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Waste biorefinery towards a sustainable 
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Abstract 

Global issues such as environmental problems and food security are currently of concern to all of us. Circular bioec‑
onomy is a promising approach towards resolving these global issues. The production of bioenergy and biomaterials 
can sustain the energy–environment nexus as well as substitute the devoid of petroleum as the production feedstock, 
thereby contributing to a cleaner and low carbon environment. In addition, assimilation of waste into bioprocesses for 
the production of useful products and metabolites lead towards a sustainable circular bioeconomy. This review aims 
to highlight the waste biorefinery as a sustainable bio-based circular economy, and, therefore, promoting a greener 
environment. Several case studies on the bioprocesses utilising waste for biopolymers and bio-lipids production as 
well as bioprocesses incorporated with wastewater treatment are well discussed. The strategy of waste biorefinery 
integrated with circular bioeconomy in the perspectives of unravelling the global issues can help to tackle carbon 
management and greenhouse gas emissions. A waste biorefinery–circular bioeconomy strategy represents a low 
carbon economy by reducing greenhouse gases footprint, and holds great prospects for a sustainable and greener 
world.
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Background
According to the Worldometer, the current world popu-
lation records 7.8 billion people as of August 2020, and it 
is projected to be 10 billion people in 2057 [1]. The high 
annuals of world population growth are tackling pressing 
challenges on global issues pertaining to environmental 
problems and food security which affect the Sustainable 
Development Goals (SDGs). Particularly, such environ-
mental concerns like pollutions, climate change, global 
warming, waste disposal and natural resource reduction 

have increased at an alarming rate, and these concerns 
are mostly a consequence of uncontrolled detrimen-
tal activities by human being on our Mother Earth [2]. 
For example, the extensive exploitation of petroleum or 
fossil  fuel resources to produce energy, chemicals and 
synthetic materials not only causes the depletion of nat-
ural non-renewable resources but also impact the high 
releases of greenhouse gases (GHGs) emission, which 
affects the environment dramatically [3]. In consequence, 
these global problems need an imperative solution where 
circular bioeconomy can play the major role in which a 
low carbon economy will definitely help to resolve these 
issues, especially on the climate change through limiting 
global warming by 1.5 °C henceforth [4–7].

The term circular bioeconomy, also known as bio-
based circular economy, is an integrated concept of circu-
lar economy and bioeconomy. In other words, it denotes 
the cascading use of biomass from biological resources 
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into  a systemic approach for economic development. A 
circular bioeconomy offers an efficient utilisation of bio-
mass which include wastes and side streams for the sus-
tainable production of high value-added products (e.g., 
food, biomaterials, feed and bioenergy). The benefits of 
circular bioeconomy includes: (1) improved resource and 
eco-efficiency, (2) lower GHGs footprints, (3) reduced 
reliance of fossil resources and (4) valorisation of side and 
waste materials from numerous sources such as agro-
industrial aquaculture and fishery. This concept focuses 
on the idea of recycling, reuse, remanufacture and main-
taining a sustainable manufacturing  process to generate 
useful bioproducts. Hence, circular bioeconomy can be 
reflected as a low carbon economy since it exhibits the 
potential on developing a sustainable and greener envi-
ronment [7–9].

Biorefining is among one of the most primary facili-
tating strategies of the bio-based circular economy that 
closes the loop of fresh or raw resources, water, miner-
als and carbon. It can be defined as the sustainable bio-
processes that efficiently utilise biomass resources for the 
production of various marketable products and metab-
olites (e.g., carbohydrates, proteins, lipids, bioactive 
compounds and biomaterials) [10]. Furthermore, waste 
biorefinery receives as much interest or even higher as 
it represents a decent waste management approach [2, 
11, 12]. Bioprocesses utilising waste resources to pro-
duce biomaterials and biofuels can greatly elude fossil 
resources as the production feedstock and this prevents 
the natural resources from complete depletion. This 
approach does not only sustains the energy–environment 
nexus but also protects the environment by mitigating 
the carbon footprints (i.e., GHGs emission from burning 
fossil resources) [13]. Moreover, these bioprocesses can 
be incorporated with other management facilities such 
as wastewater treatment [14]. Biopolymers (e.g., polyhy-
droxyalkanoates and polyhydroxybutyrates) and biofu-
els (e.g., biodiesel, bioethanol, biohydrogen and biogas) 
are eco-friendly bioproducts that can be produced from 
various bioprocesses using a wide selection of renewable 
feedstocks [15]. As for the biofuels production, metabo-
lites like lipids and carbohydrates are first synthesised 
through bioprocesses which are then followed by fur-
ther processing on the metabolites into bioenergy. On 
the other hand, bioprocesses that involves fermentation 
can directly synthesize biopolymers [e.g., polyhydroxyal-
kanoates (PHAs)] [8, 16, 17].

Taking the above issues into consideration, this review 
article aims to evaluate the waste biorefinery advocating 
toward a circular bioeconomy. Several case studies on the 
bioprocesses regarding the waste biorefinery to produce 
biopolymers and bio-lipids have been reviewed. Besides 
that, the investigation of bioprocesses incorporated with 

wastewater treatment have been analysed and well dis-
cussed. The final section of this review comprehensively 
evaluated on how the integrated concept of waste biore-
finery and circular bioeconomy can contribute towards 
resolving the global issues especially on the environmen-
tal concerns and food security (see Fig. 1). Circular bio-
economy is crucial and possesses vast potential towards 
a sustainable green world. Respectively, waste biorefin-
ery holds great prospective for the forthcoming circular 
bioeconomy.

Waste biorefinery promoting a circular 
bioeconomy
Petroleum or fossil fuel is a natural resource which has 
been the utmost important production feedstock for 
energy (e.g., transportation fuels) and synthetic materials 
(e.g., plastics and chemicals) for decades. However, they 
are non-renewable and possess environment-threatening 
features which causes climate change by the emission of 
GHGs mainly carbon dioxide (CO2) to the atmosphere. 
These environmental issues have raised the global aware-
ness and there are a great deal of researches on carbon 
mitigation and adaptation [18]. Shifting towards a waste 
biorefinery model from a petroleum refinery model 
indicates a great effort on the carbon management and 
GHGs mitigation. Waste biorefinery involves in the 
establishment of a sustainable circular bioeconomy based 
on the philosophy of recycle, reuse, remanufacture and 
maintaining by shifting from a linear economy according 
to the principle of take, make and dispose [7, 19, 20].

Bioprocesses using waste materials which consists of 
municipal solid and liquid waste to produce value-added 
bioproducts and metabolites regarded as waste-to-treas-
ure has received increasing attention as the products pro-
duced are renewable and display environmental benign 
biodegradability characteristics. The bioprocessing of 
waste biorefinery on the production of biopolymers and 
bioenergy does not only addresses the energy and envi-
ronmental security concerns, in fact it signifies a better 
management of waste streams. It is an eco-friendly and 
economically sound platform as the production feed-
stock is sustainable and low in cost [21]. Various kind of 
waste materials such as food waste [22], side stream from 
industries (e.g., paper and pulp industry, beer and wine 
industry, starch and juice industry), agro-industrial by-
product [23, 24], forest and agriculture waste, lignocel-
lulosic material [25] as well as wastewater or sludge [26], 
have been efficiently valorised into useful and marketable 
bio-based products [8, 20, 27]. Several case studies on the 
bioprocesses using waste for biopolymers and bio-lipids 
to be further converted into biofuels production as well 
as bioprocesses for wastewater treatment are next dis-
cussed in the following sub-sections.
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Bioprocesses with waste for biopolymers synthesis
Shifting to a more eco-benign environment, PHAs which 
represent  the green biopolymers have captured tremen-
dous attention from both the industry and scientific 
community driven by the need to replace conventional 
petroleum-derived non-degradable polymers or plas-
tics. They possess enormous inherent properties such as 
insolubility in water, non-toxicity, biodegradability, bio-
compatibility, piezoelectricity and thermoplasticity, and 
hence showing potential as substitute of petrochemical 
plastics (e.g., polypropylene and polystyrene) [28]. PHAs, 
a type of linear polyesters of hydroxyalkanoates (HAs), 
can be produced through microbial fermentation with 
renewable resources like waste and side streams [29, 30]. 
Usually, they are accumulated as intracellular carbon and 
energy storage compounds in the culture under limited 
growth conditions with excess carbon sources. PHAs 
can be divided into three groups, which are based on the 
number of carbon atom: SCL-PHAs (short chain length 
PHAs; 3–5 carbon atoms), MCL-PHAs (medium chain 
length PHAs; 6–15 carbon atoms) and LCL-PHAs (long 
chain length PHAs; ˃ 15 carbon atoms). There are many 
varieties of PHAs, for instance, poly(3-hydroxybutyrate) 

(PHB), poly(3-hydroxyvalerate) (PHV) and poly(3-
hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). PHAs 
have excellent potential applications in industrial, agri-
cultural, domestic and medical field. For example, they 
are widely applied in tissue engineering as supportive 
scaffolds, in packaging industries and in drug delivery as 
nanoparticles [31–34].

Reutilisation of waste resources using bioprocesses to 
produce biomaterials like PHAs gains increasing impor-
tance for environmental and socio-economic reasons. 
This initiative supports an eco-friendly campaign besides 
reducing the production cost. As an example, the utilisa-
tion of CO2 and valeric acid in the Cupriavidus necator 
DSM 545 fermentation to tailor microbial PHBV. The 
carbon fixation and utilisation system have been success-
fully applied to produce the microbial bioplastic, and this 
will achieve a low carbon economy [30]. Another study 
by Koller et al. [35] reported that the valorisation of sur-
plus agricultural waste materials into cheap and good 
carbon, nitrogen and phosphorus sources with a highly 
osmophilic strain on the production of PHA. These 
materials included the hydrolysation of whey perme-
ate and glycerol liquid phase as carbon source, as well as 

Fig. 1  Schematic view delineates the outline of this review article. The concept of low carbon economy involves recycling, reusing, 
remanufacturing and maintaining existing processes



Page 4 of 15Leong et al. Biotechnol Biofuels           (2021) 14:87 

meat and bone meal as nitrogen and phosphorus sources. 
These hydrolysed waste resources utilised in the fermen-
tation process can reduce the production cost of PHA. 
Besides that, the assimilation of agro-industrial oily waste 
with Pseudomonas aeruginosa 42A2 (NCIB 40045) fer-
mentation for PHA production was studied by Fernán-
dez et al. [36]. Waste frying oil and waste-free fatty acids 
from soybean oil were used as the carbon source on the 
microbial fermentation, and successfully accumulated 
PHA of 29.4% and 66.1%, respectively.

Other than that, Yu and team studied the PHAs pro-
duction using starchy wastewater with Alcaligenes 
eutrophus (ATCC17699) cultivation [37]. The research 
employed a two-step process of microbial acidogenesis 
and acid polymerisation. The organic waste firstly under-
goes acidogenesis to produce volatile fatty acids (VFAs) 
(e.g., acetic, propionic, and butyric acid) under anaerobic 
conditions, and was subsequently used to produce micro-
bial PHAs. Also, dairy industrial waste, rice bran and sea 
water were employed by RamKumar Pandian et  al. to 
synthesise PHB with Bacillus megaterium SRKP-3 fer-
mentation. The maximum PHB concentration (11.32 g/L) 
was achieved in the microbial culture with the dairy 
waste [38]. Furthermore, the  utilisation of food waste, 
acidogenic effluents and waste glycerol for the produc-
tion of PHAs were reported previously by Venkateswar 
Reddy and Venkata Mohan [39] and Cavalheiro et al. [40], 
respectively. The former study showed that the micro-
bial culture with acidogenic effluents (fermented food 
waste) accumulated a higher PHA (39.6%) compared to 
that of with unfermented food waste (35.6%). The study 
demonstrated the production of biohydrogen along with 
biopolymer using microbial fermentation process with 
fermented food waste. Whereas, the latter study valorised 
waste of crude glycerol by-product of biodiesel produc-
tion with Cupriavidus necator DSM 545 fermentation to 
produce PHB (50% of PHB, w/w). To date, there are still 
many ongoing researches on the biopolymers production 
by valorisation waste streams with bioprocesses [41–44].

Bacterial cellulose (BC) is an alternative green biopoly-
mer which has also been extensively studied by the sci-
entific community. BC is a natural nano-polymer that 
displays numerous interesting characteristics, including 
higher degree of polymerisation, higher tensile capability, 
higher crystallinity, higher purity as well as good water 
absorbing and holding capacity, in addition to the good 
biological adaptability [45, 46]. These inherent properties 
have prompted the wide applications of BC in various 
fields include pharmaceutical, biomedical and food [47]. 
Many researchers have valorised different type of wastes 
with bacterial cultivation to produce BC, for instance, 
waste fibre sludge [48], waste from beer industry [49], 
black strap and brewery molasses [50], wastewater of 

candied jujube-processing industry [51], corn steep liq-
uor [52], sweet lime pulp waste [53] and many more [47]. 
Lin et al. [49] studied the cultivation of Gluconacetobac-
ter hansenii CGMCC 3917 with only waste beer yeast as 
the nutrient and carbon sources for synthesis of BC, and 
a promising result was obtained. The bacterial culture 
achieved from the optimised waste beer yeast hydrolysate 
(treated by a two-step pre-treatment that incorporated 
ultrasonication and mild acid hydrolysis as well as opti-
misation of sugar concentration) resulted in a higher 
BC yield and demonstrated good physicochemical fea-
tures (i.e., holding capacity, release rate and absorption 
rate of water) compared to that of using untreated waste 
beer yeast and conventional chemical media. Table  1 
shows  the various bioprocesses utilising waste materials 
for the biopolymers synthesis.

Bioprocesses with waste for bio‑lipids synthesis
The bioprocessing of waste contributes to both the pro-
duction of green biopolymers and accumulation of 
bio-lipids. Production of microbial lipids using low-
cost substrates from waste materials has attained much 
attention from both the industry and research areas as 
the alternative feedstock for biofuels production, health 
food supplements and oleo-chemical industries. Ole-
aginous microorganisms such as yeasts, cyanobacteria, 
algae, some bacteria, and fungi can accumulate signifi-
cant amount of lipids of their body weight (~ 20–80%) 
[54]. The microbial oils are safe-to-use, non-toxic and 
biodegradable, whereby their industrial applications do 
not depend on petroleum-based chemicals. These fea-
tures sustenance a greener environment for the society, 
and can help to alleviate several global issues [23, 55–59]. 
Nowadays, many researchers focused on the bioprocesses 
utilising waste materials for microbial lipids produc-
tion [60, 61]. For instance, Fontanille et al. [56] reported 
the feasibility of simultaneous bio-valorisation of VFAs 
(e.g.,  acetic, propionic and butyric acid) and glycerol as 
the carbon sources for oleaginous yeast Yarrowia lipol-
ytica MUCL 28849 culture to generate microbial lipids. 
These carbon sources are inexpensive and can be easily 
obtained from industries as by-product or waste. Simi-
larly, Gong et  al. studied the conversion of acetic acid 
waste into microbial lipids by cultivating Cryptococcus 
curvatus ATCC 20509 under various culture modes, and 
promising yeast-derived lipids yields were attained [62].

In addition, Huang et  al. [63] and Xavier et  al. [64] 
studied the valorised acetic acid and hemicellulose 
hydrolysate, respectively, on the production of yeast-
derived lipids. The former study utilised 4–20 g/L ace-
tic acid as the sole carbon source with Rhodosporidium 
toruloides AS 2.1389 culture to synthesise lipids  of 
approximately  38.6–48.2%, while the latter study 
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employed hemicellulose hydrolysate from sugarcane 
bagasse to cultivate Lipomyces starkeyi DSM 70296, 
and lipid content of 26.1–26.9% was obtained. Besides, 
Lopes et  al. [65] reported the production of micro-
bial lipids and some useful metabolites such as citric 
acid and lipase through cultivation of Yarrowia lipol-
ytica W29 (ATCC 20460) with pork lard. Pork lard is 
an animal fat which is rarely used in food preparation, 
as its consumption causes vascular and heart diseases, 
and hence it is normally regarded as waste. This study 
revealed the possible usage of waste from meat pro-
cessing industries for microbial oils synthesis.

Microalgae oil has gained high popularity in industrial 
applications such as biodiesel and health food supple-
ments [66, 67]. Microalgal-derived biodiesel has excellent 
properties like low viscosity and represents as a carbon–
neutral renewable fuel which benefits the environment 
and should be used to replace fossil fuels. Moreover, 
microalgae oil also contains polyunsaturated fatty acids 
(PUFAs) which can be further processed into health food 
supplements [68, 69]. Valorisation of waste into microal-
gae bioprocessing represents a greener and cost-effective 
circular bioeconomy approach. In this regard, Hong et al. 
[70] suggested that the empty palm fruit bunches can be 
a potential source for the production of microalgal lipids 
that contain significant amount of docosahexaenoic acid 
(DHA). DHA (C22:6n  −  3) is an omega-3 PUFA that 
plays a vital role in brain and eye development. Another 
study by Chiranjeevi and Venkata Mohan [71] reported 
an integrated process of acidogenic fermentation and 
microalgae culture using wastewater to produce lipids. 
Two types of fermented effluents, include fermented dis-
tillery wastewater and fermented dairy wastewater, were 
employed in the cultivation with different culture modes 
(i.e., fermented distillery wastewater: mixotrophic cul-
ture and fermented dairy wastewater: both hetero- and 
mixotrophic culture).

Furthermore, microalgae Chlorella vulgaris FACHB-31 
cultured with landfill leachate in membrane photobiore-
actors to produce bio-lipids was reported by Chang et al. 
[72]. The bio-lipids produced exhibited good combustion 
properties by owning low linolenic acid content (8.32%) 
and high cetane number (60.96%). A study by Nguyen 
et  al. [73] also reported the utilisation of wastewater in 
the microalgae cultivation for lipids production. Sea-
food wastewater effluent was used to culture Chlorella 
vulgaris SAG 211-19, and lipid content of 32.15% was 
successfully produced. Much research efforts are being 
placed to valorise waste on microalgae cultivation to gen-
erate useful bioproducts [74–79]. Table 2 shows numer-
ous bioprocesses using waste materials to synthesise 
microbial lipids. Collectively, assimilation of industrial 
by-product or waste biorefinery could be a good choice 

to turn the unwanted substances into useful product such 
as biopolymers and bio-lipids which represents a sustain-
able and economical waste management approach.

Bioprocesses for wastewater treatment
Wastewater or sludge such as sewage, domestic wastewa-
ter from households and industrial wastewater are usu-
ally generated through agricultural, industrial, domestic 
and commercial activities. The wastewater contains bio-
logical, chemical and physical pollutants, therefore, a 
proper wastewater treatment process is crucial to mini-
mise the water pollution besides attaining environmental 
security. Looking towards this perspective, bioprocessing 
represents a potential wastewater treatment approach. 
In addition, wastewater reclamation with bioprocessing 
to produce value-added products is a crucial research 
field as wastewater contains vast amount of nutrients 
that is essential to nurture microbial culture (e.g., solu-
ble and insoluble organic compounds which represent 
rich source of nitrogen, phosphorus and ammonium). 
The strategy of cultivating microorganisms using waste-
water will promote the bioremediation of the waste-
water  in  which reduces the cultivation cost and allows 
the production of many useful bio-based products (e.g., 
biopolymers, biofuels and health food supplements) and 
metabolites (e.g., proteins, lipids, carbohydrates and bio-
actives) to be co-synthesised [14, 80–82]. Sarris et al. [83] 
evaluated the cultivation of Saccharomyces cerevisiae 
MAK-1 with olive mill wastewater treatment. A notable 
decolourisation and phenol removal efficiency ~ 63% 
and 34%, respectively, for the wastewater bioremediation 
were reported. Besides, the microbial culture enriched 
with the wastewater showed promising outcomes on the 
bioethanol and lipids production. Various researches 
have been conducted in this area, and there are still many 
ongoing investigations due to the potential of wastewa-
ter reclamation using bioprocesses. Various examples of 
bioprocesses incorporated with wastewater treatment 
and reclamation are presented in Table  3. Valorisation 
of waste into bioprocesses on the production of biopoly-
mers and bio-lipids as well as bioprocesses for wastewa-
ter bioremediation can be represented as a sustainable 
and economical approach towards achieving a circular 
bioeconomy.

Strategies of waste biorefinery–circular 
bioeconomy towards solving the global issues
Global issues relating to the environment and food secu-
rity are the defining problems of our time that have trig-
gered the global awareness of the society. Much efforts 
have been made by different parties including the govern-
ment, non-governmental organisations (NGOs), scien-
tific communities and academia to resolve the problems 
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Table 3  Several bioprocesses integrated with wastewater bioremediation

Microbial strain Type of wastewater Results Reference(s)

Aspergillus oryzae Potato processing wastewater COD removal efficiency = 91%
Total soluble nitrogen removal effi‑

ciency = 98%
Total soluble phosphorus removal effi‑

ciency = 97%
Lipid concentration = 3.5 g/L

[84]

Bjerkandera adusta MUT 2295 Coloured wastewaters: textile industry 
wastewater, tannery industry wastewater 
and industrial dyes

Bjerkandera adusta MUT 2295 effectively 
degraded and detoxified most of the 
coloured wastewaters

[85]

Microalgae: Chlorella sorokiniana DBWC2 
and Chlorella sp. DBWC7

Bacteria: Klebsiella pneumoniae ORWB1 and 
Acinetobacter calcoaceticus ORWB3

(co-culture of microalgae-bacteria consor‑
tium)

Raw dairy wastewater COD removal efficiency = 90.49%
Nitrate removal efficiency = 84.69%
Biomass concentration = 2.87 g/L

[86]

Chlorella vulgaris FACHB-31 Mixed piggery-brewery wastewater Ammonia removal efficiency = 100%
TN removal efficiency = 96%
TP removal efficiency = 90%
COD removal efficiency = 93%
Biomass concentration = 2.85 g/L

[87]

Chlorella vulgaris AG 30007 and Pseu-
domonas putida ATCC 17514 (co-culture of 
microalgae-bacteria consortium)

Municipal wastewater COD removal efficiency = 86%
Nitrogen removal efficiency = 78–85%
Phosphorus removal efficiency = 54–65%

[88]

Chlorella vulgaris NIES-227
(co-culture of microalgae-bacteria consor‑

tium)

Sewage (activated sludge) COD removal efficiency = 82.7%
Nitrogen removal efficiency = 75.5%
TP removal efficiency = 100%
Biomass productivity = 343.3 mg/L/d
The biomass produced showed a higher 

calorific value and protein content

[89]

Micractinium sp. IC-76 Municipal wastewater Nitrogen removal efficiency = 96.4%
Phosphorus removal efficiency = 77.8%
Biomass productivity = 37.18 mg/L/d
Lipid content = 36.29%

[90]

Saccharomyces cerevisiae MAK-1 Olive mill wastewater Remarkable decolourisation (~ 63%) and 
phenol removal efficiency (~ 34% (w/w))

Co-production of bioethanol and lipids

[83]

Scenedesmus sp. (co-culture of microalgae-
bacteria consortium)

Starch wastewater (anaerobic sludge) Co-cultivation enhanced biohydrogen 
production and performed wastewater 
bioremediation

COD removal efficiency = 80.5%
Total nitrogen (TN) removal effi‑

ciency = 88.7%
Total phosphorus (TP) removal effi‑

ciency = 80.1%
Biohydrogen yield = 1508.3 mL/L
Total lipid concentration = 0.36 g/L
Energy conversion efficiency = 34.2%

[91]

Bacterial consortium ‘Bx’ Textile wastewater contains reactive dye Maximum decolourisation rates = 88–97%
Chemical oxygen demand (COD) removal 

efficiency = 95–98%

[92]

PHA-storing and filamentous bacteria Municipal wastewater COD removal efficiency = 70%
CODsol concentration removal effi‑

ciency = 60% (sol: soluble)
Nitrogen removal efficiency = 24%
Phosphorus removal efficiency = 46%
Co-produced PHA

[93]
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progressively [4–6]. An unprecedented climate change 
(i.e., ever-changing weather patterns) can threaten the 
production of food crops which will cause a major set-
back in food sources. A speedy industrialisation and 
urbanisation are regarded as the major contributing fac-
tors on climate change as these processes release a high 
and unsafe level of GHGs mostly CO2 emissions to the 
atmosphere. The burning of fossil fuels is also among the 
most intimidating actions causing high GHG emissions 
[98–100]. A special report issued by Intergovernmental 
Panel on Climate Change (IPCC) in October 2018 stated 
that a global warming of 1.5 °C could trigger the negative 
impacts of climate change in terms of sea level rise and 
unsecure food production [6]. In this regard, waste biore-
finery incorporated with circular bioeconomy represents 
a low carbon economy by involving CO2 sequestration 
which can resolve the global issues. Moreover, this strat-
egy also signifies a sustainable and economical manner of 
waste disposal [7–9].

The valorisation of waste or side streams into bio-
processes for the production of value-added bioprod-
ucts such as biopolymers and biofuels could potentially 
replace the utilisation of fossil fuels as the production 
feedstock which ensures an ecologically friendly carbon 
flow. This approach is regarded as a waste-as-a-value, 
waste-to-wealth or zero-waste plan which would highly 
contribute as a decent, green, and low-cost waste dis-
posal means. In addition, the bio-based products pro-
duced possess environmental benign properties such as 
non-toxicity, biodegradable and biocompatible that sup-
ports an eco-friendly campaign, and hence promoting a 
greener environment globally. Numerous environmental 

problems like global warming, water and environment 
pollution, waste disposal as well as natural resource 
depletion can then be unravelled. As an example, the 
development of bioplastics or biopolymers which sub-
stantially replace conventional petrochemical plastics can 
help to minimise plastic pollution that demonstrates 
adverse impacts in soil and marine ecosystem [101, 102]. 
Other than that, a great deal of research attention has 
been placed on improving the efficiency, effectiveness, 
and economic feasibility of wastewater treatment, and, 
therefore, water pollution can be conceivably addressed. 
The bioprocesses integrated with wastewater treatment 
(i.e., a type of biological wastewater treatment) have been 
proved to effectively bioremediate wastewater (e.g., sew-
age and industrial wastewater e). Besides that, waste-
water reclamation for value-added bio-based products 
can be achieved by cultivating live microorganisms such 
as bacteria, algae and yeasts with wastewater [103]. To 
attain an energy security, bioenergy and biofuels has been 
produced from the microorganisms, and its production is 
non-dependent on petroleum feedstock. GHGs’ mitiga-
tion and carbon management can be achieved using bio-
fuels for various purposes (e.g., transportation fuels). An 
economical manner of biofuels production (or microbial 
lipids synthesis) can then be accomplished by bioprocess-
ing with a waste biorefinery [69, 104, 105].

Collectively, a waste biorefinery–circular bioeconomy 
strategy could ensure an energy–environmental security. 
Having an environmental security prompts a food secu-
rity for the globe. Food security is of extremely impor-
tance to ensure an adequate supply of food resources for 
the increasing world population, and thus to avoid world 

Table 3  (continued)

Microbial strain Type of wastewater Results Reference(s)

Microbial community Lactate wastewater (obtained from cattle 
slaughterhouse)

COD removal efficiency = 12–30%
Lactate removal efficiency = 54–99.8%
Biohydrogen yield = 0.08–0.95 mol H2/

mol lactate uptake (by dark fermentation 
process)

Identified microbial = Clostridium, Sporan-
aerobacter and Pseudomonas

[94]

Sulphate reducing bacteria consortium Real wastewater from Okhla industrial area 
effluent

Sulphate removal efficiency = 90%
Chromium removal efficiency = 82.6%
Cadmium removal efficiency = 86.6%
Zinc removal efficiency = 54.09%
Lead removal efficiency = 49.8%
Nickel removal efficiency = 10.3%
Oil and grease removal efficiency = 75%

[95]

Not specified (co-culture microbial con‑
sortium: microalgae, bacteria and other 
microscopic organisms)

Domestic sewage TN removal efficiency = 72–83%
TP removal efficiency = 100%

[96]

Not specified Municipal biological wastewater COD removal efficiency = 83%
TN removal efficiency = 80%
PHA content = 49%

[97]
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hunger issue. Also, the quality of life and human health 
can be maintained through an environmental-food secu-
rity. Hence the efforts of a circular bioeconomy will help 
to regenerate the good efficiency and prosperity in a life-
long cycle without worry of the economic impacts of 
environmental, food and energy.

Conclusions
A sustainable and eco-benign manner of waste disposal 
is critical to protect the environment and human health. 
In this regard, waste biorefinery exemplifies its potential. 
Valorisation of waste or side streams into bioprocessing 
to produce value-added bioproducts like biopolymers 
and bio-lipids remarkably advocate a sustainable circular 
bioeconomy. A circular bioeconomy which represents a 
low carbon economy by reducing GHGs footprint helps 
to resolve the global issues significantly such as environ-
mental problems and food security. A waste biorefin-
ery–circular bioeconomy strategy, therefore, holds great 
prospective for a sustainable green world and should be 
prompted.
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