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Abstract 

Background:  Mass spectrometry-based proteomics can identify and quantify thousands of proteins from individual 
microbial species, but a significant percentage of these proteins are unannotated and hence classified as proteins 
of unknown function (PUFs). Due to the difficulty in extracting meaningful metabolic information, PUFs are often 
overlooked or discarded during data analysis, even though they might be critically important in functional activities, 
in particular for metabolic engineering research.

Results:  We optimized and employed a pipeline integrating various “guilt-by-association” (GBA) metrics, includ-
ing differential expression and co-expression analyses of high-throughput mass spectrometry proteome data and 
phylogenetic coevolution analysis, and sequence homology-based approaches to determine putative functions for 
PUFs in Clostridium thermocellum. Our various analyses provided putative functional information for over 95% of the 
PUFs detected by mass spectrometry in  a wild-type and/or an engineered strain of C. thermocellum. In particular, we 
validated a predicted acyltransferase PUF (WP_003519433.1) with functional activity towards 2-phenylethyl alcohol, 
consistent with our GBA and sequence homology-based predictions.

Conclusions:  This work demonstrates the value of leveraging sequence homology-based annotations with empiri-
cal evidence based on the concept of GBA to broadly predict putative functions for PUFs, opening avenues to further 
interrogation via targeted experiments.
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Background
Lignocellulose solubilization and fermentation have been 
major challenges in the quest to produce cost-effective 
cellulosic biofuels. Clostridium thermocellum (which has 
also been renamed as Ruminiclostridium thermocellum 
[1], Hungateiclostridium thermocellum [2], Acetivibrio 

thermocellus [3]) is a fermentative anaerobic thermophile 
that has been studied extensively as a possible chassis 
organism for this goal. Several attempts have been made 
to engineer C. thermocellum strains to produce bioetha-
nol as the major cellulose degradation product at high 
yield [4–8], but none of these attempts have matched 
conventional bioethanol producers, such as Saccharomy-
ces cerevisiae and Zymomonas mobilis [9, 10].

Although C. thermocellum produces various short-
chain alcohols (e.g., ethanol, isobutanol, etc.), several 
other end products are also generated (e.g., formic acid, 
acetic acid, lactic acid, hydrogen, amino acids, etc.). In 
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particular, the organic acids decrease pH of the cul-
ture media and reduce yields of alcohols as biofuels. To 
improve ethanol production, a modified version of C. 
thermocellum DSM1313 was generated, called strain 
LL1210, in which the specific genes involved in the pro-
duction of acetate, lactate, formate, and most hydrogen 
(Δhpt ΔhydG Δldh Δpfl Δpta-ack) have been deleted, 
followed by adaptive laboratory evolution strategy [11]. 
While LL1210 is among the highest producers of etha-
nol titer and yield from lignocellulosic biomass, further 
advances in this strain are required to examine organism 
robustness and scalability for industrial applications [10].

Interestingly, many of the proteins determined to be 
differentially expressed or highly expressed based on 
specific substrate in C. thermocellum and other cellulo-
lytic bacteria are annotated as hypothetical proteins, 
uncharacterized proteins, domains of unknown func-
tion (DUFs), or a similar term indicating no known func-
tion. We broadly refer to this class of proteins as “proteins 
of unknown function” (PUFs). High abundances and/or 
differential expression of PUFs that are sensitive to envi-
ronmental conditions (specifically, cellulosic substrate 
type) suggests a possible role in the metabolism of cel-
lulose or other key cellular processes. For example, pre-
vious work in the cellulolytic Caldicellulosiruptor bescii 
indicated differential abundance of 37 PUFs driven by 
the nature of the cellulosic substrates used in the growth 
media [12]. Similarly, many PUFs were found to be highly 
and/or differentially abundant across four strains of C. 
thermocellum (one wild-type parent strain plus three 
mutant strains) [11]. For example, WP_003519067.1 
(Clo1313_1790), which was a PUF at the time of this 
study, was highly abundant across the 4 strains [11], sug-
gesting an important functional role even in mutants 
that had undergone adaptive laboratory evolution. 
WP_003519067.1 is now annotated in NCBI RefSeq as 
a 2Fe-2S ferredoxin based on a conserved domain iden-
tified by NCBI SPARCLE [13]. Some PUFs were highly 
abundant in mutants, but not in the wild-type strain, 
while other PUFs showed differential abundance across 
mutant strains. Such measurements suggest a functional 
role, but a key challenge for researchers is to identify the 
specific function of a PUF.

As evident from the critical assessment of protein func-
tion annotation (CAFA), functional predictions based 
on sequence homology have dramatically improved 
over the past 2 decades [14–16]. Despite this progress, 
a large number of proteins remain annotated as PUFs 
[17]. As of March 2020, a total of 17,929 domains were 
deposited in the Pfam database, with 5792 domains (32% 
of the total) containing the keyword “unknown func-
tion” [18]. Reports indicate that a large fraction of Pro-
tein Data Bank (PDB) entries are categorized under 

“unknown functions” [19, 20]. PUFs are common even in 
well-studied species. For example, only 40% of predicted 
genes in the model plant Arabidopsis thaliana have reli-
able annotations [21]. Previous efforts have been made to 
predict the biochemical functions for protein structures 
of unknown function [22] and to characterize essential 
domains of unknown function (DUFs) [23]. Even after 
a recent attempt to  better annotate   PUFs in the S. cer-
evisiae and human genomes via sequence homology, 
greater than 30% of their  unknown  proteins (600 and 
2000 proteins, respectively) remain uncharacterized [24]. 
In E. coli, 80% of predicted proteins have some functional 
annotation, but only 54% have some level of empirical 
characterization [25, 26].

Protein characterization via empirical methods is 
challenging due to a large amount of sequencing data 
currently available combined with the low-throughput 
nature of characterization experiments. An alternative 
approach is to use interaction or co-expression data pro-
duced via high-throughput omics-scale measurements to 
identify proteins of known functions with which a PUF is 
associated, a concept referred to as “guilt-by-association” 
(GBA) [24, 27–31]. GBA operates under the reasonable 
assumption if two proteins physically interact or are co-
expressed with one another, they are more likely to be 
connected in function [29]. Previous work has found sig-
nificant overlap between co-expression and protein–pro-
tein interaction networks, suggesting that functionally 
related proteins are co-expressed [32]. Using the concept 
of GBA, PUFs which interact or co-express with proteins 
of known function may serve similar functional roles as 
the former, which can be confirmed via targeted charac-
terization experiments.

Given that approximately 20% of the C. thermocel-
lum genome consists of PUFs, the goal of this work is 
to identify putative functional roles for PUFs in C. ther-
mocellum, with a focus on PUFs which may play a role 
in cellulose degradation and ethanol production. To 
explain the potential roles of these PUFs, a time-course 
MS-based proteomics study was performed with C. ther-
mocellum DSM1313 wild-type (∆hpt)  and the evolved 
LL1210 strain to assess differential and co-expressed 
PUFs.  ∆hpt is the parent strain for essentially every 
mutant ever made in C. thermocellum. It has a deletion 
in the hypoxanthine phosphoribosyl transferase (hpt), 
which allows use of ∆hpt as a counter-selectable marker 
for making gene deletions. 

The LL1210 strain was chosen to compare with the 
∆hpt wild-type  strain not only  because they are geneti-
cally and phenotypically distinct but also because  
LL1210 is the highest ethanol producing strain of C. ther-
mocellum to date. Therefore, discovery of  PUFs  within 
the strain could lead to advances in improving its 
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metabolism toward ethanol production as well as over-
all growth .

The major aim of this experimental design was to 
explore  the temporal response of PUFs that are specific 
to a particular strain and more importantly increase or 
accumulate along with the  soubilization of the substrate. 
GBA evidence was leveraged with various functional pre-
diction tools, structural modeling, phylogenetic analysis, 
and gene regulatory information to  propose  putative 
functional roles for many PUFs in C. thermocellum. In an 
attempt to validate functional predictions derived here, 
PUF candidates which could be tested and verified by a 
measurable phenotype effect, either in vitro or in vivo, 
were identified. This is a very difficult and unpredictable 
process with the risk of no positive return. A range of 
PUFs were considered and the best validation candidate 
selected. From this, PUF WP_003519433.1 was empiri-
cally validated, showing clear evidence to support the 
alcohol acetyltransferase activity prediction.

Results
A visual outline of the GBA approach described in this 
manuscript is presented in Fig.  1, which illustrates how 
the MS-based proteome information is first connected 
with expression networks and then interrogated with a 
variety of informatics and structural prediction tools. 
PUFs with consistent lines of evidence across multiple 
GBA approaches were deemed strong candidates for 
putative functional classification.

A total of 1960 proteins out of 3033 possible proteins 
(65%) were quantified across all time points (as defined 
in "Methods" section) in both C. thermocellum strains 
(∆hpt and LL1210).   Figure  2 demonstrates the global 
proteome overlap (Venn-diagram) across both strains 
(a–c) and distribution of protein abundances (annotated 
versus PUFs), as shown by boxplots (d). In both strains, 
each time point had several unique proteins (Fig.  2a 
and b); however, a majority of proteins were observed 
in both experimental strains (Fig.  2c). This reveals that 
while much of the overall protein machinery is con-
stant, some of the identified proteins are specific for 
one strain under the provided growth condition, which 
could help to characterize and understand the overall 
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Fig. 1  A pipeline summarizing the guilt-by-association and functional annotation approaches used in this study. The 344 PUFs measured via 
LC–MS/MS were subjected to co-expression and differential expression analyses. Structural modeling with SwissModel was used to determine 
structural templates which best fit a PUFs protein sequence. Domain and function prediction were performed using InterProScan, eggNOG-mapper, 
and PANNZER2. Phylogenetic coevolution analysis was used to test for coevolution. Gene trees were generated from a homology search in BLAST, 
followed by alignment of the top 200 hits and tree construction using FastTree. Regulatory information based on shared operons was extracted 
from the DOOR database
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functionality of that strain. The unique proteins in the 
∆hpt strain were enriched in function related to sulfur 
compound metabolic process (GO:0044272), drug meta-
bolic process (GO:0017144), oxidation–reduction pro-
cess (GO:0055114), aromatic compound biosynthetic 
process (GO:0019438), and water-soluble vitamin bio-
synthetic process (GO:0042364). Notably, many proteins 
involved in these processes are perturbed in the LL1210 
strain [11]. In contrast, the unique proteins in the LL1210 
strain were related to polysaccharide catabolic process 
(GO:0000272). Global abundance distribution between 
all annotated identified proteins versus PUFs revealed 
that PUFs are, on average, lower in abundance across all 
conditions (Fig.  2d); however, since they are identified, 

they likely play key roles in the  solubilization of the 
substrates.

In total, 344 PUFs were identified via LC–MS/MS and 
were interrogated with GBA and sequence homology-
based analyses. Across all time points, proteins with 
functional annotations were on average of higher abun-
dance, as expected, although some PUFs are clearly 
highly abundant (Fig. 2d). At the time of our experiment, 
PUFs WP_003518117.1 and WP_003519055.1 were the 
only PUFs found in the top 10% most abundant protein 
across all samples. However, these PUFs were recently 
annotated as Ig-like domain containing protein and (2Fe-
2S) ferredoxin domain-containing protein, respectively. 
The results section will focus on some broad trends 
observed related to PUFs (e.g., differential expression 

Fig. 2  Summary of protein identifications and abundances. Overlap of protein identifications across time points in a Δhpt and b LL1210, 
and c overlap between strains. d Distribution of protein abundances for annotated proteins and PUFs across all strains and time points. 
****p <  = 0.0001.31
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patterns, coevolution patterns, etc.) followed by the 
description of specific PUFs of interest.

Phylogenetic analysis reveals PUFs coevolving 
with cellulose  solubilization and cellulosome structural 
proteins
To reduce ambiguity in unique protein assignments, 
orthogroups, or sets of orthologous and paralogous 
proteins across species, were determined using the soft-
ware OrthoFinder [33] with 27 species that included 
both cellulolytic and non-cellulolytic Firmicutes. Of the 
344 PUFs detected via LC–MS/MS, 68 were assigned 
to 37 unique orthogroups. To examine coevolution of 
PUFs with other proteins, we employed a phylogenetic 
method that tests for correlated presence or absence 
of traits across species [34]. The traits in this case were 
the orthogroups, specifically the 37 containing a PUF 
measured via LC–MS/MS. Using the species tree esti-
mated by OrthoFinder (Additional file 1: Figure S2), our 
analysis detected 115 PUFs that exhibited significant 
signals of coevolution with another protein orthogroup. 
Interestingly, 76 of the 115 significant results indicated 
PUFs that coevolved with WP_003516608.1 (YcxB fam-
ily protein), WP_003516626.1 (zinc-finger transcription 
factor II domain-containing protein), or ADU74616.1 
(PUF, not detected by LC–MS/MS). Although the func-
tion has not been characterized, YcxB family proteins are 
predicted to be transmembrane proteins. The set of pro-
teins shown to be coevolving with PUFs were enriched 
in GO terms related to polysaccharide catabolic pro-
cess (GO:0000272), chemotaxis (GO:0006935), cell wall 
macromolecule catabolic process (GO:0016998), xylan 
metabolic process (GO:0045491), transmembrane sign-
aling receptor activity (GO:0004888), cellulose binding 
(GO:0030248), cellulose 1,4-beta-cellobiosidase activity 
(GO:0016162), calcium ion binding (GO:0005509), and 
O-glucosyl hydrolase activity (GO:0004553), among oth-
ers, as shown in Additional file 2. Clearly, many of these 
processes are related to the solubilization of cellulose.

Comparison of strains Δhpt and LL1210 reveals differential 
protein expression of both known and unknown (PUF) 
proteins.
Differential expression analysis of protein abundances 
was performed using limma [35] between the two strains 
at early-log phase, mid-log phase, and late-log phase. 
Results of various functional enrichments can be found 
in Additional files 3 and 4. In total, we found 707 unique 
proteins that were differentially expressed in at least one 
time point, 100 of which were PUFs. For each time point, 
there were 393, 414, and 444 differentially expressed pro-
teins between the ∆hpt and LL1210 strains, respectively. 

Of these, 57, 53, and 59 were PUFs, with 38, 27, and 37 
of these having an absolute log2 fold change of at least 
1.5 (see volcano plot, Additional file  5: Figure S3). Sets 
of differentially expressed proteins were enriched in 
various GO terms and KEGG terms at each time point 
(Additional files 3 and 4). Under the assumption of GBA, 
differentially expressed PUFs are likely to have similar 
functional roles.

During early-log and late-log phases, differentially 
expressed proteins were enriched in GO and KEGG 
terms related to flagellum-dependent cell movement 
(GO:0071973) and chemotaxis (GO:0006935). These 
biological processes appear to be overall up-regulated 
in LL1210 during early-log phase, with mean log2 fold 
changes of 0.24 and 1.03, respectively. However, these 
processes appear to be down-regulated in late-log growth 
(mean log2 fold change -2.16 and -1.75, respectively). In 
addition, gene set enrichment analysis of differentially 
expressed proteins revealed that proteins with KEGG 
terms related to flagellar assembly (KEGG ID ctx02040) 
were less abundant across all 3 time points in LL1210 rel-
ative to ∆hpt. Previous work found that proteins related 
to cell motility were down-regulated in the LL1210 strain 
[10]. Cellular motility can be an energetically costly pro-
cess, so the already slow-growing strain with a heavily 
perturbed proteome could down-regulate cellular motil-
ity processes to channel ATP to other key cellular pro-
cesses, consistent with many of our observations. Note 
that sporulation genes, specifically the master regulator 
SpoA, was mutated in LL1210. In other clostridia species, 
mutations in spoA have affected biofilm and flagellum 
expression.

At all three time points, proteins involved in the acetyl-
CoA biosynthesis (GO:0006085) also appear to be dif-
ferentially expressed (i.e., 1.08, −2.18, −2.80 mean log2 
fold change in early, mid-, and late-log phases, respec-
tively). This result is consistent with the genetic modi-
fication of the LL1210 strain, which started as a strain 
with the pyruvate-formate lyase-dependent pathway 
converting pyruvate to acetyl-CoA disrupted. In addi-
tion, there is an overall increased abundance in LL1210 
of proteins involved in the pantothenate metabolic pro-
cesses (GO:0015939) at the mid-log phase (mean log2 
fold change 1.97). This finding is particularly interest-
ing as pantothenate is the precursor for CoA biosynthe-
sis which has a range of functions in bacteria [36]. As 
the acetyl–CoA pathway has been altered in the LL1210 
strain to drive the pyruvate metabolism towards etha-
nol production, this increased abundance of pantoth-
enate metabolism could indicate changes to fatty acid 
metabolism. A previous study found that C. thermocel-
lum adapts to the increase of ethanol by remodulation of 
the cell membrane [37]. Consistent with this conclusion, 
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we found that proteins with GO:0006633 (fatty acid bio-
synthetic processes) and GO:0004312 (fatty acid synthase 
activity) were both more abundant in LL1210.

At all three time points, GO term GO:0016730 (oxi-
doreductase activity, acting on iron–sulfur proteins as 
donors) was more abundant in the LL1210 strain rela-
tive to Δhpt (mean log fold change 4.14, 2.56, and 2.44 in 
early, mid-, and late-log phases, respectively). The reduc-
tion of oxidized ferredoxin (an iron–sulfur protein) is an 
important step in the conversion of pyruvate to acetyl-
CoA. Notably, GO:0008901 (ferredoxin hydrogenase 
activity) was also more abundant (mean log2 fold change 
1.30) in LL1210 at mid-log phase.

Aside from identifying differentially expressed pro-
teins at each time point, we also sought to identify dif-
ferentially co-expressed proteins between the Δhpt 
and LL1210 strains. We identified 359 differentially co-
expressed proteins between the Δhpt and LL1210 strain. 
Of these 359 proteins, 50 were PUFs. These differen-
tially co-expressed proteins were enriched in GO terms 
related to dephosphorylation (GO:0016311), positive 
regulation of gene expression (GO:0010628), cell adhe-
sion (GO:0007155), metal ion transport (GO:0030001), 
phosphate-containing compound metabolic processes 
(GO:0006796), cellular response to oxygen-containing 
compound (GO:1,901,701), magnesium ion binding 
(GO:0000287), cyclic-di-GMP binding (GO:0035438), 
transferase activity, transferring phosphorous con-
taining groups (GO:0016772), and isomerase activity 
(GO:0016853), among others. As noted above, differen-
tial expression related to iron-binding proteins could be 
significant due to their role in the conversion of pyru-
vate and ethanol. We note that two PUFs with GO terms 
related to iron-ion binding were found to be differentially 
co-expressed: WP_003512015.1, which is discussed fur-
ther below, and WP_003515910.1.

Co‑expression analysis
Co-expression analysis was performed separately for 
the Δhpt and LL1210 strains to determine clusters of 
co-expressed genes. Using the Python tool clust [38] we 
identified 11 and 14 clusters of co-expressed proteins in 
the Δhpt and LL1210 strains, respectively. The cluster-
specific protein abundance patterns can be seen for these 
strains in Additional file  6: Figure S4 Additional file  7: 
Figure S5, respectively. In total, these clusters repre-
sented co-expression patterns of 1226 and 786 proteins 
in the Δhpt and LL1210 strains, respectively. Functional 
enrichment was performed to assess potential functions 
of PUFs based on GBA. Out of the numerous PUFS that 
were identified in this study, we will highlight a few below 
that are of particular interest due to their potential role 

in cellulose solubilization, pyruvate metabolism, and/or 
ethanol production.

PUF WP_003512015.1 (Clo1313_2169): Evidence 
for a rubredoxin protein
GBA and sequence homology-based evidence suggest 
that WP_003512015.1 is a rubredoxin protein, a protein 
consisting of one iron atom that serves as an electron car-
rier. WP_003512015.1 was found in cluster hpt_C5 and 
LL1210_C7. Although LL1210_C7 contained no enriched 
GO or KEGG terms, hpt_C5 (Fig.  3a) was enriched in 
many functional terms, including 4 iron, 4 sulfur cluster 
binding (GO:0051539), metal ion binding (GO:0046872), 
and oxidoreductase activity, acting on the CH-OH group 
of donors and NAD or NADP as acceptor (GO:0016616). 
Interestingly, this PUF falls into clusters which qualita-
tively appear to demonstrate differential co-expression 
patterns between the Δhpt and LL1210 strain. In the Δhpt 
strain, WP_003512015.1 decreases from early-log to 
mid-log phase before a large jump in abundance in late-
log phase. The opposite pattern is observed in LL1210, 
where there is a small increase in WP_003512015.1 from 
early-log to mid-log phase, followed by a sharp decrease 
into late-log phase. If this PUF is involved in the oxida-
tion–reduction processes in the conversion of pyruvate 
to ethanol, then contrasting patterns between the Δhpt 
and LL1210 strain might be expected. WP_003512015.1 
was differentially expressed between the two strains 
at late-log phase, with a log2 fold change of -1.87. If 
WP_003512015.1 has oxidoreductase activity, then this 
is consistent with its differential expression along with 
many other proteins with similar biological function. 
However, WP_003512015.1 was not significant based 
on our differential co-expression analysis (dCp = 0.3, q 
value = 0.065).

Sequence homology-based evidence strongly supports 
WP_003512015.1 as a rubredoxin. The best fitting struc-
ture from SwissModel is a rubredoxin protein found in 
Guillardia theta (PDB 1H7V, Fig.  3b), but many other 
structures were annotated as rubredoxins or rubredoxin-
like proteins. Furthermore, examination of the phyloge-
netic gene tree reveals WP_003512015.1 is closely related 
to many rubredoxin proteins annotated in UniProt 
(Fig. 3c). Although the operon for WP_003512015.1 does 
not regulate expression for any other proteins, it is anno-
tated as a rubredoxin-type protein in the DOOR database 
[39], consistent with the co-expression and homology-
based analyses. This result also highlights the limitations 
of the RefSeq and GenBank repositories to reflect the 
most up-to-date functional annotations.
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PUF WP_003516357.1 (Clo1313_1439): Evidence 
for an ABC transporter
Various lines of evidence suggest that PUF 
WP_003516357.1 is a component of a sugar ABC trans-
porter. WP_003516357.1 is differentially expressed in at 
all 3 time points between the Δhpt and LL1210 strains, 
with log fold changes of -2.95, -3.31, and -4.20. This indi-
cates relatively lower abundance of WP_003516357.1 
in the LL1210 strain. WP_003516357.1 falls into 
LL1210_C13 (Fig.  4a), which consists of 17 proteins, 
3 of which are PUFs. This network is enriched in GO 
terms chemotaxis (GO:0006935), polysaccharide cata-
bolic process (GO:0000272), DNA-dependent DNA 
replication (GO:0,006,261), and carbohydrate bind-
ing (GO:0030246). Although none of the enriched GO 
terms directly relate to protein transport, sequence 
homology-based approached strongly suggests that 
this PUF is likely an ABC transporter. InterProScan 
[40] identifies WP_003516357.1 as an ABC transporter, 

substrate-binding protein. Furthermore, the vast major-
ity of structural templates fitting to WP_003516357.1 
come from sugar ABC transporters, consistent with the 
enrichment of polysaccharide catabolic process and car-
bohydrate-binding proteins in LL1210_C13. Consistent 
with this, this small cluster contains WP_003515342.1 
(glycoside hydrolase), WP_003519375.1 (cell surface gly-
coprotein 2), and WP_014522595.l (cellulosome anchor-
ing protein cohesin subunit). The best fitting structure 
of known function is annotated as a probable ribose 
ABC transporter, substrate-binding protein (PDB 5IBQ, 
Fig. 4b). Additionally, five of the matched structures were 
related to the transport of arabinose, a monosaccharide 
found in the hemicellulose of plant cell walls. We note 
that C. thermocellum is known to use ABC transporter 
systems for the uptake of oligosaccharides [37]. The gene 
tree supports this protein as a component of an ABC 
transporter. WP_003516357.1 is most closely related to a 
membrane protein, but ABC transporters and ABC-type 
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Fig. 3  Results for possible rubredoxin, PUF WP_003512015.1. a Co-expression cluster of PUF WP_003512015.1, including other PUFs and proteins 
with GO:0051539 (4 iron, 4 sulfur cluster binding). b Best fitting structure of known function from PDB, 1H7V, which is a rubredoxin from G. theta 
(sequence similarity 0.42 and coverage 0.32). c Phylogenetic gene tree for WP_003512015.1 indicates that this protein is closely related to many 
rubredoxin proteins
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uncharacterized transporters are also present in the gene 
tree (Fig.  4c). Taken all together, PUF WP_003516357.1 
has strong evidence as a protein component of an 
ABC transporter possibly involved in the uptake of 
carbohydrates.

PUF WP_003511984.1 (Clo1313_2180): Evidence 
for a glycoside hydrolase
During the process of our data analysis for this study, 
we focused attention on PUF WP_003511984.1, as we 
had strong GBA evidence that it was a glycoside hydro-
lase. Interestingly, in the most recent reannotation of the 
C. thermocellum genome, this protein is now labeled as 
a putative glycoside hydrolase. Since our examination of 
this protein was completed in the absence of that infor-
mation, we hereby present below the evidence we had 
that converged on the same functional assignment as the 
reannotation, as a type of positive control for our PUF 
approach.

WP_003511984.1 was not differentially expressed 
between the Δhpt and LL1210 strains at any of the 
time points; however, it was differentially co-expressed 
(dCp = 0.93, q value = 0.034). WP_003511984.1 was 
found in clusters hpt_C0 (Fig. 5a) and LL1210_C0, which 
are two large clusters with 205 and 167 genes, respec-
tively. Both clusters had many enriched GO terms. 
The strongest evidence for WP_003511984.1 as a gly-
coside hydrolase was the enrichment of the GO term 
macromolecule catabolic process (GO:0009057). We 
note that this does not necessarily refer to polysaccha-
ride catabolism. However, examination of the proteins 
with this GO term in the hpt_C0 cluster included pro-
teins annotated as glycoside hydrolases (ADU75731.1, 
WP_003515281.1, WP_003517278.1), endoglucanase 
(WP_003512420.1, WP_003514472.1, WP_003517595.1), 
carbon storage regulators (WP_003513578.1), 
N-acetylmuramoyl-l-alanine amidase (a cell wall 
hydrolase, WP_003515629.1), carbohydrate-binding 
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Fig. 4  Results for possible ABC transporter, PUF WP_003516357.1. a Co-expression cluster of PUF WP_003516357.1, including other PUFs and 
proteins with GO:0000272 (polysaccharide catabolic process). b Best fitting structure of known function from PDB, 5IBQ, which is annotated 
as a probable ribose ABC transporter, substrate-binding protein (sequence similarity 0.27 and coverage 0.67). c Phylogenetic gene tree for 
WP_003516357.1, which is closely related to proteins related to ABC transport systems
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domain-containing protein (WP_003516871.1), glyco-
syl transferase (WP_003518177.1), and a copper–amine 
oxidase (WP_003518386.1), with GO terms related to 
polysaccharide catabolic process (GO:0000272), chi-
tin binding (GO:0008061), and carbohydrate binding 
(GO:0030246).

Further examination of predicted protein structures 
also supports WP_003511984.1 as a glycoside hydrolase. 
Predicted structures include multiple beta-galactosidase 
structures, consistent with results of EGAD related to 
carbohydrate metabolism. The best matching structure 
of known function for WP_003511984.1 is annotated as 

Cwp19 (PDB 5OQ2). This protein is found in Clostridium 
difficile, and the structure represents the glycoside hydro-
lase domain of Cwp19 (Fig. 5b).

The phylogenetic gene tree also indicates 
WP_003511984.1 is similar in sequence to glycoside hydro-
lases (Fig.  5c). PANNZER2 [41] annotates this protein as 
a potential glycoside hydrolase. WP_003511984.1 was 
predicted to have a signal peptide and a transmembrane 
region. Taken together, current evidence strongly suggests 
that this protein is a glycoside hydrolase. As noted above, 
a recent reannotation in the RefSeq database established 
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Fig. 5  Results for possible glycoside hydrolase, PUF WP_003511984.1. a Co-expression cluster of PUF WP_003511984.1, including other PUFs and 
proteins with GO:0009057 (macromolecule catabolic process). b Best fitting structure of known function from PDB, 5OQ2, which is protein Cwp19 
in C. difficile and contains a glycoside hydrolase domain (sequence similarity 0.28 and coverage 0.70). c Phylogenetic gene tree for WP_003511984.1 
indicates this protein is closely related to a glycoside hydrolase, but many GTP-binding proteins are also present
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this as a putative glycoside hydrolase, consistent with the 
results presented here.

PUF WP_003519433.1 (Clo1313_1074): Evidence 
and experimental validation as an alcohol 
acetyltransferase activity
Exploring WP_003519433.1 at several levels such as 
annotation using PANNZER2, eggNOG-mapper [42], 
phylogenetic gene trees, and structural modeling all 
indicated that WP_003519433.1 is a probable alcohol 

−1

0

1

LL1210_T1 LL1210_T2 LL1210_T3 LL1210_T4
Time Point

N
or

m
al

iz
ed

 A
bu

nd
an

ce Annotation

Annotated

GO:0016740

PUF

WP_003519433.1

a

b

Esterase/Lipase WP_003519433.1 WP_003519432.1

1.2825 Mb 1.283 Mb 1.2835 Mb 1.284 Mb 1.2845 Mb 1.285 Mb

c

A0A1C5YNU8
A0A1Y4LCP3
A0A3D5XRL7

A0A1U7E9L1|Alcohol_acetyltransferase
A0A3S9HEB1|Alcohol_acetyltransferase
A0A3D0CGA2|Alcohol_acetyltransferase
A0A1S6IQA6
A8U8Q4
A0A1N6EIZ6|Alcohol_acetyltransferase
A0A1I5UIW0|Alcohol_acetyltransferase
A0A1X7N0R0|Alcohol_acetyltransferase
A0A143YNW1|Alcohol_acetyltransferase
A0A143Y615|Alcohol_acetyltransferase
A0A143Y3S8|Alcohol_acetyltransferase
A0A383TJN7|Alcohol_acetyltransferase/n−acetyltransferase
A0A1W1IEL8|Alcohol_acetyltransferase
A0A252CNQ8|Alcohol_acetyltransferase
A0A143Z5S2|Alcohol_acetyltransferase
A0A2T5IHI0|Alcohol_acetyltransferase
A0A1G9MHX6
A0A239QQR5
A0A344UW38
K7S2P0|Alcohol_acetyltransferase
A0A3S9JE92|Alcohol_acetyltransferase
A0A1P8U1U9|Alcohol_acetyltransferase

A0A1H2LGH0
A0A291GZQ9|Alcohol_acetyltransferase
A0A3D9LB62

A0A2P7AD76|Alcohol_acetyltransferase
A0A1R4GAI9

A0A1B7LWK7|Alcohol_acetyltransferase

A0A1H1V4T3
A0A2A3ZB19|Alcohol_acetyltransferase
A0A2A3X1D9|Alcohol_acetyltransferase
A0A368M579|Alcohol_acetyltransferase
A0A2H1J660

A0A2H1K145

A0A1H6TY98|Alcohol_acetyltransferase
A0A1L8PPF8
A0A1I1JMN6|Alcohol_acetyltransferase
A0A1H7W2D1|Alcohol_acetyltransferase
A0A1M4XIR9|Alcohol_acetyltransferase
A0A011Q6Z4
A0A2T0W6E7|Alcohol_acetyltransferase
A0A1G9AZT9|Alcohol_acetyltransferase
A0A1H7KFG3|Alcohol_acetyltransferase

A0A1I3XK25|Alcohol_acetyltransferase
A0A1L4BWP0
A0A1R4J7T4
A0A1G6MGK8|Alcohol_acetyltransferase

A0A3D1PQ07
A0A3D2AEI4
A0A348SZB6
A0A367GF30

A0A1Q6SZK4
A0A353BR43
A0A3D4E0X5
A0A1T4W8M7

A0A2V2FA39
D1PJJ5

A0A380S5H4|Alcohol_acetyltransferase
A0A285S3R7|Alcohol_acetyltransferase
A0A1I0A403|Alcohol_acetyltransferase
A0A1H7F4T5|Alcohol_acetyltransferase
A0A2G3E7K7
A0A2G3DTE0
A0A1G5DP52

D4IYV1
A0A1G8JZX1
A0A1G5RZX2
A0A1M6G7S7

A0A1H4CAW1
A0A1G6BRG2

A0A3B9WUA8
A0A1G8VAG6

R7F1J9
A0A316NCZ1|Alcohol_acetyltransferase
A0A3N0IXI4|Alcohol_acetyltransferase
A0A087D773|Alcohol_acetyltransferase

C0E9J2|Transferase_family
A0A1H8A2F6
A0A3E2T0V4
A0A1V6BBZ6|Alcohol_acetyltransferase
A0A177ZN92
Q8ETK9
W9BEQ4|Alcohol_acetyltransferase
A0A1G9CDJ7
A0A3E0ASJ3|NRPS_condensation−like_uncharacterized_protein
A0A078LY59|Alcohol_acetyltransferase
A0A1H0CGJ3

A0A3E2ZTK2
A0A374AK22
B0M953
A0A084JIZ9
A0A3E2NI20|MFS_transporter
A0A3D1FMB3|MFS_transporter
A0A2M8YZZ0|NRPS_condensation−like_uncharacterized_protein
A0A381JLW4|Elongation_domain−containing_protein
A0A1I0IUR8
A0A011ACE3

R7JX81
A0A1Q6LWJ4
A0A1C6F1S7
A0A417VM27
A0A2V1JLJ9
R5U3N3
U2Q0E6
A0A173TKX9|Acyltransferase

S0FL17
A0A349GCW2

R7NIC9
R7IGV1

WP_003519433.1

d

Fig. 6  Results for possible alcohol acetyltransferase, PUF WP_003519433.1. a Co-expression cluster of PUF WP_003519433.1, including other 
PUFs and proteins with GO:0016740 (transferase activity). b Best fitting structure of known function from PDB, 3FOT, which is annotated as a 
15-O-acetyltransferase (0.27 sequence similarity and 0.89 sequence coverage). c Cartoon representation of operon structure according to DOOR 
database. d Partial phylogenetic gene tree for WP_003519433.1, which is closely related to proteins related to alcohol acetyltransferase. The 
complete tree contains many proteins annotated as alcohol acetyltransferases aside from those seen in the partial tree



Page 11 of 19Poudel et al. Biotechnol Biofuels          (2021) 14:116 	

acetyltransferase (Fig.  6). WP_003519433.1 was not 
found to be differentially expressed or differentially co-
expressed between strains. WP_003519433.1 was found 
in hpt_C0 and LL1210_C1 clusters (Fig. 6a). The strong-
est co-expression evidence is the enrichment of GO 
term transferase activity (GO:0016740) in LL1210_C1. 
Although this is a broad GO term, we note that pro-
teins falling into this cluster with this GO term could 
be an acetyltransferase as this cluster also includes 
an N-acetyltransferase (WP_003513195.1) and PUF 
WP_003513604.1 with GO term N-acetyltransferase 
activity. Cluster LL1210_C1 was also enriched for the 
KEGG module Shikimate pathway, which is responsi-
ble for the synthesis of folate and aromatic amino acids. 
Notably, PUF WP_003519433.1 has a GO term indicating 
that it is possibly a membrane protein and fits the struc-
tural template of a TRI3 Tricothecene 15-O-acetyltrans-
ferase from the fungus Fusarium sporotrichioides (PDB 
3FOT). PUF WP_003519433.1 is also part of an operon, 
a key piece of GBA evidence, with a protein annotated in 
DOOR as an esterase/lipase (Fig.  6c). WP_003519433.1 
was selected for further characterization. Interestingly, 
the phylogenetic gene tree appears to be split between 
two major groups: one in which many of the proteins are 
annotated as an alcohol acetyltransferase or similar func-
tion, and a group that is mostly PUFs (Fig. 6d).

To experimentally validate alcohol acetyltrans-
ferase activity (e.g., alcohol + acetyl-CoA → ac(r)yl 
acetate + CoA), WP_003519433.1 was N-terminus 
His-tagged and expressed in E. coli. Western blot of 
the purified protein indicated successful expression 
of WP_003519433.1 (Fig.  7a). This protein was then 
screened against a library of linear C2-C10 alcohols 
for acetyltransferase functional activity, but no activ-
ity was observed. Interestingly, the LL1210_C1 cluster 
was enriched for proteins involved in KEGG module 
M00022, which is part of the shikimate pathway that con-
verts phosphoenolpyruvte and erythrose-4P to choris-
mate. Overall, the shikimate pathway is involved in the 
synthesis of aromatic amino acids, which can be used in 
the production of aromatic alcohols [43]. Further screen-
ing revealed that WP_003519433.1 has activity toward 
the aromatic alcohol 2-phenylethyl alcohol, both in vitro 
(data not shown) and in vivo (Fig. 7b and c). The synthe-
sized 2-phenylethyl acetate confirmed WP_003519433.1 
as an alcohol acetyltransferase. As this enzyme is active 
toward aromatic alcohols, it likely belongs to EC 2.3.1.- 
and is different from EC 2.3.1.84 that has substrate speci-
ficity toward short-chain alcohols [44–47]. To elucidate 
the physiological role of WP_003519433.1, further inves-
tigation will focus on characterization of C. thermocellum 
that overexpresses and downregulates this enzyme under 
various conditions.

a b

c

Fig. 7  a Western blot of WP_003519433.1 expression in E. coli. L: protein ladder; C: protein purified from no IPTG-induced cells (negative control); 
Lane 1: protein purified from cells induced with 0.1 mM IPTG; and 2: protein purified from cells induced with 1 mM IPTG. The band signals observed 
in lanes 1 and 2 in the red box confirmed the identity of WP_003519433.1 with an expected protein size of 50.4 kDa. b Total ion chromatography 
of high cell density E. coli whole-cell conversion of 2-phenylethyl alcohol. E. coli harboring empty plasmid was used a negative control. c 
Mass-to-charge ratio of the selected 2-phenylethyl acetate peak. Here, the eluted peaks at the retention of 15.5 min in panel B confirmed that 
2-phenylethyl acetate was produced by Ec1074 carrying WP_003519433.1 with the expected mass fragmentation shown in panel C
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Discussion
Despite improvements in gene annotation procedures, a 
large percentage of genes remain annotated as  PUFs  in 
commonly used genome repositories [19, 20]. Although 
current computational pipelines for functional prediction 
tools based on sequence homology are powerful [14–16, 
24, 41, 42], they are limited to the currently known pro-
tein sequence space present in databases and assume 
sequence similarity implies functional similarity [48]. A 
protein which differs significantly from any known pro-
tein sequence may present challenges to current func-
tional prediction tools. While direct characterization 
experiments are one option, these are often low through-
put. Other methods based on the concept of guilt-by-
association (GBA), such as co-expression analysis, may 
be used to predict putative functions on omics-scale data 
[29]. Hypothesized putative functions can serve as the 
basis for further characterization experiments, particu-
larly in identifying the types of experiments needed to 
confirm a particular function.

To this end, we performed a comprehensive analysis of 
PUFs in two distinct strains of C. thermocellum using a 
combination of expression analyses (e.g., co-expression 
and differential expression analyses), evolutionary anal-
ysis (e.g., coevolution analysis, gene tree estimation), 
structural modeling, and sequence homology-based 
function predictions to identify putative functions for 
PUFs, with a focus on those potentially related to cel-
lulose degradation, redox balance, and ethanol produc-
tion. A total of 344 PUFs were measured via LC–MS/
MS. Differential expression information and co-expres-
sion clusters were generated using proteomics data from 
two strains of C. thermocellum (Δhpt and LL1210). Pro-
teins that were differentially abundant across the strains 
showed clear enrichment of particular functions, such 
as GO:0016730 (oxidoreductase activity acting on iron–
sulfur proteins as donors), which was up-regulated in 
the LL1210. As many PUFs demonstrated differential 
expression consistent with proteins of known function, 
it is likely at least some of these PUFs play roles in these 
functions under GBA. Importantly, strain LL1210 is an 
experimentally evolved strain originating from a strain 
with gene deletions in pathways that compete with etha-
nol production. It has also been observed that the par-
ent strain of LL1210 is noted for having perturbed redox 
metabolism [49], Based on previous work, we expected 
PUFs with potential functional roles in ethanol produc-
tion and redox metabolism to show differential (co-)
expression or temporal patterns relative to the wild-type 
Δhpt, as was observed in this study.

Similar to our differential expression analysis, co-
expression analysis identified many clusters containing 
PUFs in both strains. These clusters were often enriched 

in various GO and/or KEGG terms, including those 
related to redox balance, ethanol production, and cel-
lulose degradation. Coevolution analysis identified as 
subset of PUFs which appear to coevolve with proteins 
involved in cellulose degradation.

Finally, operon information was also obtained for C. 
thermocellum from the DOOR database [39], which 
indicates shared regulatory elements of PUFs with 
proteins of known function, providing another form 
of GBA. GBA evidence was combined with sequence 
homology-based information, including domain pre-
diction, structural modeling, and phylogenetic gene 
tree analysis to hypothesize putative functions for 
PUFs. These are not meant to serve as official anno-
tations; however, they help to narrow down the list 
of PUFs with possible interesting putative functions. 
These selected candidate PUFs can then be validated 
by other experimental methods, such as gene knock-
out experiments for phenotype perturbations. Given 
the evidence presented here, it seems clear that further 
characterization of PUFs will be a critical for engineer-
ing C. thermocellum to improve biofuel production.

Importantly, our combination of GBA approaches 
with sequence homology-based functional/struc-
tural prediction identified a putative alcohol acetyl-
transferase for further experimental characterization. 
Although co-expression support for this function was 
modest, it was strongly supported by both sequence 
homology and gene regulatory information. Experi-
mental characterization revealed that this PUF cata-
lyzes ester formation between acetyl-CoA and aromatic 
alcohols. While other PUFs had stronger overall evi-
dence, this PUF was chosen for further characterization 
in part due to a straightforward experimental path for 
validation. A major challenge for targeted experimen-
tal characterization of proteins is the ability to induce 
a phenotype when experiments are performed in vivo. 
Without a clear, detectable phenotype, such experi-
mental validations are difficult to achieve.

The Δhpt and LL1210 co-expression analyses were 
based on protein abundance data across 3 and 4 time 
points, respectively, each with 4 replicates. A larger num-
ber of samples would likely result in clusters with clearer 
functional groupings based on co-expression patterns, 
as previously described [50]. Despite modest statistical 
power here, many clusters served as solid evidence for 
hypothesized functions of PUFs. Further work focused on 
putative functional identification of PUFs should incor-
porate more publicly available proteome measurements 
(with appropriate normalization for different mass spec-
trometers, label-free quantification methods, etc.) and/
or measurement of more samples, ideally varying over a 
large number of possible growth states and conditions.
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Various in-silico approaches were employed to comple-
ment our analyses based on protein abundance measure-
ments. Many of the sequence homology-based functional 
annotation tools provided consistent functional informa-
tion. Although this information was often redundant, 
suggesting that only one of the tools may be needed, con-
sistent results across tools provide confidence in the pre-
dicted function or domains, helping to eliminate possible 
false positives. Coevolution analyses have also been used 
previously to test for functional relationships between 
proteins [34, 51]. Although these in-silico approaches are 
useful on their own, these approaches are built on their 
own assumptions, particularly that sequence similarity 
implies functional similarity, which may not hold over 
large phylogenetic distances. GBA approaches based on 
experimental measurements provide another layer of 
functional information that, while providing less direct 
functional information, can provide greater confidence in 
the results of in-silico analyses (and vice-versa).

Although some PUFs were highly abundant in both 
strains, most were low abundance proteins on average 
(Fig. 2d). Why might PUFs tend to be lower abundance 
proteins? One possible reason is lower abundance pro-
teins tend to accumulate nonsynonymous substitutions 
at a faster rate than high abundance proteins [52–54]. 
We speculate that this could present greater challenges 
for functional prediction via sequence homology, par-
ticularly for species which are relatively distant from bet-
ter functionally characterized species (e.g., yeast, E. coli, 
mice). To the best of our knowledge, no study has system-
atically investigated if sequence homology-based predic-
tions perform better on highly expressed genes in which 
selective constraints on sequence evolution are expected 
to be stronger, on average. Another, and we believe more 
likely, reason is a bias towards focusing research efforts 
on proteins which are more abundant, under the assump-
tion that higher abundance proteins tend to be more 
important for a species.

Here, we employed both co-expression and phyloge-
netic analyses of correlated presence/absence of genes 
as GBA methods for determining functional roles of 
PUFs. Another option is to examine coevolution of pro-
tein abundances across species. Previous work has found 
that functionally related proteins coevolve at the level of 
gene expression [55–58]. Such methods could be used to 
test for functional relationships of PUFs; however, this 
approach requires the PUFs to be conserved across spe-
cies, making it most applicable to conserved DUFs. Nota-
bly, most of the previous analyses have used codon-based 
proxies of gene expression (e.g., the Codon Adaptation 
Index [59]) or data based on RNA-Seq. To date, no work 
has examined coevolution of protein abundances, even 
though some evidence suggests that protein abundances 

are more conserved across species compared to mRNA 
abundance [60].

Conclusions
Here, GBA and sequence homology-based approaches 
were combined to identify putative functions for proteins 
of unknown function (PUFs) in C. thermocellum, with a 
specific focus on PUFs possibly related to cellulose deg-
radation and ethanol production. One PUF tentatively 
characterized by our GBA approach, WP_003519433.1, 
was confirmed experimentally to be an alcohol acetyl-
transferase. As part of this analysis, a table (Additional 
file  8) is provided which summarizes the various lines 
of evidence accumulated for the PUFs in this study. 
The amount of evidence for any given PUF varies. For 
example, 216 of the 344 PUFs detected via LC–MS/
MS fell into at least one cluster enriched in at least one 
GO term. For 285 of these 344 PUFs, eggNOG-mapper, 
PANNZER2, InterProScan, and/or BlastKOALA iden-
tified an annotation, although many of these are non-
specific or indicate that the protein is uncharacterized. 
We expect that this table will be of significant interest to 
the bioenergy research community who may be eager to 
investigate PUFs of potential interest for further char-
acterization in C. thermocellum. The different analyses 
presented here can easily be applied to other microbes 
of interest. All functional/structural prediction tools are 
publicly available, many with easy-to-use web interfaces. 
During the course of our study, we identified a few pro-
teins which were annotated in the DOOR database, such 
as WP_003512015.1, despite being a PUF in Genbank/
Refseq. Additional file  8 (specifically, columns “Operon 
Proteins” and “Operon Functions”) can be referenced 
for other examples. This highlights that, in some cases, 
major sequence databases such as Genbank/RefSeq may 
not provide the most up-to-date information. We are 
likely not the first to note this problem but given the sig-
nificance of databases like RefSeq for modern biological 
research, our work supports the need to more effectively 
keep these databases up-to-date.

Methods
Bacterial strains and culture conditions
Clostridium thermocellum strains DSM 1313 ∆hpt [4] 
and LL1210 [11] were used in this study.

 Strains ∆hpt and LL1210 were each grown for 30 and 
93 h, respectively, inside a Coy anaerobic chamber (Coy 
Laboratory Products, Grass Lake, MI) under 85% N2, 10% 
CO2, and 5% H2 gases at 55 °C in quadruplicate 500 mL 
(total vessel capacity 1L) cultures in MTC5 media [61], 
along with 5  g/L cellobiose supplemented with 2  mM 
sodium formate. Formate supplementation in minimal 
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medium improves growth of C. thermocellum mutant 
strains that lack pyruvate-formate lyase (pfl) by improv-
ing C1 metabolism [49], and LL1210 has pfl deleted. 
Samples for proteomic analyses were collected in 50 mL 
aliquots for timepoints corresponding to early-log, mid-
log, and late-log of growth for both strains. Growth 
phases were determined by optical density values at each 
timepoint plotted for a growth curve. Additional samples 
were collected for the lag phase of growth for a total of 
four sampling events for strain LL1210. Cells were centri-
fuged (3600×g) in 50 mL tubes for 10 min, immediately 
quenched with liquid nitrogen, and the supernatants 
were discarded. The samples were then stored at − 80 °C 
until protein isolation and proteomic analysis.

Proteome analyses using LC–MS/MS
The ∆hpt and LL1210 strains of C. thermocellum were 
proteolytically digested (trypsin) for nano-LC–MS/MS 
analysis. An automated 2D LC–MS/MS analysis was car-
ried out for the peptide samples using an Ultimate 3000 
connected in-line with a QExactive Plus mass spectrome-
ter (Thermo Scientific). A triphasic MudPIT back column 
(RP-SCX-RP) was coupled to an in-house pulled nano-
spray emitter packed with 30 cm 5 µm Kinetex C18 RP 
resin (Phenomenex). For each sample, 12 µg of peptides 
were loaded and cleaned to remove salts (if any) and was 
separated and analyzed across two successive salt cuts of 
ammonium acetate (50 mM and 500 mM), each followed 
by 105 min organic gradient. LC-resolved peptides were 
analyzed by data-dependent acquisition (DDA) on the 
QExactive MS.

MS database searching, data analysis, and interpretation
A non-redundant database was made by combining 
GenBank and RefSeq C. thermocellum proteome data-
bases. The proteins were grouped at 100% identity using 
CD-Hit. [62] MS/MS spectra were searched against this 
proteome database concatenated with cRAP databases 
(ftp://​ftp.​thegpm.​org/​fasta/​cRAP) consisting of com-
mon contaminants using Tide-search [63] keeping a 
static modification on cysteine (+ 57.0214  Da), and a 
dynamic modification to an oxidation (+ 15.9949  Da) 
of methionine. Tide-search was followed by Percola-
tor [64] with default parameters to assign spectra to 
peptides (peptide-spectrum matches; PSM). Reten-
tion times of each PSM were extracted parsing mzML 
file with in-house script and MS1 apex intensities were 
assigned using moFF [65]. The moFF parameters were 
set to 10 ppm for the precursor mass tolerance, 4 min 
for the XIC time window, and 1  min (equivalent to 
60  s) to get the apex for the ms2 peptide/feature. The 
peptide intensities from were summed to their respec-
tive proteins per sample. Protein intensities were then 

normalized by protein length and overall abundance 
per MS run. Each protein required a minimum of 2 
peptide and 2 PSMs to become a valid protein. Thus, 
the obtained normalized intensities of proteins were 
considered valid if a protein exists in 2 out of 4 repli-
cates. Protein abundance distributions were then nor-
malized across samples and missing values imputed 
to simulate the mass spectrometer limit of detection. 
All raw mass spectra for the proteome measurements 
have been deposited into the ProteomeXchange reposi-
tory with the following accession numbers: (MassIVE 
Accession: MSV000085237, ProteomeXchange acces-
sion PXD018407: FTP link to files: ftp://​MSV00​00852​
37@​massi​ve.​ucsd.​edu, username is MSV000085237, 
password is PUF123).

Validation of alcohol acetyl transferase WP_003519433.1
Plasmid construction
The plasmid pET_1074 was constructed using restric-
tion endonucleases (NEB, MA, USA) and DNA ligase 
(NEB, MA, USA) and propagated in E. coli TOP10 (Addi-
tional file  9: Table  S1). The Clo1313_1074 gene (encod-
ing WP_003519433.1) was PCR-amplified using primers 
HS566 (5′-CTC​TGG​ATCCA ATG​AAT​TAT​CCT​AAA​
AAA​GTG​GAA​TGG-3′) and HS567 (5′-CTC​TGA​GCT​
CCT​ACA​TGT​ TTG​ACA​CTA​TTT​C-3′). The amplified 
PCR fragment and plasmid (pETDuet-1) were digested 
by BamHI and SacI restriction enzymes, ligated together, 
and transformed in E. coli using a heat shock transforma-
tion method. Transformed colonies were PCR verified for 
successful plasmid cloning using the same primers. The 
constructed plasmid pET_1074 was verified by Sanger 
sequencing.

Protein expression and purification
To express the His-tagged WP_003519433.1 
(Clo1313_1074), E. coli C41 (DE3) pLysS was used to 
maximize the protein production with a tight expres-
sion regulation [66]. Ec1074 was cultured in 3 mL Lysog-
eny broth (LB) medium supplemented with 100  μg/mL 
ampicillin and 30  μg/mL chloramphenicol in a shaking 
incubator at 37  °C for overnight (~ 16 h). The overnight 
culture was inoculated in 50 mL fresh LB medium with 
10  g/L glucose and the antibiotics in a shaking incuba-
tor at 37  °C until optical density (OD) reached ~ 0.4. To 
induce the recombinant protein biosynthesis, 0.1  mM 
of isopropyl β-d-1-thiogalactopyranoside (IPTG) was 
added to the culture followed by overnight incubation at 
18 °C. After the incubation, cells were harvested by cen-
trifugation at 4700 rpm for 10 min. Cell lysis and protein 
purification followed the method described previously 

ftp://ftp.thegpm.org/fasta/cRAP
ftp://MSV000085237@massive.ucsd.edu
ftp://MSV000085237@massive.ucsd.edu
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with slight modifications [67]. Briefly, the cell pellets 
were washed twice with Millipore water before cell lysis 
by B-PER complete bacterial protein extraction reagent 
(ThermoFisher Scientific, MA, USA). The cell extracts 
were incubated with HisPur Ni–NTA superflow agarose 
(ThermoFisher Scientific, MA, USA) in a batch. After 
the washing and elution, the eluted protein sample was 
desalted by Amicon centrifugal filter with 10 kDa molec-
ular weight cut-off (MilliporeSigma, MA, USA). The 
desalted protein was quantified by Bradford assay with 
bovine serum albumin (BSA) as the reference protein, 
before enzyme reaction.

SDS‑PAGE and western blot
The His-tag purified WP_003519433.1 (Clo1313_1074) 
was qualitatively analyzed by sodium dodecylsulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) and 
western blot. For SDS-PAGE, Novex WedgeWell 14% 
Tris–Glycine gel was used (cat# XP00145BOX, Invit-
rogen, CA, USA). For western blot, proteins after SDS-
PAGE were transferred to a nitrocellulose membrane and 
probed with Anti-6x-His-tag monoclonal antibody con-
jugated with horseradish peroxidase (HRP). The blot was 
visualized by 1-Step Ultra TMB (Thermofisher Scientific, 
MA, USA).

Screening of acetyltransferase activity
Acetyltransferase activity of WP_003519433.1 
(Clo1313_1074) was screened by an in  vitro enzymatic 
assay conducted in a 100 μL total reaction volume [67, 
68]. The reaction solution consisted of 50 mM Tris–HCl 
pH 7.4, 2 mM acetyl-CoA, 0.5 mg of the purified proteins, 
and various alcohol concentrations, including 100  mM 
for ethanol, butanol, isobutanol, pentanol, isoamyl alco-
hol, 40 mM for hexanol, 20 mM for phenylethyl alcohol, 
and 2 mM for octanol and decanol with 20% DMSO. 100 
μL of hexadecane spiked with 10  mg/L n-decane was 
overlaid to extract esters. The reaction was carried out at 
50 °C for 48 h and the hexadecane layer was analyzed by 
gas chromatography coupled with a mass spectrometer 
(GC/MS).

For in vivo verification of the acetyltransferase activity 
toward phenylethyl alcohol, the IPTG-induced Ec1074 
whole cell was concentrated to ODs of 2, 4, and 8 in 4 mL 
M9 defined medium containing 10 g/L glucose, and 1 g/L 
yeast extract, 0.1  mM IPTG, and 1  g/L 2-phenylethyl 
alcohol, and 1 mL of hexadecane with 10 mg/L n-decane 
was overlaid. The whole-cell reaction was performed in 
a 37  °C shaking incubator for 48  h and the hexadecane 
layer was analyzed to detect 2-phenylethyl acetate by 
GC/MS.

GC/MS analysis to detect esters
GC (HP 6890, Agilent, CA, USA) equipped with a MS 
(HP 5973, Agilent, CA, USA) was used to detect esters 
[44–46, 69]. 1 μL sample was injected into the GC cap-
illary column (Zebron ZB-5, 30 m × 0.25 mm × 0.25 μm, 
Phenomenex, CA, USA) with the splitless mode at an 
injector temperature of 280  °C. Helium was used as the 
carrier gas at a flow rate of 0.5  mL/min, and the oven 
temperature was programmed as 50  °C initial tempera-
ture, 1  °C/min ramp up to 58 °C, 25 °C/min ramp up to 
235 °C, 50 °C/min ramp up to 300 °C, and 2-min bake-out 
at 300 °C.

For the MS system, selected ion mode (SIM) was used 
to detect esters with the following parameters: (a) ethyl 
acetate, m/z 45.00 and 61.00 from 4.2 to 4.6 min reten-
tion time (RT), (b) isobutyl acetate, m/z 61 and 101 from 
6.6 to 7.6 min RT, (c) butyl acetate, m/z 61 and 73 from 
7.6 to 8.5 min RT, (d) pentyl acetate, m/z 56, 61 and 73 
from 8.5 to 10.1 min RT, (e) isoamyl acetate, m/z 61 and 
73 from 10.1 to 10.7, (f ) hexyl acetate, m/z 61 and 129 
from 10.7 to 11.5. min RT, (g) octyl acetate, m/z 61 and 
173 from 11.5 to 13.2 RT, (h) n-decane, m/z 78, 99, and 
170 from 13.2 to 13.5 RT, (i) decyl acetate, m/z 61 and 
167 from 13.5 to 13.8 RT, and (j) 2-phenethyl acetate, m/z 
61, 104, and 121 from 13.8 to 15.5 min RT.

Coevolution analysis
Protein orthogroups (i.e. both orthologs and paralogs) 
and a species tree were determined using OrthoFinder 
(see Additional file 1: Figure S2 for the species tree and 
list of species used) [33]. Coevolution analysis was based 
on the correlated presence/absence of orthogroups across 
species, similar to phylogenetic profiling, while account-
ing for the shared ancestry of species. Orthogroups were 
treated as discrete species traits with a species containing 
the orthogroup having a value of 1; otherwise, the spe-
cies was given a value of 0. Orthogroups containing PUFs 
identified by LC–MS/MS were then paired with all other 
orthogroups. Phylogenetic analysis of discrete trait evo-
lution was performed using the corHMM R package [70], 
assuming no hidden states. For each pair of orthogroups, 
models were fit either allowing for coevolution or forcing 
independent evolution. The two models were compared 
using the corrected version of the Akaike Information 
Criterion (AICc), which corrects for small sample sizes. 
Orthogroups were considered to be coevolving if the 
model allowing for coevolution was 2 or more AICc units 
better than model forcing independent evolution.

Differential and co‑expression analyses
Differential expression analysis was performed using 
the R package limma [35] using the limma-trend 
functionality and robust hyperparameter estimation. 
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Proteins  with  low expression (here, defined as a nor-
malized abundance less than 23) on average across both 
strains and all time points were excluded due to viola-
tions of limma’s assumptions. Proteins were considered 
differentially expressed if they had a Benjamini–Hoch-
berg corrected p-value < 0.05. For the mid-log phase in 
LL1210, we chose to treat LL1210 time point T2 as the 
mid-log phase based on the PCA (Additional file  10: 
Figure S1). Co-expression analysis was performed using 
imputed protein abundances for both the Δhpt and 
LL1210 strains after filtering out proteins with missing 
protein abundances in more than 50% of the measure-
ments for a given strain. Clusters were generated for 
each strain using the Python tool clust [38], with fur-
ther removal of genes showing low variation across 
time points. Differential co-expression analysis was 
performed using the R package DCGL [71] using the 
DCp method [72].

Gene Ontology enrichment was performed using the 
R package topGO [73]. For differential expression and 
differential co-expression analysis, the Kolmogorov–
Smirnov test was performed using the weight01 algo-
rithm. For co-expression analysis, the Fisher’s exact test 
was used with the weight01 algorithm. We note that, 
per the recommendation of the topGO developers, the p 
values used for our GO enrichment tests were not cor-
rected for multiple-hypothesis testing. This is because 
the weight01 algorithm violates the assumptions of inde-
pendence (see topGO vignette) made by FDR control 
methods such as the Benjamini–Hochberg correction. 
Analysis of KEGG terms and modules was performed 
using the R package clusterProfiler [74]. We note that GO 
enrichment tests and KEGG over-representation tests 
were performed using the set of proteins detected via the 
LC–MS/MS measurements as the background.

Sequence‑based functional predictions
In addition to network analysis, other relevant func-
tional features of PUFs were interrogated via a suite of 
protein sequence homology approaches. All tools were 
run with default settings unless otherwise stated. To 
identify possible enzymatic activity, enzyme commis-
sion (EC) numbers and KEGG terms were taken from 
PANNZER2 [41] and BlastKoala [75], respectively. PAN-
NZER2 was run allowing for 80% minimum alignment 
length, minimum query and subject coverage of 0.6, 
and a minimum of sequence identity of 0.4. Functional/
domain prediction was also performed using eggNOG-
mapper [42] and InterProScan [40]. Gene Ontology 
terms were pulled from PANNZER2, InterProScan, and 
eggNOG-Mapper. Many proteins still had no GO terms 
after the initial analysis. These proteins were re-analyzed 

with PANNZER2 with a minimum query coverage 0.2 
and allowing for a minimum alignment length of 0.2, 
and with eggNOG-mapper with a 0.1 minimum E value. 
Structural and cellular localization features of PUFs were 
further interrogated using SignalP [76], TMHMM [77], 
and Swiss-Model servers to determine relevant structural 
properties.

Gene regulatory information
Genes which are under the same regulatory control often 
serve related functions within the cell. Operon informa-
tion, including annotations, for C. thermocellum was 
pulled from the DOOR database [39].

Phylogenetic gene trees
Building a local BLAST database using UniProtKB
To examine possible evolutionary relationships of PUFs 
with proteins of known function, phylogenetic gene trees 
were created. Homologs for the PUFs of interest were 
found using blastp in the BLAST + software suite [78, 
79]. FASTA files from Swiss-Prot and TreEMBL were 
downloaded from UniProtKB and used to create a cus-
tom protein sequence database. All C. thermocellum 
PUFs and DUFs were queried against the custom data-
base using an E value cut-off of 10E−5. The searches 
were done in CADES server at ORNL.

Multiple sequence alignment using MAFFT
Following the BLAST homology search, detected 
homologs for each PUF were aligned using the multi-
ple sequence alignment (MSA) tool MAFFT [80], using 
the auto-feature to automatically select an appropriate 
alignment strategy for the given query. The estimation 
of a highly accurate MSA is necessary to have low error 
rates when computing the phylogenetic gene trees [81] 
and this was achieved using the automated feature of, the 
MSA trimming tool trimAl [82].

Phylogenetic gene trees using FastTree
FastTree can compute approximately maximum-like-
lihood phylogenetic trees from MSA involving protein 
sequences or nucleotide sequences [83]. Phylogenetic 
genes trees were generated for a protein alignment using 
the JTT + CAT model, where JTT [84] is a model for 
amino acid evolution and CAT is the an approximation 
used to account for the varying rates of sequence evolu-
tion across amino acid sites [85]. Phylogenetic trees were 
visualized using the ggtree R package [86].
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