higher 
yield than the EV control, whereas the FerIN/IBPex 
plants increased even further in yield to 115.8 ± 12.8% 
(Fig. 4b). All FerIN transgenics (FerIN-3, -6, and -7) were 

significantly improved in weight (i.e., 58% to 77%). The 
FerIN/IBPex transgenic plants showed more improve-
ment than did the EV control and FerIN transgenics, 
which was up to ~ 132% increase in yield compared to the 
EV control (FerIN/IBPex-8 in Fig. 4b). The yield improve-
ment may result from the increased number of tillers per 
transgenic plants in FerIN transgenic plant and a combi-
nation of improved plant height, increased stem diam-
eter, and the number of tillers per transgenic plants in 
FerIN/IBPex (Fig. 4c).

Shoot iron content of transgenic plants
In planta iron accumulation was measured in the shoot 
biomass of three representative transgenic lines per con-
struct transformation. ICP-OES analysis of nitric acid-
digested biomass showed that iron contents in the shoot 
tissues of FerIN transgenic plants (189 to 197 ppm in dry 
matter) were 22% to 27% higher than that of the trans-
genic EV control plants (155  ppm in dry matter) under 
normal growth conditions with distilled H2O-watering 
(Fig.  5). Iron content in the shoots of the FerIN/IBPex 
transgenic plants (207 to 235  ppm in dry matter) was 
also approximately 34% to 51% higher than that of the 
EV control plants (Fig. 5), indicating that the stacking of 

Fig. 3  Determination of transgene expression by transcriptional (qRT-PCR) and western blot (WB) analysis. a The ferritin transcript level of FerIN 
transgenic switchgrass. b The ferritin transcript level of FerIN/IBPex transgenics. c The IBP transcript level of FerIN/IBPex transgenics. d WB analysis of 
ferritin expression in FerIN transgenics. e WB analysis of IBP and ferritin expression in FerIN/IBPex transgenics. For qRT-PCR, the transgenics with the 
lowest expression level of ferritin or IBP was set to 1. Data are presented as the mean (± standard error, SE) of three replicates and bars represented 
by different letters are significantly different at p < 0.05 between lines analyzed by one-way ANOVA with Tukey’s test. For WB, the corresponding 
antibodies used are indicated on the right side of the WB result
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FerIN gene with IBPex gene did lead to higher in planta 
iron-accumulating ability compared to the FerIN gene 
alone in switchgrass.

Iron‑binding ability of transgenic plants at the protein 
extract and tissue levels
We next investigated the iron-binding ability of the engi-
neered switchgrass at the protein extract and tissue levels 
using biochemical and imaging analyses. Compared to 
the EV control, the iron-binding abilities of crude protein 
extracts from stems of FerIN and FerIN/IBPex transgenic 
lines were significantly enhanced (Fig. 6a). The iron-bind-
ing ability was improved by 12% in FerIN-3, and FerIN-6 
and FerIN-7 lines showed 37% to 38% increases in iron 
binding ability, respectively (gray bars in Fig.  6a). For 
FerIN/IBPex transgenics, the iron-binding abilities were 
improved by 33% to 37% in FerIN/IBPex-6 and -7, and up 
to 49% increased in FerIN-8 (black bars in Fig. 6a).

Perls’ Prussian blue staining used to localize iron in 
cross-sections of stem tissues [80–82] by optical ster-
eomicroscopy. In the EV control, the blue signals can-
not be detected either within plant cell or on the cell wall 
(Fig. 6b, e); in contrast, we observed blue staining in the 
stem sections of FerIN and FerIN/IBPex (Fig.  6c, d). At 
higher magnification, in the stem of FerIN transgenics, 
blue staining was mostly in the cytosol (Fig. 6f ), whereas 

Fig. 4  Growth, biomass yield, and phenotype comparison between EV, FerIN, and FerIN/IBPex transgenic switchgrass. a The height of the 
transgenic plants. b The biomass yield of the transgenic plants. c The representative growth phenotype of the transgenic yield of the transgenic 
plants. Data are presented as the means (± SE) of three replicates. The percentage values on the top of bars represent the % increase in the 
transgenic lines compared to the empty vector (EV) control plants. Different letters are significantly different at p < 0.05 between lines analyzed by 
one-way ANOVA with Tukey’s test. DW dry weight

Fig. 5  Iron contents in shoot biomass from switchgrass transgenics. 
Data are presented as the mean (± SE) of five replicates. The 
percentage values on the top of bars represent the % increase of Fe 
contents in the transgenic lines compared to the EV control. Different 
letters are significantly different at p < 0.05 between lines analyzed by 
one-way ANOVA with Tukey’s test
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in FerIN/IBPex lines, the blue stain was observed both in 
the cytosol and cell walls (Fig. 6g).

Hot‑water pretreatment and co‑saccharification 
of the transgenic switchgrass biomass
We used the hot-water pretreatment and co-saccharifi-
cation method to evaluate the effectiveness of our iron 
accumulation strategies, FerIN and FerIN/IBPex, in 
enhancing the cell wall deconstruction in switchgrass 
biomass. The hot-water pretreatment is a greener tech-
nology that not only benefits the environment but also 
avoids the corrosion effect of dilute acid to the reactor 
and eliminates the downstream step of neutralizing the 
pretreated biomass residue before saccharification.

The results showed enhanced glucose release for both 
FerIN and FerIN/IBPex transgenic lines (Fig. 7). For the 
FerIN plants, the glucose release was increased approxi-
mately 10% to 14% compared to the EV control; whereas 
for the FerIN/IBPex plants, glucose release was enhanced 
further (i.e., 19% to 24%) (Fig. 7a). In contrast to glucose 
release, xylose release does not change in all the trans-
genic lines (Fig. 7b), which can be explained by the fact 
that, in general, the xylan in the plant cell wall is much 
more exposed, i.e., more easily degraded to sugar mono-
mers (i.e., less recalcitrant) than cellulose [87]. Thus, the 
xylose release is very high to begin with, so there is not 
likely much room for further improvement; the effect of 
iron accumulation on the pretreatability and digestibility 
was more prominently reflected on the more recalcitrant 
part, cellulose.

Discussion
Improved iron binding ability of SP‑CBM‑IBP by protein 
engineering
Recently, a successful approach using a small signal pep-
tide for extracellular secretion and cell wall targeting 
towards iron accumulation was achieved by Yang et  al. 
[81], which showed improved biomass pretreatability 
and sugar yield in both dicot (Arabidopsis) and monocot 
(rice). This strategy for iron accumulation used a triple 
fusion polypeptide, which comprised an extensin sig-
nal peptide (SPEXT) from Nicotiana plumbaginifolia for 
extracellular secretion [88], the CBM11 from Clostridium 
thermocellum for cell wall targeting [89] and a synthetic 
blood IBP from porcine for iron-binding [90]. In this 
study, we investigated whether or not we can improve 
iron accumulation and improve the cell wall pretreatabil-
ity and saccharification of switchgrass by the intracellular 
ferritin (FerIN) strategy and by stacking with cell wall tar-
geting strategy using secretory iron-binding peptide.

First, we modified the SP-CMB-IBP approach used 
by Yang et  al. [81] based on our previous experience 
from FerEX Arabidopsis [82]. We replaced the secre-
tion signal peptide from SPEXT with rice GRP (SPGRP), 
as it had been suggested that the secretory property 
of rice SPGRP can improve the protein expression of 
β-glucuronidase (GUS) in monocot plants, which 
demonstrated the higher intensity of blue coloration 
in both sorghum and switchgrass [85, 86] and higher 
GUS enzyme activity in apoplastic fluids of transgenic 
sorghum [86]. The CBM11 moiety was retained for cell 
wall targeting, considering that the SPEXT-CBM11 was 

Fig. 6  Iron-binding ability among representative transgenic plants at the protein extract and tissue levels. a Iron binding assay using crude 
ste, extract of EV, FerIN, and FerIN/IBPex. Data are presented as the mean (± SE) of three replicates. The percentage values on the top of bars 
of transgenic lines represent the % increase of iron-binding ability in the transgenic lines compared to the EV control. Different letters are 
significantly different at p < 0.05 between lines compared by one-way ANOVA with Tukey’s test. b–g Prussian blue staining of the switchgrass stem 
cross-sections. b EV. c FerIN transgenic lines. d FerIN/IBPes transgenic lines. e to g are higher magnification images of a to c. Scale bars in b–d are 
300 µm; scale bars in e–g are 50 µm
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determined to have the strongest cell wall-localized 
fluorescence signal among the five identified CtCBMs 
[81]. In addition, we optimized the iron-binding abil-
ity of IBP by generating a tandem repeat construct 
of IBP (4xIBP). The resulting “upgraded” version of 
SPGRP-CBM11-4xIBP was successfully expressed, and 
up to 2.5-fold improvement in iron-binding ability 
relative to SPGRP-CBM11-IBP was observed (Fig.  1). 
Although we successfully increased the iron-binding 
ability of the “improved” IBP design, a non-linear rela-
tionship between the number of IBP repeats and the 
fold-change in iron-binding capacity implies a limita-
tion in our stacking approach, which may be due to a 
physical or stereochemical barrier for iron-binding 
(Fig. 1c).

Genetic iron incorporation improves switchgrass biomass 
yield
Using our recently optimized switchgrass transformation 
protocol by Agrobacterium-mediated transformation, we 
successfully obtained FerIN and FerIN/IBPex switchgrass 
transgenics with high selection efficiencies in six months 
(87.5%, Fig.  2a, b), which is similar to our previously 
established range of 50 to 100% [43]. In addition, from 
Southern blots, a low integration number (one to two 
copies) of the transgenes was observed in the genome of 
transgenic switchgrass (Fig.  2c, d), which is also similar 
to the range of Agrobacterium-mediated genetic trans-
formation [91, 92]. In our experience producing trans-
genic switchgrass, the primary screening using genomic 
DNA PCR is sufficient for selecting positive transgenic 
plants. The contamination of bacterial DNA seems neg-
ligible if the execution of genomic DNA extraction fol-
lows the manufacturer’s protocol because the molecular 
analyses of transgene expression are consistent, including 
qRT-PCR, western blot, and RT-PCR analyses (Fig. 3 and 
Additional file 1: Figure S4).

Previously, the intracellular ferritin (FerIN) Arabidop-
sis showed improved performance (i.e., 13 to 19% greater 
sugar release than EV control plants) [80]. In contrast, 
the characteristics of improved plant growth, enhanced 
pretreatability, and enzyme digestibility with boosted 
sugar release (21% more glucose, and 34% more xylose) 
were observed when using the extracellular ferritin 
(FerEX) approach [82]. Moving away from model plants 
(Arabidopsis and rice) in this study, we successfully 
transferred the iron incorporation strategy to the bioen-
ergy crop platform, switchgrass. Similar to the result of 
FerIN Arabidopsis, the increase in biomass yield of FerIN 
switchgrass is mostly from the increased number of tillers 
(Fig. 4c) [80]. When stacking with IBPex in FerIN switch-
grass, the cell wall targeting iron accumulation improved 
plant growth and development significantly (Figs. 4 and 
5), which is consistent with the previous discovery when 
directing iron accumulation extracellularly [82].

Ferritin is a highly conserved protein important for iron 
storage and plays an essential role for iron homeostasis 
in animals, plants, and microorganisms. Overexpressing 
soybean ferritin in tobacco under a 35S promoter can 
enhance ferric chelate reductase activity, iron transport 
in the root, and photosynthesis, resulting in increased 
plant height and fresh weight [93]. The presence of fer-
ritin in transgenic plants can also protect plants from 
free iron toxicity and photoinhibition while reducing oxi-
dative stress [94]. In addition, it is well-known that iron 
(Fe) is also an essential micronutrient and often a limit-
ing factor for higher biomass production and quality 
[95], while Fe deficiency in plants often results in severe 
chlorosis [96]. Due to the physiological importance of 

Fig. 7  Pretreatability and digestibility of shoot biomass from 
switchgrass transgenics. a Total glucose release after the hot-water 
pretreatment and co-saccharification of shoot biomass. b Total xylose 
release after the hot-water pretreatment and co-saccharification. The 
percentage values on the top of bars of transgenic lines represent the 
% increase of released sugar in the transgenic lines compared to the 
EV control. Data are presented as the mean (± SE) of nine replicates. 
Different letters are significantly different at p < 0.05 between lines 
compared by one-way ANOVA with Tukey’s test
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iron, improved plant growth and development in ferri-
tin-overexpressing transgenic plants have been generally 
observed in several studies [97–99]. We hypothesized 
the enrichment of iron supply in the plant body by our 
iron incorporation strategy may affect the metabolism of 
oxidative stress, the function of chlorophyll and, hence, 
result in the superior growth outcomes and improved 
overall growth of our transgenic switchgrass plants.

Genetic iron incorporation improves glucose yield 
from switchgrass biomass after hot‑water pretreatment 
(HWP)
Different from our previously generated iron-accumulat-
ing transgenic plants, the improvements in switchgrass 
biomass saccharification using iron ions as co-catalysts 
reveals specificity towards glucose but not xylose [80, 82]. 
The results of pretreatability and digestibility of the FerIN 
switchgrass are 10 to 14% increases in glucose enzymati-
cally released relative to the EV control, while FerIN/
IBPex plants have 19–24% more glucose enzymatically 
released than the EV (Fig. 7). The observed glucose yield 
came from unwashed biomass after enzyme hydrolysis. 
It has been shown that there is negligible readily solu-
ble glucose released from untreated switchgrass biomass 
[100].

A possible explanation is the fact that in general the 
xylose part of the plant cell wall is easier to break down 
into sugar monomers (i.e., less recalcitrant) than the cel-
lulose part under the pretreatment conditions, thus the 
effects of iron accumulation on the pretreatability and 
digestibility were more prominently reflected on the 
more recalcitrant part, i.e., cellulose part of cell wall 
[101, 102]. Such observation highlights the commonality 
as well as the difference among plant species in imple-
menting the in planta iron-accumulating strategy. Fur-
ther improvement of the iron-incorporated switchgrass 
biomass could be made by tackling the release of xylose 
via introduction of thermostable xylanase [103]. Another 
perennial wild grass species with promise for bioenergy 
applications, Miscanthus, has recently been sequenced 
[104], and it is worthwhile to investigate whether our iron 
incorporation strategy can have a similar or better effect 
to reduce the grass biomass recalcitrance of Miscanthus.

Genetic incorporation of iron coupling with HWP can be 
an economical and environmentally friendly approach 
for downstream biorefinery applications
Hot-water pretreatment (HWP) is a popular thermal 
treatment for lignocellulose biomass and has several 
benefits for the biorefinery including the following: 
(1) no additional chemical inputs except water; (2) lit-
tle erosion on equipment; (3) low electricity usage; (4) 
reduced production of inhibitors to enzyme hydrolysis 

or fermentative microorganisms [29]. Most importantly, 
HWP requires lesser chemical/energy/equipment cost, 
resulting in cheaper biological conversion of lignocellu-
losic biomass.

We have demonstrated that iron ion co-catalysts can 
reduce the barriers of biomass pretreatment and facilitate 
lignocellulosic biomass conversion by enzymatic hydroly-
sis [78, 79]. The main shortcoming of previous versions 
of our technique was the application of excess iron ions 
before pretreatment. The exogenous iron input can result 
in additional equipment costs, water usage, and waste 
disposal, while the effectiveness of the biomass decon-
struction may be compromised by diffusion limits of iron 
ions. By adopting genetic engineering to express the iron-
binding protein (ferritin) or iron-binding peptide (IBP) 
in planta, we have successfully achieved iron accumula-
tion in the biomass and enhanced pretreatability and sac-
charification of model plants by intracellular ferritin as 
FerIN [80], cell wall-bound IBP (IBPex) [81], and extra-
cellular ferritin as FerEX [82]. It is noteworthy that our 
iron incorporation strategy in rice can also lead to a 35% 
increase in seed iron concentration and a 40% increase in 
seed yield, which lends promise to biotechnology of iron 
biofortification for sustainable agriculture [81]. These 
new approaches improved the economic and environ-
mentally friendly aspects of the strategy by eliminating 
the extra step of soaking/spraying iron solution into the 
milled biomass and any treatment of extra iron solution.

Switchgrass has been identified as a target-sustainable 
bioenergy crop because it is a native grass species in the 
USA, can easily be integrated into conventional farming 
practices, and can be used as a forage crop. Moreover, 
switchgrass is a non-food crop that can grow in mar-
ginal land, which will not compete for agricultural land 
and food/grain market towards the biofuel or bioproduct 
production [17]. The high recalcitrance of this grass bio-
mass, however, requires innovative technologies to facili-
tate its conversion [74, 105]. In this study, our main goal 
is to develop a more economical and environmentally 
friendly approach to reduce the recalcitrance of switch-
grass biomass.

Building on our previous findings in the model plant 
systems, we developed a new genetic engineering strat-
egy for iron incorporation by stacking both FerIN and 
IBPex into switchgrass. Our strategy increased the bio-
mass yield (Fig. 4), iron content (Fig. 5), and iron binding 
ability of the switchgrass (Fig. 6). At the same time, the 
engineered switchgrass plants, especially FerIN/IBPex, 
have reduced recalcitrance and improved ferment-
able sugar yield after the HWP without additional harsh 
chemicals or exogenous iron supplement (Fig. 7). By cou-
pling genetic iron incorporation approach with HWP, 
we demonstrated iron incorporation both intra- and 
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extra-cellularly can be a promising approach to improve 
the biomass quality and conversion of switchgrass bio-
mass [95, 101].

Conclusion
In this study, we successfully transferred the metal cata-
lyst platform to switchgrass using our consolidated 
switchgrass protocol. Several beneficial traits observed 
from our previous works in Arabidopsis and rice were 
represented in switchgrass biomass: FerIN transgenic 
switchgrass showed an increased number of tillers, bio-
mass yield, and iron-binding ability. After stacking the 
cell wall targeting IBP to the cytosolic ferritin, FerIN/
IBPex improved even further in height, number of tillers, 
biomass yield, and iron-binding ability. Using Prussian 
blue staining, the iron accumulation showed distinct dis-
tribution patterns that match our iron targeting strategy, 
cytosolic for FerIN, and both cytosolic and cell wall for 
FerEX transgenic lines. Finally, both FerIN and FerIN/
IBPex transgenic switchgrass had improved in vitro iron-
binding activity and in planta iron-accumulating ability, 
and their feedstock quality was also improved regarding 
pretreatability and digestibility.

We have provided a successful example for iron accu-
mulation in switchgrass with improved biomass quality 
in terms of yield and saccharification by stacking intracel-
lular ferritin and a cell wall-targeting IBP. It is notewor-
thy that the results demonstrated that iron incorporation 
can be applied as a universal approach to reduce barriers 
of thermochemical conversion and facilitate plant bio-
mass deconstruction, even for highly recalcitrant species 
like switchgrass.

Methods
Chemicals and plant growth condition
All chemicals and plant materials for transgenic switch-
grass production were following Lin et al. [43], and other 
chemicals, if not indicated specifically, were purchased 
from Sigma-Aldrich (St. Louis, MO). Plant materials 
were collected by following the standardized procedure 
described by Hardin et al. [106].

DNA synthesis
The synthesized DNA fragments of IBP were 
designed as SPGRP-CBM11-IBP-6xHis (675  bp) and 
SPGRP-CBM11-4xIBP-6xHis (756  bp) flanking with PstI 
and SacI sites, which contains signal peptide of rice GRP 
(81 bp) from pCAMBIA1305.2 for apoplastic secretion in 
planta, CBM11 from Clostridium thermocellum (504 bp) 
for cellulose aiming, one or four tandem repeats of blood 
IBP sequence (108 bp) from Yang et al. [81] for iron-bind-
ing and followed by histidine tag (18 bp) for western blot 
detection.

Construction, expression, and purification of iron‑binding 
fusion proteins
Synthesized DNA fragments (SPGRP-CBM11-IBP-His6 
and SPGRP-CBM11-4xIBP-His6) were cloned into a pET-
22b (+) vector (Genscript, Piscataway, NJ) and trans-
formed into Escherichia coli BL21 for protein expression. 
Starter cultures of each expression strain were inoculated 
into one liter of LB broth containing the appropriate 
antibiotic and grown at 37 °C until OD600 = 0.4. Cultures 
were induced with 0.25 mM IPTG and grown overnight 
at 17 °C.

The lysis of frozen cell pellets was conducted as 
described in Chung et  al. except at room temperature 
[107]. The cell mixture was sonicated at room tempera-
ture for two min using a Branson 5510 water bath soni-
cator (Branson Ultrasonics Corporation, Danbury, CT). 
Centrifugation at 15,000×g for 20 min was performed to 
remove cell debris. The resulting supernatant in buffer A 
(50 mM Tris pH 8.0, 100 mM NaCl, 10 mM imidazole) 
was loaded onto a 5  mL HisTrap FF crude column (GE 
Healthcare, Piscataway, New Jersey, USA) on an AKTA 
FPLC (GE Healthcare, Piscataway, New Jersey, USA) and 
washed with buffer A. After washing, the protein was 
eluted with buffer B (50 mM Tris pH 8.0, 100 mM NaCl, 
and 200  mM imidazole). Affinity-purified proteins were 
further purified by size-exclusion chromatography using 
a HiLoad 16/600 Superdex 75 pg column (GE Healthcare, 
Piscataway, New Jersey, USA) in buffer C (50 mM Phos-
phate pH 7.0).

Iron binding assay for purified iron‑binding fusion proteins 
and crude protein extracts
For IBP-binding assay, we follow the methods described 
in Yang et  al. [81]. The iron-binding abilities of single 
IBP and tandem repeat of IBP (4xIBP) were examined in 
two distinct pH environments, which is pH 5.5 and 7.0. 
The IBP-bound Fe in the supernatant was determined 
by orthophenanthroline, which results in a red solution 
when it binds with Fe2+ [108].

Vector construction for transgenic switchgrass production
The overexpression of ferritin or blood iron-binding pep-
tide (IBP) was achieved by cloning their coding sequence 
(CDS) into the corresponding pCAMBIA vectors. The 
intracellular ferritin-overexpressing (FerIN) vector, 
pCAMBIA-FerIN, was obtained from Hui et al. [80]. Two 
cloning steps were conducted for establishing extracel-
lular IBP-overexpressing (IBPex) construct: (1) the ppor-
RFP gene in pCAMBIA-RFP [43] was replaced by the 
synthesized IBPex fragment using PstI and SacI (Addi-
tional file 1: Figure S1), resulting in pCAMBIA-IBPex. (2) 
Then, the expression cassette of IBPex from pCAMBIA-
IBPex was released by XbaI and PvuII, and the stacking 
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of FerIN and IBPex was achieved by inserting the IBPex 
cassette into pCAMBIA-FerIN, which is also digested by 
XbaI but partially by PvuII. The two plasmids (pCAM-
BIA-FerIN and pCAMBIA-FerIN/IBPex) were intro-
duced into Agrobacterium EHA105 by a freeze–thaw 
method [109].

Transgenic switchgrass generation and genomic DNA PCR 
analysis of transgenic plants
The Agrobacterium-mediated genetic transformation and 
genomic DNA PCR were following our previously estab-
lished method [43]. For genomic DNA PCR analysis, the 
primer sets for hph gene (D_Hph-F and D_Hph-R) are 
listed in Additional file 1: Table S1A.

Southern blot analysis
The Southern blot analysis using fresh leaf tissue of EV, 
FerIN, and IBPex/FerIN followed our previously estab-
lished method [43]. The genomic DNA of EV, FerIN, and 
IBPex/FerIN were digested with HindIII. The Southern 
blot analyses of the overnight-digested genomic DNA 
were performed according to Lin et  al. (2017) using 
digoxigenin (DIG)-labeled hph fragment (745 bp) as the 
probe [43].

Total RNA extraction, reverse transcription PCR (RT‑PCR) 
and real‑time quantitative RT‑PCR (qRT‑PCR)
The procedures of RNA extraction, reverse transcription 
PCR (RT-PCR) and real-time quantitative RT-PCR (qRT-
PCR) followed our previously published methods from 
the E4 stage of WT or transgenic switchgrass plants [43]. 
The primer sets for detection of hph, IBP and ferritin are 
designed and listed in Additional file  1: Table  S1B, and 
the RT-PCR reaction is following the genomic DNA PCR 
analysis. For qRT-PCR, the RNA was extracted from the 
transgene, and we extracted the RNA from greenhouse-
grown switchgrass. The primer sets for actin and fer-
ritin were derived from the literature [65, 80], while the 
primer set for IBP was designed in this study, which are 
all listed in Additional file  1: Table  S1C. The qRT-PCR 
was conducted as previously described [110].

Western blot analysis
The extraction of switchgrass total soluble protein was 
modified from Somleva et al. [111]. The stem tissue from 
the E4 stage of WT or transgenic switchgrass plants was 
snap-frozen in liquid nitrogen immediately after harvest 
and ground under liquid nitrogen into a fine powder 
before protein extraction. Three grams of stem powder 
was suspended in 5  mL of extraction buffer (100  mM 
sodium phosphate (pH 7.0), 10  mM EDTA, 20  mM 
sodium ascorbate, 4  mM β-mercaptoethanol, 0.1  mM 
phenylmethylsulphonyl fluoride (PMSF), 10% (w/w) 

polyvinylpolypyrrolidone and cOmplete™ EDTA-free 
Protease Inhibitor), homogenized on ice using an Ultra-
Turrax T-18 basic disperser (IKA, Wilmington, NC), 
and spun at 4000×g at 4 °C for 15 min to remove cellu-
lar debris. The protein concentration of the extract was 
determined by the Bradford assay [112].

Twenty µg of total protein extracted from switchgrass 
transgenics were mixed with 4 × NuPAGE™ LDS sample 
buffer (NP0007, Thermo Fisher Scientific, Waltham, MA) 
and separated on Invitrogen NuPAGE Novex 4–12% Bis–
Tris Mini Gels (NP0321BOX, Thermo Fisher Scientific, 
Waltham, MA), followed by transfer to a polyvinylidene 
difluoride (PVDF) membrane using the Invitrogen iBlot 
2 gel transfer system (Thermo Fisher Scientific, Waltham, 
MA) and blocked using SuperBlock T20 PBS (Thermo 
Fisher Scientific Inc., Rockford, IL, USA) for 20 min. The 
western blot for detection of ferritin was performed using 
chicken IgY polyclonal antibody from Hui et  al. [80] as 
the primary antibody and goat anti-chicken IgY (H+L) 
secondary antibody (Thermo Fisher Scientific, Waltham, 
MA), whereas the detection of IBP was performed using 
6x-his tag monoclonal antibody (4A12E4) with alkaline 
phosphatase-conjugated rabbit anti-mouse IgG (H+L) 
(Thermo Fisher Scientific, Waltham, MA) as second-
ary. The alkaline phosphatase localization was visualized 
using 5-bromo-4-chloro-3′-indolylphosphate p-toluidine 
(BCIP)/ nitro-blue tetrazolium chloride (NBT) (Life 
Technologies Corp., Carlsbad, CA, USA).

Determination of iron accumulation in shoot biomass 
of switchgrass plants
The switchgrass shoots at the R1 stage were harvested 
and rinsed three times with ddH2O so that no surface 
iron residues would affect the iron content measurement 
of biomass. Dry shoot samples were then ground to pass 
through a 20-mesh (1 mm) screen, and an aliquot of bio-
mass powder was used to measure the iron concentration 
using the procedure modified from previous literature 
reports [82, 113–115]. Briefly, twenty micrograms of dry 
biomass powder were digested overnight at 70  °C with 
0.4 mL 25% (v/v) nitric acid (Trace Metal Grade, Fisher 
Scientific). The acid extracts were diluted to 5  mL with 
fresh Millipore (Synergy water Purification System) de-
ionized H2O (the final nitric acid concentration was 2%) 
and used for the iron concentration measurement using 
inductively coupled plasma/optical emission spectros-
copy (ICP-OES) by the Chemical Analysis Laboratory at 
the University of Georgia.

Perls’ Prussian blue iron staining
The Perls’ Prussian blue staining was performed using 
the R1 stage switchgrass stem cross-sections followed the 
procedure described in Hui et al. [80] and Yang et al. [81].
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Hot‑water pretreatment (HWP) and co‑saccharification 
of transgenic plant biomass
The stems from the above-ground R1 stage transgenic 
switchgrass were harvested by removing the inflores-
cence, leaf blades, sheaths, internode 1 (I1) and top of the 
tiller following the standardized protocol [106]. After air-
drying in the greenhouse for 3 weeks, the stem of trans-
genic switchgrass was ground to pass through a 20-mesh 
(0.841 mm) screen using a Wiley Mini Mill (Thomas Sci-
entific, Swedesboro, NJ). The milled material was then 
tested for total sugar release through a high-throughput 
method that combines hot-water pretreatment with 
enzymatic hydrolysis [116]. Briefly, 5  mg ground bio-
mass was weighed in sample replicates into random indi-
vidual wells on 96-well Hastelloy plates; ultrapure water 
(18.3 MΩ cm) from a MilliQ filter system was added. The 
plates were sealed with Teflon tape, clamped, and sub-
jected to hot-water pretreatment at 180 °C for 17.5 min. 
The subsequent enzymatic saccharification was carried 
out by adding buffer to each well in the plate, mixing, and 
using Novozymes CTec2 at loadings of 70 mg enzyme/g 
biomass with incubation at 40  °C for 70  h. The sugar 
release was measured using a glucose oxidase–peroxi-
dase (GOPOD) assay for glucose and a xylose dehydroge-
nase (XDH) assay for xylose absorbances versus standard 
curves [82].

Statistical analysis
All experiments were conducted at least twice and all 
graphs and statistical analyzes were generated using Excel 
(Microsoft Inc., Redmond, WA) and SigmaPlot (SPSS 
Inc., Chicago, IL). Data are presented as mean (± SE) and 
the numbers of biological replicate for each experiment 
are indicated in the corresponding figure legends. Data 
were subjected to one-way analysis of variance (ANOVA) 
with Tukey’s post hoc test to analyze the significant dif-
ferences between lines.
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