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Abstract 

Background:  The production of microalgal biofuels, despite their sustainable and renowned potential, is not yet 
cost-effective compared to current conventional fuel technologies. However, the biorefinery concept increases the 
prospects of microalgal biomass as an economically viable feedstock suitable for the co-production of multiple 
biofuels along with value-added chemicals. To integrate biofuels production within the framework of a microalgae 
biorefinery, it is not only necessary to exploit multi-product platforms, but also to identify optimal microalgal cultiva‑
tion strategies maximising the microalgal metabolites from which biofuels are obtained: starch and lipids. Whilst nutri‑
ent limitation is widely known for increasing starch and lipid formation, this cultivation strategy can greatly reduce 
microalgal growth. This work presents an optimisation framework combining predictive modelling and experimental 
methodologies to effectively simulate and predict microalgal growth dynamics and identify optimal cultivation 
strategies.

Results:  Microalgal cultivation strategies for maximised starch and lipid formation were successfully established by 
developing a multi-parametric kinetic model suitable for the prediction of mixotrophic microalgal growth dynamics 
co-limited by nitrogen and phosphorus. The model’s high predictive capacity was experimentally validated against 
various datasets obtained from laboratory-scale cultures of Chlamydomonas reinhardtii CCAP 11/32C subject to differ‑
ent initial nutrient regimes. The identified model-based optimal cultivation strategies were further validated experi‑
mentally and yielded significant increases in starch (+ 270%) and lipid (+ 74%) production against a non-optimised 
strategy.

Conclusions:  The optimised microalgal cultivation scenarios for maximised starch and lipids, as identified by the 
kinetic model presented here, highlight the benefits of exploiting modelling frameworks as optimisation tools that 
facilitate the development and commercialisation of microalgae-to-fuel technologies.
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limitation, Mixotrophy
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Background
The commercialisation of biofuels, which are potentially 
promising and sustainable substitutes for fossil-based 
fuels, has been severely restricted to current feedstock 
technologies which largely rely upon the use of tradi-
tional food-based or lignocellulosic biomass [1–4]. The 
on-going search for sustainable and renewable feedstock 
alternatives has led to the recognition of microalgae as a 
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promising long-term feedstock (known as third-gener-
ation) capable of meeting global biofuel demands [1, 3, 
5–7]. The potential of microalgae is highlighted by the 
typical fast growth rate of many strains, leading to high 
biomass production, and the ability to accumulate carbo-
hydrate (mainly in the form of starch) and lipids, precur-
sor molecules for sugar-based and oil-based biofuels [8, 
9]. Since their cellular composition also includes other 
industrially important biomolecules (e.g. proteins, pig-
ments, vitamins, and other bioactive compounds) [5, 10], 
microalgae are now positioned as a viable biomass feed-
stock for biorefineries [5, 11, 12].

Through the full exploitation of the rich cellular compo-
sition of microalgae, microalgal biorefineries offer a prof-
itable and competitive approach for the co-production of 
biofuels along with other high value-added chemicals [12, 
13]. Figure  1 shows some of the conversion routes that 
could be implemented within a biorefinery framework to 
obtain biofuels and other commercially important prod-
ucts. The implementation of such a framework can help 
increase energy efficiency and process profitability by 
optimally integrating all possible bioprocessing routes 
along with waste re-valorisation scenarios [5, 11].

The prospects of microalgae biorefineries are encourag-
ing [13–15], and available technoeconomic analyses show 
that integrating biofuels conversion routes with other 
high-value chemicals and/or energy generation systems 
(e.g. hydrogen, methane) in an integrated biorefinery 
concept is more economically attractive [16–18]. Tech-
noeconomic studies, however, should be interpreted cau-
tiously due to the often high number of assumptions and 
degrees of freedom typically used to obtain economic 
projections. Indeed, despite the promising advantages of 
integrating biofuels production within a biorefinery net-
work, microalgal biofuel technologies are not yet suffi-
ciently developed to be competitive on their own [19, 20]. 
This represents a major drawback that currently prevents 
microalgal biofuels from being commercialised.

A prevalent challenge of microalgae technologies for 
biofuels production purposes is the need to identify 
cultivation strategies that generate mass-scale micro-
algal cultures rich in starch and lipids, i.e. the biofuel 
precursors [21–23]. In this regard, it has been widely 
demonstrated that the cultivation environment can 
be artificially manipulated to induce starch and lipid 
accumulation [24, 25]. Nutrient-stressed cultivation 

Fig. 1  Schematic representation of a microalgal biorefinery for the co-production of biofuels and value-added chemicals
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strategies (e.g. nitrogen or phosphorous limitation), 
in particular, have been established as a simple, cost-
effective strategy for enhanced starch and lipid forma-
tion [24, 26–30]. Nevertheless, nutrient limitation often 
drastically reduces microalgal growth, which in conse-
quence reduces total starch and lipid productivities [22, 
30, 31].

Mixotrophically grown strains (i.e. those that assimi-
late organic carbon sources in addition to inorganic car-
bon dioxide) generally attain higher growth rates than 
typical phototrophic strains (i.e. those that rely solely 
on inorganic carbon dioxide) [31–33], and thus have the 
potential of withstanding any adverse effects caused by 
nutrient limitation. Implementing starch/lipid-enhancing 
strategies, therefore, relies on the challenging optimisa-
tion of microalgae’s nutritional requirements (e.g. car-
bon, nitrogen, phosphorous, etc.) in such a way that the 
trade-off between microalgal growth and starch and lipid 
formation is effectively balanced. Predictive models of 
microalgal growth are therefore essential tools towards 
identifying optimal cultivation strategies [34].

Here, we present an experimentally validated predic-
tive model for nutrient-limited, mixotrophic microalgal 
growth that reflects carbon assimilation and carbon par-
titioning between starch and lipid reserves. The model 
was exploited to identify nutrient-enhanced microalgal 
cultivation strategies, which yielded a significant increase 
in starch (+ 270%) and lipid (+ 74%) production com-
pared to a non-optimised scenario. The optimisation 
framework that we show here (combining both modelling 
and experimental methodologies) can thus be applied 
for the systematic identification of optimal cultivation 

strategies, increasing the likelihood of establishing com-
petitive biofuel-oriented microalgal biorefineries.

Results
Evaluating microalgal responses to media composition
In order to build a predictive model capable of portraying 
nutrient-limited mixotrophic dynamics, we first quanti-
fied the effects of initial nutrient availability on microal-
gal growth and starch and lipid accumulation. To do so, 
laboratory-scale cultivation experiments were carried out 
with the model green microalgae Chlamydomonas rein-
hardtii subject to different initial concentrations (Addi-
tional file 1: Table S1) of nitrogen, phosphorus, and acetic 
acid (as an organic carbon source) until the stationary 
phase was achieved (8 days). The concentrations of nitro-
gen, phosphorus, and acetic acid in a standard pH-buff-
ered artificial growth medium (TAP medium) commonly 
used for laboratory cultivation of C. reinhardtii [35], 
were used as the reference case against which all other 
nutrient modified cultures were statistically compared 
(“Methods”). The results of the biomass, starch and lipid 
responses are summarised in Table 1.

Unmodified (TAP) medium composition yielded a bio-
mass concentration of 0.318 gC L−1, consisting of 5.6% 
starch and 14.1% lipid. When compared to (TAP), all 
nutrient-limited conditions caused minor reduction in 
biomass. However, the only statistically significant reduc-
tion was observed in the culture grown under simultane-
ous phosphorus and nitrogen limitation (Low P: Low N) 
conditions (p = 0.048, one-way ANOVA), where biomass 
concentration dropped − 22% with respect to (TAP). In 
line with previous observations [26], nitrogen limitation 

Table 1  Biomass, starch, and lipid concentrations in C. reinhardtii at t = 192 h

Asterisks (*) denote significant differences (p < 0.05*, 0.01**, 0.001***) with respect to (TAP), as per one-way ANOVA. Data are the mean of two independent biological 
replicates

Treatment Biomass gC L−1 Starch gC L−1 Starch % Lipids gC L−1 Lipid %

(TAP) 0.318 – 0.0179 – 5.6% 0.0448 – 14.1%

(Low P: Low N) 0.247 * 0.0414 *** 16.8% *** 0.0436 17.7%

(Low N) 0.281 0.0473 *** 16.8% *** 0.0596 * 21.2% ***

(Med N) 0.305 0.0309 *** 10.1% * 0.0566 18.6% *

(Low P) 0.267 0.0302 *** 11.3% ** 0.0415 15.6%

(Med P) 0.294 0.0208 7.1% 0.0419 14.3%

(Low A) 0.259 0.0128 4.9% 0.0383 14.8%

(High A) 0.390 * 0.0220 5.6% 0.0666 *** 17.1%

(High A+) 0.414 ** 0.0380 *** 9.2% 0.0758 *** 18.3%

(High A: Low N−) 0.234 * 0.0536 *** 22.9% *** 0.0479 20.5% **

(High A: Low P) 0.372 0.0304 *** 8.2% 0.0620 ** 16.7%

(High N++) 0.168 *** 0.0141 8.4% 0.0242 *** 14.4%

(High P++) 0.294 0.0155 5.3% 0.0431 14.7%

(High A++) 0.294 0.0178 6.1% 0.0421 14.3%



Page 4 of 16Figueroa‑Torres et al. Biotechnol Biofuels           (2021) 14:64 

(Low N) significantly increased both starch and lipid 
contents up to 16.8% and 21.2%, respectively (Table  1). 
In contrast, phosphorus limitation (Low P), significantly 
induced starch accumulation up to 11.3% (p = 0.006) but 
lipid accumulation was not significantly different under 
any of the phosphorus-limited scenarios. This included 
the (Low P: Low N) conditions, where only starch con-
centration increased significantly (p < 0.001) with respect 
to (TAP). Accumulation of starch rather than lipid mol-
ecules during phosphorus limitation can be explained by 
starch synthesis being the preferred product of carbon 
assimilation in C. reinhardtii [36], or by the phosphate-
associated inhibition of ADP-glucose pyrophosphorylase 
which regulates starch synthetic pathways [37, 38].

Increasing acetic acid concentration significantly 
increased biomass concentrations up to 23% in (High 
A) (p = 0.043) and 30% in (High A+) (p = 0.009) condi-
tions (Table 1). Acetic acid-associated induced growth in 
C. reinhardtii has been previously described as a conse-
quence of enhanced mixotrophic growing conditions [31, 
32]. High acetic acid concentration subject to low phos-
phorus (High A: Low P) similarly supported higher bio-
mass with respect to (TAP), whereas biomass decreased 
significantly (p = 0.026) in combination with low nitro-
gen (High A: Low N), which indicates the more impor-
tant role that nitrogen plays in sustaining microalgal 
growth. With respect to (TAP), the high acetic acid cul-
tures yielded an increase in starch and lipid concentra-
tions, and correspondingly, an increase in contents of up 
to 9.2% starch and 18.3% lipids, as observed in the (High 
A+) treatment. The increase in starch and lipid con-
tents, however, was not statistically significant and thus 
mainly associated to the higher biomass supported by 
the internal acetate boost. An exception was the (High A: 
Low N−) culture, which accumulated significantly more 
starch (22.9%, p < 0.001) and lipids (20.5%, p = 0.002) than 
(TAP) due to the combined effect of the acetate boost 
with nitrogen stress. This highlights the greater effect of 
nitrogen over phosphorus limitation in starch and lipid 
accumulation. Increased lipid concentrations during ace-
tic acid-enhanced cultivation were similarly reported by 
Bekirogullari et  al. [31, 39], while considerably higher 
accumulation of lipid has been observed in the starch-
less (sta6) mutant strain when subject to an acetate boost 
and nitrogen limitation [40, 41].

Extreme high nutrient concentrations [i.e. (High 
N++), (High P++), and (High A++)] inhibited bio-
mass growth in all cases, but significantly so in the (High 
N++) treatment (p < 0.001) which caused a biomass drop 
of − 47%. With regard to starch and lipids, these treat-
ments yielded only small increases of up to 8.4% starch 
[in (High N++)] and 14.7% lipids [in (High P++)], and 
were deemed not significant as per the statistical analysis 

(Table  1). Therefore, these strategies are inappropriate 
for large-scale microalgal cultivation. Exploring the full 
effect of nutrient concentrations on microalgal dynam-
ics is of vital importance to select optimal nutritional 
composition, but this evaluation requires costly and 
time-consuming experimental analyses. Therefore, we 
employed the data collected here to construct, and sub-
sequently validate, a predictive kinetic model for micro-
algal growth.

Building a predictive model for microalgal growth
We previously developed a kinetic model for mixotrophic 
microalgal growth, alongside starch and lipid formation, 
as a function of initial nitrogen and organic carbon (ace-
tic acid) concentrations [42]. Here, we present a model 
with markedly improved predictive capabilities by: (i) 
taking into account the effects of phosphorus concentra-
tion on the algal cultivation dynamics, (ii) incorporat-
ing the average light intensity received by the microalgal 
culture, and (iii) improving the starch and lipid forma-
tion rate equations. The model state variables are: total 
biomass X (gC L−1), starch S (gC L−1), lipids L (gC L−1), 
active biomass x* (gC L−1), nitrogen N (gN L−1), nitrogen 
quota qN (gN gCx

−1), phosphorus P (gPO4 L−1), phos-
phorus quota qP (gPO4 gC−1), and acetic acid A (gCA 
L−1). Total biomass is assumed to be the sum of active 
biomass, starch, and lipids (Fig. 2). The model governing 
equations are explained below.

Specific growth rate
The specific growth rate, µ (h−1), which describes how 
cells grow over a period of times is expressed by a quad-
ruple-factor function incorporating the effects of nitro-
gen, phosphorus, acetic acid, and the light received by 
the culture:

The nitrogen-limited, µN , and phosphorus-limited, µP , 
growth rates are subject to a minimum law and are each 
expressed as Droop functions [43] of the nitrogen quota, 
qN , and the phosphorus quota, qP , respectively:

Here, qN ,0 (gN gC−1) and qP,0 (gPO4 g C−1) are the 
minimum nitrogen and phosphorus quotas required to 
sustain growth, respectively. The maximum mixotrophic 
specific growth rate, 

−
µM,max(A,

−

I ) , is regulated by the 
acetate-driven heterotrophic growth rate, µH , and the 
light-driven phototrophic growth rate, µI , both described 
by an Andrews function [44] to portray substrate-inhibi-
tion and photoinhibition, respectively:

(1)µ = µM,max

(

A, I
)

·min[µN (qN ),µP(qP)].

(2)µN (qN ) = 1−
qN ,0

qN
;µP(qP) = 1−

qP,0

qP
.
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Here, µmax (h−1) is the maximum mixotrophic spe-
cific growth rate, KS,A and Ki,A (gC L−1) are the acetate-
associated half-saturation and inhibition constants, 
respectively, and KS,I and Ki,L (μmol m−2  s−1) are the 
light-associated half-saturation and inhibition constants, 
respectively; wH and wI are weighing functions control-
ling the magnitude of the heterotrophic and phototro-
phic growth rates, respectively.

Microalgal productivity is dependent on the total 
amount of photosynthetically active radiation (in the 
range of 400–700 nm) received by microalgal cells [45]. 
However, even though light might be supplied at a con-
stant intensity, the amount of light received is affected 
by the cell absorption efficiency as well as by scattering, 
reflection, and refraction processes [46]. In addition, dif-
ferent wavelengths affect growth rates among microal-
gae species [47, 48]. Whilst an accurate representation of 
the light received by microalgal cultures should account 
for the above phenomena, a more common yet simple 
modelling approach relies on estimating the light, I (μmol 
m−2 s−1), at a given culture depth, z (m), by means of the 

(3)
µM,max

(

A, I
)

= µmax ·
[

wH · µH (A)+ wI · µI

(

I
)]

,

(4)

µH (A) =
A

A+ KS,A + A2/Ki,A
;µI

(

I
)

=
I

I + KS,I + I
2
/Ki,I

.

Beer-Lambert law, which assumes that light decreases 
exponentially with increasing biomass growth. Since cells 
can receive more light at the culture surface than at the 
bottom, here we use a slightly more accurate representa-
tion of the light throughout the vessel by computing an 
average light intensity, 

−

I  , between the surface ( z = 0 ), 
and its depth ( z = L ), so that [49]:

where σ (L gC−1 m−1) is the light attenuation coefficient, 
and � = σ · X · L is the optical depth. It is worth noting 
that the optical depth can be further improved by consid-
ering that light attenuation depends not only on biomass 
growth, but also on the concentration of chlorophyll and 
other pigments [50]. The day:light cycle is additionally 
known to have an effect on biomass growth and in starch 
and lipid formation. In Chlamydomonas, for example, 
accumulation of starch and lipids (TAG) was observed to 
be dependent on whether cells are grown in the light or 
in the dark [36]. More interestingly, starch accumulation 
has been reported to be controlled by a circadian clock 
(as opposed to simple lights-on lights-off periods) which 
is discontinued following nitrogen starvation [51]. The 
model presented here aims to portray the macroscopic 
dynamics of microalgae as a function of nutrient compo-
sition and therefore does not consider the photoperiod, 

(5)I =
Io

L

L
∫
0
e−σ ·X ·z · dz =

I0

�
·

(

1− e−�

)

,

Acetate  (Carbon)
A

Nitrogen
N

Starch
S

Lipids
L

Active 
biomass

X*

Total Biomass: X
X = x* + S + L

Irradiance
I

N quota 
qN

Phosphorus
P P quota 

qP

Mixotrophic
growth

Fig. 2  Schematic representation of the cellular compartments and flows used in the kinetic model. μ, specific growth rate; ρN , nitrogen uptake rate; 
ρP , nitrogen uptake rate; R1, starch synthetic rate; R3 , lipid synthetic rate; R2 , starch degradation rate; R4 , lipid degradation rate
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however the simulation of the specific light–dark cycle 
can help in the understanding of more complex meta-
bolic pathways occurring in microalgae between day and 
night.

Nitrogen and phosphorus uptake rates
Microalgae models commonly employ simple saturation-
type kinetics to simulate nutrient consumption [43, 52, 
53]. In this model, however, the nitrogen uptake rate 
employs inhibition-type kinetics dependent on nitrogen 
to account for the growth inhibition observed at a high 
nitrogen concentration [i.e. (High N++), Table  1], but 
also dependent on acetic acid to account for the reduc-
tion of nitrogen consumption observed at a high acetic 
acid concentration [i.e. (High A++), Additional file  1, 
Table S3]. The nitrogen uptake rate, ρN (gN gC−1 h−1), is 
therefore expressed as follows:

Here, ks,N and ki,N (gN L−1) are nitrogen-associated 
half-saturation and inhibition constants, respectively, and 
ks,A:N and ki,A:N (gC L−1) are acetate-associated half-satu-
ration and inhibition constants, respectively.

In Eq.  (6), 
−
ρN ,max(No,X) is the maximum nitrogen 

uptake rate, which accounts for the luxury uptake of 
nitrogen of microalgal cells (i.e. a phenomenon where the 
uptake of nutrient is fast immediately after inoculation). 
Given that the extent of luxury uptake was thought to be 
dependent on the nutrient concentration of the “fresh” 
medium and the cell density [54], the maximum nitrogen 
uptake rate is regulated by the initial nitrogen medium 
concentration, N0 , and the biomass concentration, X , as:

Here ρN ,max (gN gC−1  h−1) is the maximum nitro-
gen uptake rate, φN is an uptake regulation coefficient 
(L gC−1), n is a shape-controlling parameter, and K∗ is a 
saturation constant (gN L−1). In Eq. (7), the effect of the 
initial nitrogen concentration is described using satura-
tion-type kinetics, and the effect of biomass is expressed 
by an exponential term indicating that the uptake of 
nitrogen decreases exponentially with increasing biomass 
concentration.

The above formulation follows the structure proposed 
in our previous work. However, since the consumption 
of nitrogen (Figs. 3b and 4b) decreased in those cultures 
grown in low phosphorous concentrations, the nitrogen 

(6)
ρN =ρN ,max(N0,X) ·

N

N + ks,N + N 2/ki,N

·
A

A+ ks,A:N + A2/ki,A:N
· f (qP).

(7)ρN ,max(N0,X) = ρN ,max ·
Nn
o

Nn
o + Kn

∗

· e−φN ·X .

uptake rate was additionally regulated by a Droop func-
tion of the phosphorus quota, f (qP):

  
Here, KP (gN gC−1) denotes the minimum P quota 

below which nitrogen uptake stops: (i.e. if qP < KqP , 
ρN = 0 ). The negative effect of phosphorus limitation on 
the cellular mechanisms controlling nitrogen uptake has 
been previously reported, and is explained by a shortage 
of nutrient transport energy supplied by phosphorus-
containing molecules such as ATP [52].

The uptake of phosphorus, unlike nitrogen, was not 
affected by acetic acid and was thus solely expressed in 
terms of the residual phosphate concentration, P, by 
means of inhibition-type kinetics:

Here, ρP,max (gPO4 gC−1  h−1) is the maximum phos-
phorous uptake rate, and ks,P and ki,P (gPO4 gC−1) are 
the phosphorus-associated half-saturation and inhibition 
constants, respectively. In Eq.  (9), f (qN ) , is a regulating 
function dependent on the N quota which accounts for 
the negative effects of nitrogen stress on phosphorus 
uptake, described as:

This function is an inverse adaptation of the clas-
sic term used for microbial product inhibition [55], but 
applied here to decreasing limiting N quotas. Equa-
tion  (10) regulates phosphorus uptake as follows: the 
uptake of phosphorus decreases as the nitrogen quota 
decreases (i.e. nitrogen-limited conditions). The regulat-
ing function shown in Eq.  (10) differs from the Droop-
based function in Eq. (8) since the effect of nitrogen stress 
on phosphorous uptake (which reduced gradually—see 
Figs. 3d and 4d) was observed to be less pronounced than 
the effects of P-stress on nitrogen uptake (which stops 
abruptly). A visual comparison between the effects of the 
functions f (qN ) and f (qP) on the nutrient uptake rate is 
available in Additional file 1, Figure S2.

Formation of starch and lipids
The dynamics of starch and lipid formation are regulated 
by their synthetic rates, R1 and R3 , and their degrada-
tion rates, R2 and R4 , respectively. The synthetic rates are 
expressed as:

(8)f (qP) =

(

1−
KP

qP

)

.

(9)ρP = ρP,max ·
P

P + ks,P + P2/ki,P
· f (qN ).

(10)f (qN ) =

[

1+

(

ρP,max

qN

)2
]−1

.
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(11)

R1 = r1 ·
N

ns
i

N
ns
i + k

nS
s,S +

(

N 2
i /ki,S

)ns ·
k1

k1 + N/No

·

[

1+
1

µ
· eφS∗Ai

]

· µ · x∗,

(12)

R3 = r3 ·
N

nL
i

N
nL
i + k

nL
s,L +

(

N 2
i /ki,L

)nL ·
k2

k2 + N/N0

·

[

1+
1

µ
· eφL∗Ai

]

· µ · x∗.

Fig. 3  Comparison between the experimental (points) concentration–time profiles and the model fittings resulting from parameter estimation. 
(TAP): N0 = 0.382 gN L−1, P0 = 0.096 gPO4 L−1, A0 = 0.42 gC L−1, [Low P]: 0.382 gN L−1, 0.0096 gPO4 L−1, 0.42 gC L−1, and (High A: Low P): 0.382 
gN L−1, 0.0096 gPO4 L−1, 1.26 gC L−1. Data and error bars represent the mean and range (min/max values), respectively, of two independent 
experimental replicates
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Here, r1 (gC gC−1) and r3 (gC gC−1) are the rate con-
stants for starch and lipid synthesis, respectively. ks,S 
and ks,L (gNi L−1) are saturation constants; ki,S and ki,L 
(gNi L−1) are inhibition constants; φS and φL (L gC−1) are 

regulation coefficients; and k1 and k2 (gN L−1) are regu-
lating constants. The first term in the synthetic rates is 
an inhibition-type function dependent on the internal 
nitrogen concentration, Ni = qN · X , which portrays the 

Fig. 4  Comparison between the experimental (points) concentration–time profiles and the predictions (lines) used as model validation. (Low P: 
Low N): N0 = 0.335 gN L−1, P0 = 0.0096 gPO4 L−1, A0 = 0.42 gC L−1, [med N]: 0.354 gN L−1, 0.096 gPO4 L−1, 0.42 gC L−1, and (High A+): 0.382 gN L−1, 
0.096 gPO4 L−1, 1.26 gC L−1. Data and error bars represent the mean and range (min/max values), respectively, of two independent experimental 
replicates
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reduced formation of storage molecules as the internal 
nitrogen concentration increases (i.e. nitrogen-replete 
conditions); the shape-controlling parameters, nS and 
nL , are analogous to those employed in the light-limited 
model of Molina-Grima et  al. [56], but denote here the 
“abruptness” of the transition from nitrogen-limited to 
nitrogen-replete conditions,

The second term in Eqs.  (11) and (12) is a regulating 
function dependent on the extracellular nitrogen (scaled 
with respect to nitrogen supplied, i.e. N/N0) so that stor-
age molecule formation is greater as the residual nitro-
gen decreases (i.e. nutrient-limited conditions). Finally, 
the exponential term is dependent on the bioavailable 
carbon concentration, i.e. Ai = A0 − A , and simulate the 
increased formation of storage molecule with increasing 
acetic acid concentration. This increase was considered 
to be a result of the acetate-induced boost and therefore 
uncoupled from biomass growth.

The degradation rates of starch and lipids are expressed 
as follows:

Here, r2 and r4 are the rate constants for starch and 
lipid degradation, respectively, and ksat,S and ksat,L (gC 
gC−1) are saturation constants. The degradation rates 
are assumed to be inversely proportional to the nitrogen 
quota to prevent excessive formation of starch and lipids 
during extreme nitrogen-limited conditions and main-
tain the pool of active biomass. The degradation rates 
additionally incorporate saturating functions which con-
trol the extent of starch and lipid degradation and avoid 
infeasible accumulation scenarios which can arise in 
absence of saturation (Additional file 1, Figure S3). These 
functions follow the formulation proposed by Contois 
[57].

Whilst the synthetic and degradation rates presented 
above were developed to portray the individual dynamics 
of starch and lipid during nutrient-limited mixotrophic 
growth observed in this work, other kinetic expressions 
have been reported to describe the substrate-to-product 
interactions leading to starch and lipid formation under 
other cultivation conditions, including autotrophic 
growth, limitation by a single nutrient, or light and tem-
perature limitations [34].

Time‑dependent equations
The accumulation rates of the carbon-based cell com-
ponents (i.e. biomass, starch, lipids, and active biomass) 

(13)R2 = r2 ·
X

qN
·

S/X

S/X + ksat,S
,

(14)R4 = r4 ·
X

qN
·

L/X

L/X + ksat,L
.

are described by the following set of ordinary differential 
equations:

The extracellular and intracellular (i.e. cell quotas) 
nutrient dynamics are described by:

In Eq.  (23), YX/A (gC gC−1) is the acetate to biomass 
yield coefficient.

Evaluating the model’s predictive performance
The multi-parametric model proposed above [Eq.  (15)–
Eq.  (23)] comprised 37 kinetic parameters (Table  2), 
which were estimated through a data fitting procedure 
combining deterministic and stochastic algorithms. The 
fitting procedure was then followed by a normalised 
sensitivity analysis to evaluate the response change in a 
model state variable with respect to a 1% change in the 
parameter values (Additional file 1. Figure S6). As a result 
of this analysis, model parameters were reduced to 35. 
The model was then evaluated in terms of its capacity to 
predict microalgal growth dynamics subject to different 
nitrogen, phosphorus, and acetic acid concentrations.

As shown in Fig.  3, the concentration–time pro-
files obtained by the model were observed to be in 
good agreement with the corresponding experimental 

(15)
dX

dt
= µ · X ,

(16)
dS

dt
= R1 − R2,

(17)
dL

dt
= R3 − R4,

(18)
dx∗

dt
=

dX

dt
−

(

dS

dt
+

dL

dt

)

.

(19)
dN

dt
= −ρN · X ,

(20)
dqN

dt
= ρN − µ · qN ,

(21)
dP

dt
= −ρP · X ,

(22)
dqP

dt
= ρP − µ · qP ,

(23)
dA

dt
= −

1

YX/A
·

µH

µH + µI
·
dX

dt
.
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datasets used for parameter estimation. The model out-
comes were subsequently validated against different 
cultivation regimes, similarly yielding a good agree-
ment between model-predicted and experimental data 
and (Fig. 4). Parity plots showing the level of agreement 
between experimental and model-derived data can 
be found in the Additional file  1: Figure S4. The com-
puted mean correlation coefficient (r2) between the 
experimental and model-derived (fitting and validation) 
datasets averaged r2 = 0.95, highlighting the model’s 

high predictive capacity, and indicating that the model 
adequately portrays growth, nutrient uptake, and starch 
and lipid formation in C. reinhardtii.

It is worth mentioning here that despite the robustness 
of the model for a wide range of environmental condi-
tions, established through extensive experimental valida-
tion, the relatively large number of kinetic parameters 
incorporated might lead to identifiability issues, requir-
ing additional work to compute the “true” optimal values 
of the model parameters.

Table 2  List of parameters in the model for mixotrophic growth co-limited by nitrogen and phosphorus

*   Parameter values were re-identified from those established in Figueroa-Torres et al. [42]

Type Symbol Parameter description Value Units References

Associated to growth µmax Maximum specific growth rate 0.106 h−1 Figueroa-Torres et al. [42]

qN,0 Minimum nitrogen quota 0.877 gN gC−1 Figueroa-Torres et al. [42]

qP,0 Minimum phosphorus quota 0.016 gPO4 gC−1 This work

Ks,A Acetate saturation constant 1.789 gC L−1 Figueroa-Torres et al. [42]

ki,A Acetate inhibition constant 0.110 gC L−1 Figueroa-Torres et al. [42]

Ks,I Light saturation constant 1.4 µmol m
−2 s−1 Mairet et al. [53]

ki,I Light inhibition constant 186.5 µmol m
−2 s−1 Figueroa-Torres et al. [42]

YX/A Acetate yield coefficient 0.059 gC gC−1 Figueroa-Torres et al. [42]

Ϭ Light attenuation coefficient 1 L gC−1 m−1 Figueroa-Torres et al. [42]

Associated to N and P -uptake ρN,max Maximum N uptake rate 44.01 gN gC−1 h−1 This work*

K* Saturation constant, No 0.300 gN L−1 This work*

n Shape-controlling parameter 14.54 – This work*

ФN N Uptake regulation coefficient 143.9 L gC−1 This work*

Ks,N Uptake saturation constant, N 0.163 gN L−1 Figueroa-Torres et al. [42]

ki,N Uptake inhibition constant, N 0.113 gN L−1 Figueroa-Torres et al. [42]

Ks,A:N Uptake saturation constant, A:N 1.004 gC L−1 Figueroa-Torres et al. [42]

ki,A:N Uptake inhibition constant, A:N 1.098 gC L−1 Figueroa-Torres et al. [42]

KP P quota supporting N uptake 0.057 gPO4 gC−1 This work

ρP,max Maximum P uptake rate 21.10 gPO4 gC−1 h−1 This work

Ks,P Uptake saturation constant, P 2.299 gPO4 L−1 This work

ki,P Uptake inhibition constant, P 0.004 gPO4 L−1 This work

Associated to starch and lipid formation r1 Starch formation rate (R1) 0.058 gC gC−1 This work*

Ks,S Saturation constant (R1) 0.000 gN L−1 This work*

ki,S Inhibition constant (R1) 0.205 gN L−1 This work*

nS Shape parameter (R1) 4.17 – This work*

k1 Regulation constant (R1) 0.108 – This work*

ФS Regulation coefficient (R1) 0.775 L gC−1 This work*

r2 Starch degradation rate (R2) 0.005 gC gC−1 This work*

ksat,S Starch saturation constant (R2) 0.018 – This work

r3 Lipid formation rate (R3) 0.191 gN gC−1 h−1 This work*

Ks,L Saturation constant (R3) 0.012 gN L−1 This work*

ki,L Inhibition constant (R3) 0.091 gN L−1 This work*

nL Shape parameter (R3) 2.01 – This work*

k2 Regulation constant (R3) 0.153 – This work*

ФL Regulation coefficient (R3) 0.000 L gC−1 This work*

r4 Lipid degradation rate (R4) 0.007 gN gC−1 h−1 This work*

ksat,L Lipid saturation constant (R4) 0.079 – This work



Page 11 of 16Figueroa‑Torres et al. Biotechnol Biofuels           (2021) 14:64 	

The model was then exploited to compute the for-
mation of biomass, starch, and lipids at the 8th day 
(t = 192  h) of cultivation, subject to various initial 
nitrogen (0.25–0.75 gN L−1), phosphorus (0–0.14 
gPO4 L−1), and acetic acid (0–3.5 gC L−1) concentra-
tions. The results are presented as three individual 
ternary diagrams (Fig. 5), each showing predicted bio-
mass, starch, and lipids (model outputs) in response 
to initial nutrient concentrations (model inputs). The 
ternary diagrams show the corresponding changes in 
starch and lipid formation when subject to nitrogen 
and phosphorus co-limitation, and allow identification 
of the required nutrient characteristics to maximise 
starch and lipid formation during acetate-driven mixo-
trophic growth.

Maximising microalgal starch and lipid formation
The ternary diagrams were employed to identify the opti-
mal nutritional requirements (i.e. nitrogen, phosphorus, 
and acetic acid) maximising starch and lipid concen-
trations, identified as: (i) “starch-enhancing” medium: 
[No = 0.33 gN L−1, P0 = 0.052 gPO4 L−1, Ao = 0.96 gCA 
L−1], yielding 0.33 gC L−1 biomass with 21% starch and 
22% lipids, and (ii) “lipid-enhancing” medium [No = 0.35 
gN L−1, P0 = 0.044 gPO4 L−1, Ao = 0.96 gC L−1], yield-
ing 0.38 gC L−1 biomass with 15% starch and 21% lipids. 
The predicted outcome of the optimised scenarios was 
additionally verified by growing two lab-scale cultures 
of C. reinhardtii subject to the above optimal medium 
compositions. As observed in Fig. 6, both of the model-
based optimal cultivation scenarios agreed well with the 
corresponding experimental data. Compared to (TAP) 
medium, starch-enhancing conditions yielded increases 
of 270% and 56% in starch and lipid concentrations, 
respectively, whereas lipid-enhancing conditions yielded 
increases of 203% and 74% in starch and lipid concentra-
tions, respectively.

Discussion
Many species of microalgae respond to nutrient limita-
tion by significantly altering central carbon metabolism 
pathways and intracellular carbon partitioning, leading 
to compositional changes which generally favour accu-
mulation of storage molecules [24, 33, 58]. As observed 
in Table  1, nitrogen and phosphorus limitation resulted 
in greater starch and lipids contents. Although nitrogen 
and phosphorus limitation are among the most exten-
sively proven cultivation strategies for starch and lipid 
accumulation, studies have mainly evaluated such strate-
gies under either complete starvation or single-nutrient 
limitation [24, 27, 59–61]. Few works evaluate the accu-
mulation of storage molecules under different degrees 
of nutrient co-limitation [26, 28] which is characterised 

by a trade-off between microalgal growth and starch and 
lipid accumulation. As evidenced here, however, such a 
trade-off was overcome by the gradual increase of acetic 

Fig. 5  Ternary diagrams for: a biomass, b starch, and c lipid formation 
in C. reinhardtii. Diagrams reflect metabolites concentration at 
t = 192 h, as predicted by the model, when subject to different initial 
nitrogen, phosphorus, and acetic acid concentration sets
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acid (i.e. the mixotrophic carbon source) which resulted 
in higher biomass production and, consequently, higher 
starch and lipid production.

Nutrient-limited mixotrophic cultivation is thus a 
suitable cultivation strategy for the purposes of biofuels 
production, but its implementation is dependent on the 
identification of an optimal nutrient composition. The 
multi-parametric kinetic model presented here, devel-
oped through a combination of experimental and com-
putational tools, was shown to be a robust tool for the 
simulation of mixotrophic microalgal growth subject to 
a wide range of nutrient compositions (Figs.  3 and 4). 
The developed model was thus further exploited to iden-
tify starch-enhancing and lipid-enhancing cultivation 
strategies and, when compared to a non-optimised sce-
nario, the model-identified strategies yielded significant 
increases of + 270% starch and + 74% lipids.

In line with these optimal scenarios, co-limitation by 
nitrogen and phosphorus can significantly induce starch 
and lipid formation, but provided that reduced growth 
rates are overcome via the supply of sufficient acetic 
acid, i.e. carbon source. Both nitrogen and phosphorous 
are essential nutrients that make up important biomol-
ecules such as proteins, pigments, phospholipids, nucleic 
acids, RNA and DNA, which regulate vital metabolic 
processes (e.g. the photosynthetic pathway by which car-
bon is fixated) [24, 62]. Therefore, the enhanced effect 
of acetic acid supplementation would only be attained if 

the concentrations of nitrogen and phosphorous allow 
for growth to take place. As observed in the ternary dia-
grams shown in Fig.  5, such optimal conditions can be 
established at the onset of batch cultivation. However, it 
is worth noting that other operating strategies involving 
fed-batch or continuous operation will require a balanced 
supply of nutrients preventing their exhaustion in the 
cultivation medium.

From an economic perspective the organic carbon 
requirements may restrict mixotrophic cultivation, but 
this could be avoided by adequately integrating waste-
water effluents rich in organic matter with microalgal 
growth [63, 64]. The validated optimal nutrient composi-
tions identified here thus offer a promising and sustain-
able outlook for the scaling-up of microalgal cultivation 
systems for biorefinery applications where, on one hand, 
biofuel precursor molecules are maximised and, on 
the other, nutrient supply is efficiently and sustainably 
managed (for instance, by reducing the environmental 
impacts of nitrogen fertilisers or the overuse of inorganic 
phosphorus, a non-renewable resource [65]).

Conclusions
The multi-parametric kinetic model presented here, 
developed through a combination of experimental and 
computational tools, was shown to be a robust tool for 
the simulation of mixotrophic microalgal growth subject 
to a wide range of nutrient compositions. The developed 

Fig. 6  Comparison of model results and experimental data (dots) from the non-optimised, and model-based optimised scenarios for maximised 
starch and lipid formation. Non-optimised medium (No = 0.382 gN L−1, P0 = 0.096 gPO4 L−1, A0 = 0.42 gC L−1), starch-enhancing medium (N0 = 0.33 
gN L−1, P0 = 0.052 gPO4 L−1, A0 = 0.96 gC L−1), and lipid-enhancing medium (N0 = 0.35 gN L−1, P0 = 0.044 gPO4 L−1, A0 = 0.96 gC L−1). Data and error 
bars represent the mean and range (min/max values), respectively, of two independent experimental replicates
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model was further exploited to identify starch-enhanc-
ing and lipid-enhancing cultivation strategies relying 
on optimal nutrient composition. When compared to a 
non-optimised scenario, the model-identified strategies 
yielded significant increases of + 270% starch and + 74% 
lipids. Establishing highly productive microalgal cultiva-
tion strategies is one of the major challenges preventing 
microalgal biomass to be implemented as feedstock for 
biofuels production. However, the model-based optimi-
sation framework presented in this work can be system-
atically applied to identify and implement tailor-made 
cultivation strategies yielding mass-scale microalgal cul-
tures rich in starch and lipids and thus contribute to the 
commercialisation of microalgal biofuels, and together 
with on-going technological advances, the establishment 
of microalgal biorefineries.

Methods
Strain and cultivation
Experiments were carried out with the wild-type strain 
Chlamydomonas reinhardtii CCAP 11/32C. The strain 
was grown mixotrophically in Tris–Acetate–Phos-
phate (TAP) medium [35]: 2.42 g of Tris-base, 25 mL of 
TAP salts (15  g L−1 NH4Cl, 4  g L−1 MgSO4⋅7H2O, 2  g 
L−1 CaCl2⋅2H2O), 0.387  mL of phosphate buffer 2.7  M 
(288 g  L−1 K2HPO4, 144 g L−1 KH2PO4), 1 mL of trace 
components [66], and 1 mL of acetic acid, brought to 1 L 
with deionised water. For nutrient-dependent experi-
ments a microalgal inoculum was propagated in 150 mL 
of TAP medium until the late stationary phase (5–7 days), 
reaching a cell dry weight of 0.001  g  mL−1 (5.47 × 106 
cells mL−1). The inoculum was placed in an orbital shaker 
at 150 rpm, 25 °C. Illumination (at 125 μmol m−2 s−1) was 
provided from above using 4  ft long 20  W high-power 
LED T8 tube lights in a light/dark photoperiod of 16/8 h, 
and the length of light path was 0.15 m.

Nutrient‑dependent cultures
Mixotrophic growth dynamics co-limited by nitrogen 
and phosphorus were evaluated by growing microalgal 
cultures under different initial nitrogen (N0), phosphorus 
(P0), and acetic acid (A0) concentrations with respect to 
standard (TAP) medium (Table 1). Cultures were grown 
in duplicate in 500 mL of sterile medium, inoculated with 
1 mL of active microalgal inoculum, and kept at the envi-
ronmental conditions described above. Cultures were 
fully harvested during cultivation (days 2, 3, 4, 6, 7, and 
8) to analyse biomass and metabolites. Data was statis-
tically analysed by one-way ANOVA in Origin Pro 2017 
(b9.4.1.354).

During media preparation, the initial nitrogen con-
centration was altered by modifying the concentra-
tion of ammonium chloride (NH4Cl) in the TAP salts 

solution. Initial phosphorus concentration was altered 
by modifying accordingly the volume of phosphate buffer 
(maintaining a 2:1 ratio for K2HPO4:KH2PO4). In phos-
phorus-limited media, potassium chloride (KCl) was 
uniformly added to compensate for the loss of potas-
sium ions. Initial acetic acid concentration was altered by 
modifying the volume of acetic acid. The concentration 
of all other TAP components remained unchanged, and 
the initial medium pH was adjusted to 7 with HCl 3 M or 
KOH 3 M, as appropriate.

Analytical methods
Cell growth
The dry cell weight (DCW) was quantified by centrifug-
ing microalgal cultures for 3.5 min at 3000g in an Eppen-
dorf centrifuge 5424. The residual cell pellets were placed 
in pre-weighed tubes and allowed to dry for 24 h at 70 °C, 
after which the DCW was determined gravimetrically. 
Dried pellets were kept in sealed containers and analysed 
for their lipid content.

Starch and lipid contents
For analysis of microalgal starch, 2-mL aliquot samples 
of microalgal cultures were pelleted by centrifugation at 
13,000g for 3 min. Chlorophyll was removed by washing 
pelleted cells in 500 μL of 80% ethanol for 5 min at 85 °C. 
Washed cells were re-centrifuged at 13,000g for 3  min, 
and cellular starch was then solubilised as described in 
Bajhaiya et  al. [26]). Total starch was quantified as per 
a Total Starch enzymatic assay kit (Megazyme Interna-
tional) where released free D-glucose is measured col-
ourimetrically against a d-glucose standard curve. The 
lipid content of cells (previously pulverised) was deter-
mined by solvent extraction (using hexane at 155  °C) 
in a SOXTEC Unit 1043 following a three-stage extrac-
tion protocol [31]. Extracted lipids were then quantified 
gravimetrically.

Metabolites concentrations
Acetic acid was quantified by high-pressure liquid chro-
matography (HPLC) in a HPX-87H column (8  μm, 
300 × 7.7  mm, Bio-Rad), coupled to a UV detector set 
at 210  nm. Sulphuric acid (H2SO4) 5  μM was used as 
the mobile phase at a flow rate of 0.6  mL  min−1 and a 
temperature of 50  °C. Total nitrogen was measured in a 
Total Organic Carbon/Total Nitrogen unit (TOC-VCSH/
TNM-1 Shimadzu) as per manufacturer’s instructions. 
For calibration standards, ammonium chloride (NH4Cl) 
was used as the nitrogen source. Phosphorus was meas-
ured by Inductively Coupled Plasma—Optical Emis-
sion Spectroscopy (ICP-OES) in a Varian Vista MPX set 
at 213  nm. All samples and calibration standards were 
filtered through 0.45  μm nitrocellulose membranes 
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(Millipore Ltd.) and diluted accordingly in Type 1 grade 
water. The nitrogen and phosphorus cellular quotas were 
estimated as follows:

where N0 (gN L−1) and P0 (gPO4 L−1) are the initial nitro-
gen and phosphorus medium concentrations, respec-
tively, and N, P, and X are the residual concentrations of 
nitrogen, phosphorus, and biomass, respectively [52].

Active biomass and carbon equivalent concentration
The fraction of active biomass (i.e. starch and lipid free 
biomass) was determined by subtracting starch and lipid 
concentration from the total biomass (DCW). Acetic 
acid, starch, lipids, and biomass are reported on a car-
bon basis by means of conversion factors (gC g−1): 0.40 
acetate, 0.44 starch, 0.77 lipids, and 0.504 biomass. C. 
reinhardtii cells were assumed to have the elemental 
composition reported by Eriksen et al. [67].

Estimation of model parameters
The model presented in this work [Eqs.  (16)–(24)] is 
comprised by 37 kinetic parameters, all appropriately 
defined in Table  2. The values of 12 kinetic parameters 
(associated to growth and nitrogen uptake dynamics) 
were set equivalent to those previously identified by 
Figueroa-Torres et al. [42]. The remaining kinetic param-
eters were estimated by minimising the squared relative 
error between experimental and predicted data:

Here, G is the objective function, P is the parameter set, 
and Z is the set of predicted or experimental data. Pre-
dicted data were generated by solving the model using 
initial values equivalent to those of nutrient-dependent 
experiments. nh, ni, and nk denote the number of data 
points in time, number of fitting experimental datasets 
[3 datasets: (TAP), (Low P), and (High A: Low P)], and 
number of state variables, respectively. Parameters were 
restricted by lower (lb) and upper (ub) bounds as per data 
obtained from literature or experimental analysis. The 
minimisation problem was solved via a stochastic opti-
misation routine (simulated annealing) subject to multi-
ple re-starts to approximate the solution around a global 
minimum. The stochastic solution was then used as ini-
tial guess in a deterministic routine (sequential quadratic 
programming) to generate the final parameter set [68]. 
Both routines were coded in-house in Matlab R2015a. 
A sensitivity analysis was carried out for all model 

(24)qN =
No − N

X
; qP =

Po − P

X
,

(25)minG(P) =

nh
∑

h=1

ni
∑

i=1

nk
∑

k=1

(

ZPred
h,i,k (P)− Z

Exp
h,i,k

Z
Exp
h,i,k

)2

.

parameters and is presented as Additional file 1. As per 
the sensitivity analysis, 4 parameters were deemed not 
sensitive ( σ , kS,I , Ks,S , and φL ): from which two param-
eters were set as σ = 1 , and kS,I = 1.4 , and the other two 
were found to have a negligible effect on model predic-
tions when set to 0, so that Ks,S = 0 , and φL = 0.
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