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Abstract 

Background:  Identifying lignocellulose recalcitrant factors and exploring their genetic properties are essential for 
enhanced biomass enzymatic saccharification in bioenergy crops. Despite genetic modification of major wall poly-
mers has been implemented for reduced recalcitrance in engineered crops, it could most cause a penalty of plant 
growth and biomass yield. Alternatively, it is increasingly considered to improve minor wall components, but an appli-
cable approach is required for efficient assay of large population of biomass samples. Hence, this study collected total 
of 100 rice straw samples and characterized all minor wall monosaccharides and biomass enzymatic saccharification 
by integrating NIRS modeling and QTL profiling.

Results:  By performing classic chemical analyses and establishing optimal NIRS equations, this study examined four 
minor wall monosaccharides and major wall polymers (acid-soluble lignin/ASL, acid-insoluble lignin/AIL, three lignin 
monomers, crystalline cellulose), which led to largely varied hexoses yields achieved from enzymatic hydrolyses after 
two alkali pretreatments were conducted with large population of rice straws. Correlation analyses indicated that 
mannose and galactose can play a contrast role for biomass enzymatic saccharification at P < 0.0 l level (n = 100). 
Meanwhile, we found that the QTLs controlling mannose, galactose, lignin-related traits, and biomass saccharification 
were co-located. By combining NIRS assay with QTLs maps, this study further interpreted that the mannose-rich hemi-
cellulose may assist AIL disassociation for enhanced biomass enzymatic saccharification, whereas the galactose-rich 
polysaccharides should be effectively extracted with ASL from the alkali pretreatment for condensed AIL association 
with cellulose microfibrils.

Conclusions:  By integrating NIRS assay with QTL profiling for large population of rice straw samples, this study has 
identified that the mannose content of wall polysaccharides could positively affect biomass enzymatic saccharifica-
tion, while the galactose had a significantly negative impact. It has also sorted out that two minor monosaccharides 
could distinctively associate with lignin deposition for wall network construction. Hence, this study demonstrates an 
applicable approach for fast assessments of minor lignocellulose recalcitrant factors and biomass enzymatic sacchari-
fication in rice, providing a potential strategy for bioenergy crop breeding and biomass processing.
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Background
Crop straws represent substantial lignocellulose 
resource convertible for biofuels and biomaterials [1]. 
However, lignocellulose recalcitrance basically hinders 
biomass enzymatic saccharification, which results in 
a costly lignocellulose process unacceptable for large-
scale biofuel production [2]. To reduce lignocellu-
lose recalcitrance, attempts have been undertaken by 
genetic modification of plant cell walls in bioenergy 
crops along with optimal biomass pretreatments [3, 4]. 
Therefore, it becomes essential to sort out the recalci-
trant factors on biomass enzymatic saccharification in 
bioenergy crops.

Lignocellulose recalcitrance is naturally determined 
by plant cell wall composition, wall polymer feature, 
and wall network construction [5]. As the most abun-
dant wall polymer, cellulose crystallinity has been well 
examined as a major factor of lignocellulose recalci-
trance [6, 7]. By comparison, hemicellulose is a major 
wall polysaccharide, but its deposition could reduce 
cellulose crystallinity for enhanced biomass enzymatic 
saccharification under various physical and chemical 
pretreatments in bioenergy grasses examined [8, 9]. 
In particular, arabinose and xylose, two main mono-
saccharides of hemicellulose, could distinctively affect 
lignocellulose enzymatic hydrolyses, and their ratio 
has thus been defined as a key parameter accountable 
for biomass enzymatic saccharification [10, 11]. How-
ever, it has not yet been elucidated about other minor 
monosaccharides’ roles in biomass enzymatic hydro-
lyses. Furthermore, despite the uronic acids of pectin 
have been examined with positive impact on biomass 
saccharification [12], it remains to explore other pec-
tic component roles. In addition, as a major wall poly-
mer of secondary cell walls, lignin is deposited to form 
lignin-carbohydrate complexes as a barrier against 
accession and loading of lignocellulose-degradation 
enzymes [13]. Hence, it is also important to explore the 
genetic engineering approach for improved lignin-car-
bohydrate complexes in bioenergy crops.

Non-cellulosic polysaccharides (hemicellulose, pec-
tin) are mainly composed of seven neutral monosaccha-
rides (rhamnose, fucose, arabinose, xylose, mannose, 
galactose, and glucose) and two hexuronic acids (glu-
curonic acid and galacturonic acid) [14]. Those neu-
tral monosaccharides have been characterized to 
involve in the covalent cross-linking for wall network 
construction [15]. For instance, the feruloylated ara-
binose of xylan involves in cross-linking with lignin in 

commelinid monocots [16], whereas the mannosyl res-
idue of glucomannan is ether-linked to lignin in soft-
wood [16, 17]. In spinach (Spinacia oleracea) and beet 
(Beta vulgaris), arabinose and galactose of pectic side-
chains are esterified by ferulic acid [18], which enables 
a cross-linking between pectin and lignin. In addition, 
large amounts of arabinose and galactose are found in 
the lignin–carbohydrate complexes of Chinese quince 
(Chaenomeles sinensis) fruit [19]. More recently, the 
arabinose of the non-KOH-extractable hemicellulose 
residues has been proposed to interact with the β-1,4-
glucan chains in amorphous regions of cellulose micro-
fibrils for reduced cellulose crystallinity in rice, wheat, 
Miscanthus, and rapeseed [6–8, 10].

Quantitative trait loci (QTL) mapping is a powerful 
approach for the dissection of complex traits and iden-
tification of corresponding genes in plants [20–22]. 
Although this approach is in principle applicable to 
investigate minor monosaccharides of wall polysaccha-
rides related to lignocellulose recalcitrance and enzy-
matic saccharification, it has not well been conducted 
in bioenergy crops, mainly due to technical difficul-
ties of determining quantitative traits related to minor 
monosaccharides at a large scale. Near-infrared spec-
troscopy (NIRS) paired with multivariate analysis offers 
a fast and non-invasive method to determine these 
traits [23]. Importantly, NIRS models have been estab-
lished for determining major wall polymers of rice [24], 
bamboo [25], Miscanthus [26], and sweet sorghum [27], 
but it is rarely applied to assist QTL mapping for lig-
nocellulose recalcitrant traits [28]. Thereby, it remains 
interesting to combine NIRS modeling with QTL map-
ping for investigating minor monosaccharide roles in 
wall network construction and lignocellulose enzy-
matic saccharification.

Rice is a major food crop over the world with 731 
megaton straw residues per year [29]. In this study, we 
randomly selected a hundred of rice straws from our 
previously established genetic pool of a rice recombi-
nant inbred line (RIL) population [30]. We then deter-
mined all monosaccharides contents of rice straw 
samples, and also detected their biomass enzymatic 
saccharification after two alkali pretreatments, which 
enabled to perform correlative analyses between mon-
osaccharides levels and hexoses yields released from 
enzymatic hydrolyses. Furthermore, this study mapped 
QTLs for the identified lignocellulose recalcitrant fac-
tors along with the NIRS assay, and finally sorted out 
two minor monosaccharides as contrast factors and 
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novel genetic loci for further genetic modification of 
plant cell walls in rice and bioenergy crops.

Results
Varied monosaccharide composition and biomass 
saccharification among large population of rice straws
In this study, we selected 100 rice straw samples from our 
previously established rice recombinant inbred line pop-
ulation pools [30]. Using those rice straw samples, this 
study initially determined all neutral monosaccharides of 
non-cellulosic polysaccharides by GC–MS (Table  1). As 
a result, all rice straw samples were of the highest xylose 
contents ranged from 239.74 to 290.25 μg mg−1, whereas 
they had the second high levels of arabinose from 27.50 
to 39.09  μg  mg−1 among seven monosaccharides exam-
ined, consistent with the previous findings of xylose and 
arabinose as two major monosaccharides of hemicellu-
lose in grassy plants [6, 31]. By comparison, rhamnose 
and fucose were detected with much lower contents from 
0.02 to 1.27  μg  mg−1, which should be mainly derived 
from pectic polysaccharides. Among the rest of monosac-
charides examined, the rice straw samples showed largely 
varied glucose and galactose contents about 27.03–
42.49 μg mg−1 and 9.27–15.4 μg mg−1, with much lower 
mannose levels from 2.17 to 3.34  μg  mg−1, consistent 
with the previously reported ones in rice and other grassy 
crops [8, 32]. It also suggested that the largest amounts 
of glucose should be mainly from the -1,3–1,4-glucans, 
which is the characteristic hemicellulose of rice straw 
[33]. Hence, this study demonstrated largely varied mon-
osaccharide levels of major hemicellulose and pectin 

among total of 100 rice straws examined, suggesting that 
those rice samples should be of quite different lignocel-
lulose recalcitrant properties.

Furthermore, this study examined biomass enzymatic 
saccharification by measuring hexoses (glucose) yields 
against dry matter (termed as Glc-Rel0.025 and Glc-Rel1) 
released from enzymatic hydrolysis after 0.025% and 1% 
NaOH pretreatments (Table 1). Based on classic chemi-
cal analyses, total of 100 rice straw samples showed the 
hexose yields from 9.92 to 20.92% (% dry matter) after 
0.025% NaOH pretreatments, indicating a diverse bio-
mass enzymatic saccharification of rice straws examined. 
Meanwhile, higher concentrations of alkali (1% NaOH) 
pretreatments were performed with all rice straws, and 
their hexoses yields were predicted from 19.34 to 32.04% 
(% dry matter), according to our previously established 
NIRS modeling [34]. The applicability of NIRS model was 
evaluated by checking the spectral distribution of calibra-
tion set and prediction set, and then, the predicted values 
of randomly selected 20 rice samples were approximate 
to the measured values (Additional file  1: Figure S1 A, 
B, C), indicating that the NIRS model should be highly 
applicable for predicting biomass enzymatic saccharifica-
tion of rice straw samples examined in this study. As total 
of 100 rice straws are of largely varied monosaccharide 
levels and hexoses yields, those samples could be applied 
to further sort out lignocellulose recalcitrant impacts on 
biomass enzymatic saccharification.

Distinct minor monosaccharides impacts on biomass 
enzymatic saccharification
Correlation analysis has been well applied to account for 
wall polymer impact on biomass enzymatic saccharifi-
cation in various bioenergy crops. Although the major 
monosaccharides (xylose, arabinose) of hemicelluloses 
and uronic acids of pectin have been characterized by 
their distinct impacts on biomass enzymatic saccharifica-
tion [7, 8, 12, 35], little is yet known about minor mono-
saccharide roles, probably due to much less depositions 
into plant cell walls. However, as those 100 rice straw 
samples showed largely varied monosaccharides levels 
and biomass saccharification as described above, their 
correlations were performed in this study (Fig.  1). As a 
result, the galactose levels showed a negative correlation 
with the hexoses yields after 0.025% NaOH pretreatments 
at P < 0.01 level, whereas the mannose content was posi-
tively correlated with relatively higher coefficient R2 value 
among all rice straws examined (Fig.  1C, D), indicating 
that the mild alkali pretreatments should be suitable for 
sorting out the minor monosaccharide roles in biomass 
enzymatic hydrolyses. It also suggested that the minor 
monosaccharides could be effectively extracted from the 
alkali pretreatment at low concentration. Meanwhile, 

Table 1  Monosaccharide content and biomass enzymatic 
saccharification of 100 rice straw samples

a Average ± standard deviation
b Minimum to maximum
c Glucose released after enzymatic digestion following 0.025% (m/v) NaOH 
pretreatment
d Glucose released after enzymatic digestion following 1% (m/v) NaOH 
pretreatment

Traits Mean ± SDa Rangeb

Monosaccharides

 Rhamnose (μg mg−1) 0.99 ± 0.11 0.68–1.27

 Fucose (μg mg−1) 0.99 ± 0.09 0.02–0.35

 Arabinose (μg mg−1) 33.76 ± 2.11 27.50–39.09

 Xylose (μg mg−1) 263.56 ± 11.19 239.74–290.25

 Mannose (μg mg−1) 2.66 ± 0.25 2.17–3.34

 Galactose (μg mg−1) 12.33 ± 1.44 9.27–15.4

 Glucose (μg mg−1) 32.75 ± 3.18 27.03–42.49

Biomass enzymatic saccharification

 Glc-Rel0.025 (% dry matter)c 14.59 ± 2.20 9.92–20.92

 Glc-Rel1 (% dry matter)d 27.88 ± 2.18 19.34–32.04
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rhamnose also showed a negative correlation at P < 0.05 
level, but its coefficient R2 value was extremely low, prob-
ably due to a complete extraction of rhamnose in the rice 
straw samples examined (Fig.  1A). Furthermore, similar 
correlations were observed between mannose or galac-
tose levels and hexoses yields predicted by the NIRS 
assay from 1% NaOH pretreatments, but both mannose 
and galactose were calculated with much lower coeffi-
cient R2 values (Fig. 1G, H), which may be due to removal 
of the most mannose and galactose from 1% NaOH pre-
treatments. In addition, this study did not find any signif-
icant correlation between rhamnose levels and hexoses 
yields from the NIRS assay (Fig.  1E), and in particular, 
the fucose did not show any significant correlation from 
both chemical and NIRS assays (Fig. 1B, F), which should 

be mainly due to the fucose with extremely low deposi-
tion into plant cell walls. Taken together, it suggested that 
the galactose and mannose of wall polysaccharides could 
distinctively affect lignocellulose recalcitrant proper-
ties due to their contrast impacts on biomass enzymatic 
saccharification, whereas the rhamnose and fucose may 
play a small role in lignocellulose recalcitrance with little 
impact on biomass enzymatic hydrolysis examined. 

Potential mannose and galactose association with lignin 
deposition
To understand how the mannose and galactose had a con-
tract impact on biomass enzymatic saccharification, this 
study also conducted a correlation analysis between two 
minor monosaccharides and other major wall polymers 
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such as two types of lignin contents, three lignin mono-
mer (H, S, G) compositions, cellulose contents, and its 
crystalline index (CrI) values of total 100 rice straw sam-
ples. Based on our previously established NIRS modeling 
[34], this study predicated acid-soluble lignin (ASL) and 
acid-insoluble lignin (AIL) levels after further verifying 
accuracy of the models (Additional file  1: Figure S1 D, 
E). The predicted ASL and AIL were, respectively, ranged 
from 1.70–3.10% to 9.36–14.73% (% dry matter), consist-
ent with large variations of three lignin monomer levels 
as previously reported [36] (Additional file 2: Table S1). 
Meanwhile, this study also calculated largely varied cellu-
lose contents (387.52–631.02 μg mg−1) and cellulose CrI 
values (37.61–59.33%) among total of 100 rice straw sam-
ples examined before (Additional file 2: Table S1).

According to the correlative analyses, this study cal-
culated that the mannose levels of rice straws had either 
significantly negative correlations with three lignin 
monomers and ASL contents or positive correlations 
with AIL ones at P < 0.01 with relatively high coefficient 
R2 values (Fig.  2A–E). By contrast, the galactose lev-
els were positively correlated with three lignin mono-
mers and ASL contents, but had a negative correlation 
with AIL ones (Fig.  2H–L). The data thus suggested 
that the mannose should be tightly associated with AIL, 
whereas the galactose may be linked to ASL for wall net-
work construction in rice straws. Furthermore, as three 
lignin monomers and ASL were obtained from biomass 

acidolysis and AIL was resistant to concentrated sulfu-
ric acid extraction, it was understandable about either a 
similar correlative trend of three monomers and ASL or 
a contrast trend between ASL and AIL. In addition, this 
study found that both mannose and galactose did not 
show any significant correlations with cellulose levels and 
CrI values among rice straw samples examined (Fig.  2F, 
G, M, N), suggesting that these two minor monosaccha-
rides should not directly be involved in interaction with 
cellulose microfibrils.

Optimal NIRS assays for mannose and galactose at large 
scale
Since minor mannose and galactose of wall polysac-
charides may involve in wall–polymer interaction to 
distinctively affect lignocellulose recalcitrance and bio-
mass enzymatic saccharification as described above, it 
becomes important to establish optimal NIRS equations 
for fast assay of mannose and galactose levels among large 
population of rice straws. First, this study divided 100 
rice straw samples into calibration sets and external vali-
dation sets, based on the order of reference value. Every 
four ordered samples were selected and merged into the 
validation sets, and the remaining samples were merged 
into the calibration sets. Then, the calibration sets and 
validation sets, respectively, included 75 and 25 samples, 
and the reference values of two sets displayed a similar 
distribution (Fig. 3A, D). Besides, three-dimensional plot 
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of spectra principal component analysis scores showed 
the external validation samples distributed evenly in the 
corresponding calibration samples (Fig. 3B, E), indicating 
that the calibration and external validation sets were suit-
able for building NIRS equations.

Furthermore, seven scatter correction methods, two 
derivative treatments, and three spectrum regions 
were combined with modified partial least-squares 
regression technique, leading to establishing a total of 
42 calibration equations for mannose and galactose 
assay (Additional file  2: Table  S2). The optimal equa-
tions were selected out according to the determination 
coefficient of calibration (R2c) with two best equations 

identified, which had high coefficients of calibration, 
cross-validation, and external validation (R2c, R2cv, 
and R2ev) at 0.91, 0.85, and 0.87, respectively (Table 2). 
The ratio performance deviation (RPD) values of 
these equations were also calculated at 2.50 for man-
nose model and 3.02 for galactose one, respectively. In 
addition, the scatter plots showed that the predicted 
and reference values of mannose and galactose were 
approximately equal with the best linear regression 
at more than 0.87 (Fig.  3C, F). Therefore, the optimal 
NIRS equations were acceptable for fast prediction of 
mannose and galactose levels among large population 
of rice straw samples.

Fig. 3  Calibration and validation of NIRS equations for predicting Man and Gal. A, D Reference values of calibration set (n = 75) and validation set 
(n = 25). B, E Distribution of calibration set and validation set in principal components space of spectra. C, F Correlation of predicted values and 
reference values of Man and Gal in calibration set and validation set. The solid line as the best linear relationship (1:1); purple circles and blue circles, 
respectively, as calibration set and validation set in all plots

Table 2  Calibration and validation of NIRS equations for predicting mannose and galactose of wall polysaccharides

DT, derivative treatment; SCM, scatter correction methods; SEC, standard error of calibration; R2c, determination coefficient of calibration; SECV, standard error of 
cross-validation; R2cv, determination coefficient of cross-validation; RPD, ratio performance deviation; SEP, standard error of prediction in external validation; R2ev, 
determination coefficient of external validation; SNVD, a combination of standard normal variant and detrend; DET, detrend only; N, sample number; Terms, number 
of principal component used for calibration

Traits Calibration Cross validation External validation

N Spectrum (nm) DT SCM Terms SEC R2c SECV R2cv RDP N SEP R2ev

Man 75 1108–2492 1,4,4,1 SNVD 7 0.07 0.91 0.10 0.86 2.50 25 0.10 0.87

Gal 75 1108–2492 1,4,4,1 DET 5 0.39 0.92 0.56 0.85 3.02 25 0.51 0.89
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NIRS‑assisted QTL identification for potential engineering 
of mannose and galactose
As both mannose and galactose could distinctively affect 
lignocellulose recalcitrance, it remains a challenge for 
their genetic modification in bioenergy rice. Using the 
NIRS equations established above, this study attempted 
to characterize the QTLs of five rice straw traits including 
mannose and galactose contents, ASL and AIL levels, and 
the hexoses yields (Glc-Rel1) from enzymatic hydrolyses 
after mild alkali pretreatments. From frequency distri-
bution histograms, all these five traits exhibited a classic 
normal distribution among 215 rice lines, suggesting that 
the traits should be controlled by multiple genetic factors 
(Additional file 1: Figure S2).

In general, 20 QTLs for five traits were mapped on 
seven chromosomes and 16 QTLs out of them were co-
localized to form 5 QTL clusters (Table  3, Fig.  4). The 
first QTL cluster was located on the upper arm of chro-
mosome 1 near the molecular marker RM562, and the 
included QTLs (qMan-1, qAIL-1, and qGlc-Rel1-1a) all 
displayed a negative additive effect, suggesting that the 
alleles from parent ZX-1 at this locus may simultaneously 
decrease mannose and AIL levels and hexoses yields 
(Glc-Rel1) (Fig.  5). The second QTL cluster was located 
on the lower arm of chromosome 1 including qGal-1, 

qASL-1, and qGlc-Rel1-1b. In comparison, the qGlc-Rel1-
1b showed a positive additive effect, whereas the qGal-1 
and qASL-1 had a negative additive effect, indicating that 
the alleles from parent ZX-1 at this locus should increase 
Glc-Rel1, but decrease Gal and ASL. The third QTL 
cluster was located on the upper arm of chromosome 8 
including qMan-8, qGal-8, qASL-8, and qGlc-Rel1-8b. 
Notably, four reported QTLs controlling three lignin 
monomers and Glc-Rel0.025 (qH-8, qS-8, qG-8, and qGlc-
Rel0.025-8) were also included in this cluster [36]. Addi-
tive effects suggest that the alleles from parent ZX-1 at 
this locus should decrease Man, Glc-Rel0.025, and Glc-Rel1 
but increase Gal, three lignin monomers, and ASL. The 
fourth QTL cluster was located on the chromosome 9 
near the molecular marker RM242 including three novel 
QTLs (qMan-9, qAIL-9, and qGlc-Rel1-9) and a reported 
QTL (qGlc-Rel0.025-9) [36]. The fifth QTL cluster on the 
chromosome 9 included qGal-10 and qASL-10 (Fig.  5). 
QTLs in the fourth and fifth cluster all displayed negative 
additive effect. Significantly, the QTL co-localizations 
and additive effects of clustered QTLs were consistent 
with the correlative analyses among these traits per-
formed above (Figs. 1 and 2, Additional file 1: Figure S3). 
Hence, both QTL mapping and correlation analyses have 
demonstrated that Man and AIL were tightly correlated 

Table 3  Information of mapped QTLs for monosaccharides, acid-soluble/insoluble lignin, and biomass saccharification

a Logarithm of odds
b Percentage of the trait variance explained by the QTL
c Glucose released after enzymatic digestion following 1% (m/v) NaOH pretreatment

Traits QTL Chr Position (cM) Marker interval LODa PVE (%)b

Mannose qMan-1 1 0–4 RM3252–RM495 3.2 5.3

qMan-8 8 29–44 RM38–RM310 15.5 33.0

qMan-9 9 68–76 RM434–RM107 2.1 3.4

Galactose qGal-1 1 120–128 RM595–RM8229 2.5 4.6

qGal-2 2 37–42 RM492–RM174 2.3 4.0

qGal-8 8 34–46 RM1376–RM547 13.1 29.8

qGal-10 10 34–52 RM1126–RM467 2.0 7.8

ASL qASL-1 1 122–136 RM449–RM5 2.1 3.8

qASL-6 6 92–99 RM557–RM136 2.2 3.9

qASL-8 8 34–46 RM1376–RM547 12.2 27.3

qASL-10 10 30–47 BT–RM467 3.0 8.6

qASL-12 12 47–68 RM4609–RM235 2.5 6.3

AIL qAIL-1 1 0–4 RM3252–RM495 2.8 5.6

qAIL-8 8 14–33 RM407–RM1376 4.8 11.7

qAIL-9 9 70–75 RM434–RM242 2.0 3.9

Glc-Rel1
c qGlc-Rel1-1a 1 0–4 RM3252–RM495 3.4 6.3

qGlc-Rel1-1b 1 116–122 RM562–RM449 3.8 7.0

qGlc-Rel1-8a 8 0–6 RM152–RM2702 4.9 10.0

qGlc-Rel1-8b 8 28–44 RM407–RM310 2.2 4.5

qGlc-Rel1-9 9 70–76 RM434–RM107 2.6 4.6
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Fig. 4  QTL mapping for cell wall factors and biomass enzymatic saccharification QTLs controlling mannose (Man), galactose (Gal), acid-soluble 
lignin (ASL), acid-insoluble lignin (AIL), and glucose released after biomass enzymatic digestion following 1% (m/v) NaOH pretreatment (Glc-Rel1) 
were indicated by black, gray, green, blue and purple rectangular, respectively. A genetic region which was less than 15 cM and included two or 
more QTLs was defined as a QTL cluster. Five QTL clusters were labeled as c1-5 in the diagram. The reported QTLs [36] are indicated in red font in the 
linkage map.

Fig. 5  Five QTLs clusters and their additive effects. The reported QTLs were highlighted in red [36]
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for increased biomass saccharification, whereas the Gal, 
ASL, and lignin monomers were associated for negative 
impacts on biomass enzymatic hydrolysis in rice straws.

Discussion
Genetic modification of plant cell walls has been imple-
mented to reduce lignocellulose recalcitrance in bio-
energy crops [37]. As plant cell walls are of complex 
structures and diverse biological functions, lignocellu-
lose modification could simply cause a penalty of plant 
growth and biomass yield in the most engineered crops 
examined [38, 39]. Hence, genetic improvement of minor 
wall components has been considered as a promising 
solution, but it requires inexpensive, high throughput, 
and real-time quantification methods for sorting out 
minor monosaccharides’ impacts on biomass enzymatic 
saccharification. To address this issue, this study has 
examined large population of diverse rice straws samples, 
and has found out the applicable approaches for chemical 
and genetic analyses at large scale as well.

Although NIRS assay is well established to quickly pre-
dict major wall polymers and biomass enzymatic sac-
charification, it has not been applied to evaluate minor 
monosaccharides of wall polysaccharides in bioenergy 
crops. Due to diversity of 100 rice straw samples, this 
study could establish optimal NIRS equations for quickly 
predicting mannose and galactose content. Notably, with 
the assist of NIRS assays, this study could not only sort 
out mannose and galactose contrast impacts on biomass 
enzymatic saccharification, but it has also predicted 
a variety of quantitative traits in rice samples under a 
short-term processing. However, even though the NIRS 
technology is fast and robust, the applicability of NIRS 
model should be evaluated before being used for predic-
tion. The applicability of NIRS model is influenced by 
spectral variation range of calibration set and testing set, 
instrument, and testing environment [40]. In this study, 
we kept the same instrument and method as previously 
described by Huang et al. [34]. The spectral distribution 
of testing set is included in those of calibration set for a 
large number of genetically modified rice samples. Mean-
while, this study verified the accuracy of predicted values 
by comparing the experimental and predicted values of 
20 representative rice straw samples. Thereby, the NIRS 
approach established in this study should have a broad 
application for lignocellulose assay and related trait char-
acterization in bioenergy crops.

Provided that this study has demonstrated that the cor-
relation analysis is accountable for minor monosaccha-
rides’ impacts on biomass saccharification, it requires a 
further confirmation by another method. With the assist 
of NIRS technology, this study mapped potential QTLs 
controlling mannose and galactose levels, ASL and AIL 

contents, and hexoses yields from enzymatic hydrolyses. 
Significantly, QTLs for those traits were co-located, and 
additive effects of clustered QTLs were precisely consist-
ent with the correlation analyses among the traits. Hence, 
in terms of the mannose positive impact on biomass 
enzymatic saccharification after alkali pretreatments, we 
assumed that the mannose-rich hemicellulose may assist 
AIL destruction and disassociation during enzymatic 
hydrolysis, consistent with the previous findings that 
mannose is involved in the galactomannan-lignin cross-
linking [17]. On the other hand, the galactose-rich pec-
tin should be easily extracted with ASL from mild alkali 
pretreatment, which may cause a condensed AIL associa-
tion with cellulose microfibrils against cellulases enzymes 
accession and loading.

As the mannose and galactose of wall polysaccharides 
could distinctively affect biomass enzymatic sacchari-
fication, it remains interesting to improve their deposi-
tion into wall networks by exploring a powerful genetic 
engineering approach. Although several QTLs have been 
mapped for mannose and galactose, this study lacks high-
density markers and annual repeats for cloning their 
associated genes, which should be further explored in the 
future.

Conclusions
Using a total of 100 rice straws samples, this study estab-
lished optimal NIRS models for quick prediction of man-
nose and galactose levels of wall polysaccharides. Based 
on correlation analysis, this work examined that the man-
nose levels could positively affect biomass enzymatic 
saccharification, whereas the galactose had a negative 
impact after alkali pretreatments were performed with 
rice straws. Integrated QTLs mapping further indicated 
that the mannose and galactose should distinctively asso-
ciate with lignin deposition for wall network construc-
tion, interpreting how those two minor monosaccharides 
had a contrast role in biomass enzymatic hydrolysis. 
Therefore, this study has provided a powerful strategy for 
fast assessments of lignocellulose recalcitrant factors and 
biomass enzymatic saccharification at large scale in bio-
energy crops.

Methods
Rice straw sample collection
The recombinant inbred line population with 215 F12-13 
rice lines was developed from a cross between cultivars 
‘Huahui3’ (HH-3) and ‘Zhongguoxiangdao’ (ZX) through 
the single seed descent method [30]. The RIL popula-
tion was planted in the Huazhong Agricultural Univer-
sity (Wuhan, China) with a distance of 17  cm × 27  cm 
during the natural growing season in 2012. Straws of 
three individual plants for each line were collected after 



Page 10 of 13Hu et al. Biotechnol Biofuels          (2021) 14:144 

grain harvest. The leaves of postharvest rice straw were 
removed and the stems were dried at 60 °C to a constant 
weight. The dried stems were ground to pass through a 
40-mesh screen and the powders were stored in a dry 
container until their use.

Monosaccharide analysis
Monosaccharide analysis was conducted as described 
by Foster et  al. [41]. Dried powders were washed with 
70% aqueous ethanol and chloroform/methanol (1:1, 
v/v) solution, followed by treatment with Amylase (from 
Bacillus species, Sigma) and Pullulanase (from Bacillus 
acidopullulyticus, Sigma). The de-starched alcohol insol-
uble residues represented the isolated cell wall materials. 
Two milligrams of cell wall materials were hydrolyzed 
with 2 M trifluoroacetic acid (TFA) at 121 °C for 90 min. 
The released monosaccharides were reduced with sodium 
borohydride solution. The generated alditols were acety-
lated with acetic anhydride and pyridine at 121  °C for 
20 min. Finally, the alditol acetates were analyzed by gas 
chromatography–mass spectrometer (GC–MS). The 
derivatives were separated on an SP-2380 column with a 
constant flow of 1.5  μg  mg−1. Neutral monosaccharides 
including arabinose, fucose, galactose, glucose, mannose, 
rhamnose, and xylose were quantified based on standard 
curves created using internal monosaccharide standards.

Biomass pretreatment and enzymatic hydrolysis
Biomass pretreatment with 0.025% (w/v) NaOH solution 
and subsequent enzymatic hydrolysis were conducted 
as previously described by Santoro et al. [42]. Dried rice 
material was grinded, fed, and weighed by a custom-
designed robot. The powders were treated with 750  µL 
NaOH solution at 90  °C for 3  h in a water bath. Fifty 
microliters of a solution containing 0.25  µL Accellerase 
1000 (Genencor, Rochester, NY) in citrate buffer (pH 
4.5, 30 mM) plus 0.01% sodium azide were added for the 
neutralization and saccharification. Released glucose was 
assayed with the glucose oxidase/peroxidase (GOPOD) 
method (K-GLUC, Megazyme, Ireland) using 4 μL of the 
supernatant of the digestion reaction mixture and 64 μL 
of the GOPOD assay reagent.

The 1% (w/v) NaOH pretreatment and the subse-
quent enzymatic hydrolysis were performed as pre-
viously described by Huang et  al. [34]. About 0.3  g 
biomass powders were incubated with 6  mL 1% NaOH 
(w/v) under shaking (150 rpm) at 50 °C for 2 h. The pel-
let was washed with water into neutral and then washed 
once with acetic acid–sodium acetate buffer (pH 4.8, 
0.2  M). Then, the samples were hydrolyzed with 6  mL 
of 0.16% (w/v) mixed-cellulases (containing ≥ 6 × 104 
U of β-glucanase, ≥ 600 U of cellulase, and ≥ 10 × 104 U 
of xylanase from Imperial Jade Biotechnology Co., Ltd. 

Ningxia 750002, China) in acetic acid–sodium acetate 
buffer under shaken at 150 rpm and 50 °C for 48 h. After 
centrifugation at 3000g for 5 min, the supernatants were 
collected for pentose and hexose assay. Hexoses were 
detected by the anthrone/H2SO4 method and pentoses 
were detected by the orcinol/HCl method. Absorbance 
values were detected by a UV/Vis spectrometer (Shang-
hai MAPADA Instruments Co., Ltd. V-1100D).

Lignin and lignin monomer assay
Lignin was detected using a two-step acid hydrolysis 
method as described by Huang et  al. [34]. The samples 
were extracted with benzene–ethanol (2:1, v/v) in a Sox-
hlet for 4 h, and air-dried in hood overnight. The crude 
cell wall samples were hydrolyzed with 67% H2SO4 (v/v) 
at 25  °C for 90 min under shaken at 150  rpm, and sub-
sequently diluted to 2.88% (v/v) with distilled water and 
then heated at 120 °C for 60 min. The acid-soluble lignin 
(ASL) was measured by UV spectroscopy at 205 nm. The 
remaining residues were placed in a muffle furnace at 
575 ± 25  °C for 4  h as acid-insoluble lignin (AIL) assay. 
The AIL was calculated gravimetrically as acid-insoluble 
residues after subtraction for ash.

Lignin monomers were analyzed using the thioacidol-
ysis method described by Robinson and Mansfield [43]. 
Two milligrams of isolated cell wall material were incu-
bated with a mixed solution containing 175 μL dioxane, 
20  μL ethanethiol, and 5  μL boron trifluoride diethyl 
etherate for thioacidolysis. The reaction was heated at 
100 °C for 4 h with gentle mixing every hour. The prod-
uct was purified with water and ethyl acetate in a vor-
tex mixer and the ethyl acetate layer was transferred. 
For the trimethylsilyl (TMS) derivatization, 500  μL 
of ethyl acetate, 20  μL of pyridine, and 100  μL of N,O-
bis(trimethylsilyl) acetamide were added and the mixture 
was incubated for 2 h at 25 °C. The derived lignin mono-
mers were analyzed by gas chromatography with a quad-
rupole mass spectrometer (Santa Clara, CA, USA). Peaks 
were identified by characteristic mass spectrum ions of 
299  m/z, 269  m/z, and 239  m/z for S, G, and H mono-
mers, respectively.

Crystalline cellulose analysis
Crystalline cellulose content was analyzed as described 
by Updegraff [44]. The pellets obtained from TFA hydrol-
ysis of biomass samples were dissolved with Updegraff 
reagent [acetic acid:nitric acid:water (8:1:2, v/v/v)] at 
100  °C for 30 min. The washed and air-dried pellet was 
incubated with 67% (v/v) H2SO4 for 45 min at room tem-
perature. The glucose of the supernatant was quanti-
fied using colorimetric anthrone assay as follows: 10 μL 
of supernatant, 90  μL of water, and 200  μL of freshly 
anthrone reagent (2  mg anthrone/mL H2SO4) were 
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added to a 96-well polystyrene microtiter plate. For the 
establishment of the standard curve, standard solutions 
including 0 μg, 2 μg, 4 μg, 6 μg, 8 μg, and 10 μg of glucose 
were also added to each plate. The plate was heated at 
80 °C for 30 min, and the absorption was read at 620 nm 
after the plate cool to room temperature. Glucose con-
tent was calculated based on the absorbance compared to 
the standard curve established on the same plate.

Cellulose crystallinity index detection
Cellulose CrI was detected using X-ray diffraction 
method as described by Zhang et  al. [9]. Powders of 
plant materials were laid on the glass sample holder and 
then analyzed by Rigaku-D/MAX instrument (Uitima 
III, Japan) under plateau conditions. Ni-filtered Cu Kα 
radiation (λ = 0.154056 nm) was generated at a voltage of 
40 kV and a current of 40 mA, and scanned at a speed of 
10°/min from 5° to 45°. The CrI was calculated according 
to the intensity of the 200 peak (I200, θ = 22.5°) and the 
intensity at the minimum between the 200 and 110 peaks 
(Iam, θ = 18.0°).

Calibration and validation of NIRS equation
The near-infrared reflectance spectra of RILs were col-
lected as previously described by Huang et  al. [34]. The 
dried samples were placed into a mini-sample cup and 
screened by an XDS Rapid Content™ Analyzer (FOSS, 
Co., LLC., Hillerod, Denmark) equipped with a dual-
detector system: silicon (400–1100  nm), lead sulfide 
(1100–2500  nm), and the ISIscan™ software (Infrasoft 
International LLC., Port Mathilda, USA). The reflectance 
(R) of each sample was recorded in triplicate at wave-
lengths ranged from 400 to 2500 nm with 2 nm intervals. 
The spectral absorbance values were recorded as log1/R. 
The chemometric management of spectra data was con-
ducted using the WinISI III software package (Version 
1.50e, Infrasoft International LLC., Port Matilda, USA). 
A principal component analysis algorithm was carried 
out to identify the spectral outlier sample and to deter-
mine the structure and variability of spectral population. 
The global H (GH) value of each sample was determined 
using the measured Mahalanobis distance from mean. 
Samples with GH greater than 3.0 were defined as outlin-
ers and finally eliminated.

The modified partial least-squares method, two math-
ematical treatments, seven scatter correction methods, 
and three wavelength ranges were utilized for the cali-
bration of NIRS equation. Two mathematical treatments 
were “0, 0, 1, 1” and “1, 4, 4, 1”, the four digits orderly 
represented the number of the derivative, the gap over 
which the derivative was calculated, the number of the 
first smoothing, and the number of the second smooth-
ing. Seven methods were no scatter correction standard, 

standard normal variant, detrend only, combination 
of SNV and detrend, standard multiple scatter correc-
tion, weighted multiple scatter correction, and inverse 
multi scatter correction. Three wavelength ranges were 
408–2492 nm, 780–2492 nm, and 1108–2492 nm. Cross-
validation was conducted to select the optimal number of 
factors and to avoid over-fitting. In addition, one of every 
four samples sorted based on the laboratory value was 
selected for the external validation.

QTL mapping and QTL cluster identification
Four insertion–deletion markers and 177 simple 
sequence repeat markers were employed to construct the 
genetic linkage map of the RIL population. Linkage map 
was constructed using the MAPMAKER/EXP version 
3.0b software with linkage criterion set to logarithm of 
odds (LOD) threshold greater than 3.0. The genetic dis-
tances were calculated with the Kosambi map function. 
QTL analysis was conducted with inclusive composite 
interval mapping method implemented in QTL IciMap-
ping version 4.0 based on stepwise regression [45]. Walk-
ing speed chosen for QTL detection was 1.0 cM. An LOD 
threshold of 2.0 was applied to detect a significant QTL. 
The additive effects of QTLs were estimated as half of 
the difference between the phenotypic values of two par-
ents. A genetic region which was less than 15.0 cM and 
included two or more QTLs was defined as a QTL cluster.

Statistical analyses
The minimum, maximum, mean, and standard deviation 
of all traits were calculated using the IBM SPSS Statis-
tics 23 software (SPSS Inc., Chicago, IL, USA). The cor-
relation analysis was performed with R software version 
4.0.1. All experiments were conducted with at least three 
independent replicates.
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Additional file 1: Table S1. Cellulose and lignin related traits of 100 rice 
straw samples. Table S2. Coefficient determination of calibration of 42 
mannose and galactose NIRS models

Additional file 2: Figure S1. Applicability test of previously established 
NIRS modes [35]. A Spectrum variation range of prediction set and mod-
eling set. B Distribution of prediction set and modeling set in principal 
components space of spectra. C–E Accuracy verification of NIRS models 
by comparing experimental and predicted values of 20 rice samples. ASL, 
acid soluble lignin; AIL, acid insoluble lignin; Glc-Rel1, glucose released 
after biomass enzymatic digestion following 1% (m/v) NaOH pretreat-
ment. The fitting equations and coefficients are shown at the top of the 
plot. * and ** as significant correlations at P < 0.05 and 0.01, respectively. 
Figure S2. Frequency distributions of monosaccharides, acid soluble/
insoluble lignin and biomass saccharification. A Mannose; B Galactose; C 
Acid soluble lignin; D Acid insoluble lignin; E Glucose yields released from 
enzymatic hydrolyses after 1% NaOH pretreatments (n = 215). Figure S3. 
Correlation analysis between lignin/cellulose related traits and enzymatic 
saccharification of alkaline pretreated rice straw. (A–G) Correlations of 
ρ-hydroxy-phenyl lignin H, syringyl lignin S, guaiacyl lignin G, acid soluble 
lignin (ASL), acid insoluble lignin (AIL), cellulose crystallinity index (CrI) 
and crystalline cellulose (Cry-cel) with glucose released after enzymatic 
digestion following 0.025% (m/v) NaOH pretreatment (Glc-Rel0.025). (H–N) 
Correlations of H, S, G, ASL, AIL, CrI and Cry-cel with glucose released after 
enzymatic digestion following 1% (m/v) NaOH pretreatment (Glc-Rel1). 
The fitting equations and coefficients are shown at the top of the plot. 
* and ** indicate the correlations are significant at p < 0.05 and 0.01, 
respectively. n = 100

Acknowledgements
Not applicable.

Authors’ contributions
ZH completed major experiments and wrote draft. YoW, JL, and YA partici-
pated chemical analysis and sample collection. YH provided molecular marker 
data. JH established NIRS models. YL, YaW, PC, and MNA participated the 
experimental design and data analysis. LW and LP designed the project, super-
vised the experiments, interpreted the data, and finalized the manuscript. All 
authors read and approved the final manuscript.

Funding
This work was supported in part by grants from the Natural Science Founda-
tion of Guangxi (2020GXNSFDA238027), the Project of Huazhong Agricultural 
University Independent Scientific and Technological Innovation Foundation 
(2662020ZKPY013), the National 111 Project (BP0820035), the Project of Hubei 
University of Arts and Science (XKQ2018006), and the National Science Foun-
dation of China (31670296).

Availability of data and materials
All data generated or analyzed during this study are included in this published 
article and its additional files.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Biomass and Bioenergy Research Centre, College of Plant Science and Tech-
nology, Huazhong Agricultural University, Wuhan 430070, China. 2 Labora-
tory of Biomass Engineering and, Nanomaterial Application in Automobiles, 
College of Food Science and Chemical Engineering, Hubei University of Arts 
and Science, Xiangyang, China. 3 College of Resources and Environment, 

Huazhong Agricultural University, Wuhan 430070, China. 4 State Key Laboratory 
for Conservation and Utilization of Subtropical Agro‑Bioresources, College 
of Agriculture, Guangxi University, Nanning 530004, China. 5 National Key 
Laboratory of Crop Genetic Improvement and National Centre of Plant Gene 
Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China. 
6 Institute of Industrial Biotechnology, GC University, Lahore, Pakistan. 

Received: 17 March 2021   Accepted: 5 June 2021

References
	1.	 Wang Y, Fan C, Hu H, Li Y, Sun D, Wang Y, Peng L. Genetic modification 

of plant cell walls to enhance biomass yield and biofuel production in 
bioenergy crops. Biotechnol Adv. 2016;34:997–1017.

	2.	 Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust 
TD. Biomass recalcitrance: engineering plants and enzymes for biofuels 
production. Science. 2007;315:804–7.

	3.	 Fan C, Feng S, Huang J, Wang Y, Wu L, Li X, Wang L, Tu Y, Xia T, Li J, et al. 
AtCesA8-driven OsSUS3 expression leads to largely enhanced biomass 
saccharification and lodging resistance by distinctively altering lignocel-
lulose features in rice. Biotechnol Biofuels. 2017;10:221.

	4.	 Bhatia SK, Jagtap SS, Bedekar AA, Bhatia RK, Patel AK, Pant D, Rajesh Banu 
J, Rao CV, Kim YG, Yang YH. Recent developments in pretreatment tech-
nologies on lignocellulosic biomass: effect of key parameters, technologi-
cal improvements, and challenges. Bioresour Technol. 2020;300:122724.

	5.	 Zoghlami A, Paës G. Lignocellulosic biomass: understanding recalcitrance 
and predicting hydrolysis. Front Chem. 2019;7:874.

	6.	 Xu N, Wei Z, Ren S, Fei L, Zhao C, Liao H, Xu Z, Huang J, Li Q, Tu Y. Hemicel-
luloses negatively affect lignocellulose crystallinity for high biomass 
digestibility under NaOH and H2SO4 pretreatments in Miscanthus. 
Biotechnol Biofuels. 2012;5:58.

	7.	 Wu Z, Zhang M, Wang L, Tu Y, Jing Z, Xie G, Zou W, Li F, Kai G, Li Q. Biomass 
digestibility is predominantly affected by three factors of wall polymer 
features distinctive in wheat accessions and rice mutants. Biotechnol 
Biofuels. 2013;6:183.

	8.	 Pei Y, Li Y, Zhang Y, Yu C, Fu T, Zou J, Tu Y, Peng L, Chen P. G-lignin and 
hemicellulosic monosaccharides distinctively affect biomass digestibility 
in rapeseed. Bioresour Technol. 2016;203:325–33.

	9.	 Zhang W, Yi Z, Huang J, Li F, Hao B, Li M, Hong S, Lv Y, Sun W, Ragauskas A. 
Three lignocellulose features that distinctively affect biomass enzymatic 
digestibility under NaOH and H2SO4 pretreatments in Miscanthus. Biore-
sour Technol. 2013;130:30–7.

	10.	 Li F, Zhang M, Guo K, Hu Z, Zhang R, Feng Y, Yi X, Zou W, Wang L, Wu 
C, et al. High-level hemicellulosic arabinose predominately affects 
lignocellulose crystallinity for genetically enhancing both plant lodging 
resistance and biomass enzymatic digestibility in rice mutants. Plant 
Biotechnol J. 2015;13:514–25.

	11.	 Lv Z, Liu F, Zhang Y, Tu Y, Chen P, Peng L. Ecologically adaptable Populus 
simonii is specific for recalcitrance-reduced lignocellulose and largely-
enhanced enzymatic saccharification among woody plants. GCB Bioen-
ergy. 2020;00:1–13.

	12.	 Wang Y, Huang J, Li Y, Xiong K, Li F, Liu M, Wu Z, Tu Y, Peng L. Ammonium 
oxalate-extractable uronic acids positively affect biomass enzymatic 
digestibility by reducing lignocellulose crystallinity in Miscanthus. Biore-
sour Technol. 2015;196:391–8.

	13.	 Zeng Y, Zhao S, Yang S, Ding SY. Lignin plays a negative role in the 
biochemical process for producing lignocellulosic biofuels. Curr Opin 
Biotechnol. 2014;27:38–45.

	14.	 Feng P, Peng P, Feng X, Sun RC. Fractional purification and bioconversion 
of hemicelluloses. Biotechnol Adv. 2012;30:879–903.

	15.	 Giummarella N, Pu Y, Ragauskas AJ, Lawoko M. A critical review on the 
analysis of lignin carbohydrate bonds. Green Chem. 2019. https://​doi.​org/​
10.​1039/​x0xx0​0000x.

	16.	 Buanafina MMDO. Feruloylation in grasses: current and future perspec-
tives. Mol Plant. 2009;2:861–72.

	17.	 Nishimura H, Kamiya A, Nagata T, Katahira M, Watanabe T. Direct evidence 
for α ether linkage between lignin and carbohydrates in wood cell walls. 
Sci Rep. 2018;8:6538.

https://doi.org/10.1039/x0xx00000x
https://doi.org/10.1039/x0xx00000x


Page 13 of 13Hu et al. Biotechnol Biofuels          (2021) 14:144 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	18.	 Ishii T. Feruloylated oligosaccharides from cell walls of suspension-cul-
tured spinach cells and sugar beet pulp. Plant Cell Physiol. 1994;35:701–4.

	19.	 Qin Z, Ma YX, Liu HM, Qin GY, Wang XD. Structural elucidation of lignin-
carbohydrate complexes (LCCs) from Chinese quince (Chaenomeles 
sinensis) fruit. Int J Biol Macromol. 2018;116:1240–9.

	20.	 Li Y, Fan C, Xing Y, Yun P, Luo L, Yan B, Peng B, Xie W, Wang G, Li X, et al. 
Chalk5 encodes a vacuolar H+-translocating pyrophosphatase influenc-
ing grain chalkiness in rice. Nat Genet. 2014;46:398–404.

	21.	 Tura H, Edwards J, Gahlaut V, Garcia M, Sznajder B, Baumann U, Shahin-
nia F, Reynolds M, Langridge P, Balyan HS, et al. QTL analysis and fine 
mapping of a QTL for yield-related traits in wheat grown in dry and hot 
environments. Theor Appl Genet. 2020;133:239–57.

	22.	 Ma J, Ding P, Liu J, Li T, Zou Y, Habib A, Mu Y, Tang H, Jiang Q, Liu Y, 
et al. Identification and validation of a major and stably expressed 
QTL for spikelet number per spike in bread wheat. Theor Appl Genet. 
2019;132:3155–67.

	23.	 Sanderson MA, Agblevor F, Collins M, Johnson DK. Compositional analysis 
of biomass feedstocks by near infrared reflectance spectroscopy. Biomass 
Bioenerg. 1996;11:365–70.

	24.	 Hu Z, Zhang G, Chen Y, Wang Y, He Y, Peng L, et al. Determination of 
lignin monomer contents in rice straw using visible and near-infrared 
reflectance spectroscopy. BioResources. 2018;13:3284–99.

	25.	 Yang Z, Li K, Zhang M, Xin D, Zhang J. Rapid determination of chemical 
composition and classification of bamboo fractions using visible-near 
infrared spectroscopy coupled with multivariate data analysis. Biotechnol 
Biofuels. 2016;9:35.

	26.	 Jin X, Chen X, Shi C, Li M, Guan Y, Yu CY, Yamada T, Sacks EJ, Peng J. 
Determination of hemicellulose, cellulose and lignin content using visible 
and near infrared spectroscopy in Miscanthus sinensis. Bioresour Technol. 
2017;241:603.

	27.	 Wu L, Li M, Huang J, Zhang H, Zou W, Hu S, Li Y, Fan C, Zhang R, Jing H, 
et al. A near infrared spectroscopic assay for stalk soluble sugars, bagasse 
enzymatic saccharification and wall polymers in sweet sorghum. Biore-
sour Technol. 2015;177:118–24.

	28.	 Milano ER, Payne CE, Wolfrum E, Lovell J, Jenkins J, Schmutz J, Juenger 
TE. Quantitative trait loci for cell wall composition traits measured using 
near-infrared spectroscopy in the model C4 perennial grass Panicum hal-
lii. Biotechnol Biofuels. 2018;11:25.

	29.	 Bhattacharyya P, Bhaduri D, Adak T, Munda S, Pathak H. Characterization 
of rice straw from major cultivars for best alternative industrial uses to 
cutoff the menace of straw burning. Ind Crop Prod. 2019;143:111919.

	30.	 Yan B, Yacouba NT, Chen J, Wang Y, Gao G, Zhang Q, Liu X, He Y. Analysis 
of minor quantitative trait loci for eating and cooking quality traits in 
rice using a recombinant inbred line population derived from two indica 
cultivars with similar amylose content. Mol Breed. 2014;34:2151–63.

	31.	 Bercier A, Plantier-Royon R, Portella C. Convenient conversion of wheat 
hemicelluloses pentoses (d-xylose and l-arabinose) into a common 
intermediate. Carbohyd Res. 2007;342:2450–5.

	32.	 Zhang SJ, Song XQ, Yu BS, Zhang BC, Sun CQ, Knox JP, Zhou YH. Identifica-
tion of quantitative trait loci affecting hemicelluose characteristics based 

on cell wall composition in a wild and cultivated rice species. Mol Plant. 
2012;5:162–75.

	33.	 Kido N, Yokoyama R, Yamamoto T, Furukawa J, Iwai H, Satoh S, Nishi-
tani K. The matrix polysaccharide (1;3,1;4)-β-d-glucan is involved in 
silicon-dependent strengthening of rice cell wall. Plant Cell Physiol. 
2015;56:268–76.

	34.	 Huang J, Li Y, Wang Y, Chen Y, Liu M, Wang Y, Zhang R, Zhou S, Li J, Tu 
Y. A precise and consistent assay for major wall polymer features that 
distinctively determine biomass saccharification in transgenic rice by 
near-infrared spectroscopy. Biotechnol Biofuels. 2017;10:294.

	35.	 Li F, Ren S, Wei Z, Xu Z, Xie G, Yan C, Tu Y, Li Q, Zhou S, Yu L. Arabinose 
substitution degree in xylan positively affects lignocellulose enzymatic 
digestibility after various NaOH/H2SO4 pretreatments in Miscanthus. 
Bioresour Technol. 2013;130:629–37.

	36.	 Hu Z, Zhang G, Muhammad A, Samad RA, Wang Y, Walton JD, He Y, Peng 
L, Wang L. Genetic loci simultaneously controlling lignin monomers and 
biomass digestibility of rice straw. Sci Rep. 2018;8:3636.

	37.	 Wang Y, Liu P, Zhang G, Yang Q, Lu J, Xia T, Peng L. Cascading of engi-
neered bioenergy plants and fungi sustainable for low-cost bioethanol 
and high-value biomaterials under green-like biomass processing. Renew 
Sust Energ Rev. 2021;137:110586.

	38.	 Takeda Y, Tobimatsu Y, Karlen SD, Koshiba T, Suzuki S, Yamamura 
M, Murakami S, Mukai M, Hattori T, Osakabe K, et al. Downregula-
tion of p-COUMAROYL ESTER 3-HYDROXYLASE in rice leads to altered 
cell wall structures and improves biomass saccharification. Plant J. 
2018;95:796–811.

	39.	 Xie G, Peng L. Genetic engineering of energy crops: a strategy for biofuel 
production in China. J Integr Plant Biol. 2011;53:143–50.

	40.	 Bin J, Li X, Fan W, Zhou JH, Wang CW. Calibration transfer of near-infrared 
spectroscopy by canonical correlation analysis coupled with wavelet 
transform. Analyst. 2017;142:2229–38.

	41.	 Foster CE, Martin TM, Pauly M. Comprehensive compositional analysis 
of plant cell walls (lignocellulosic biomass) part I: lignin. J Vis Exp. 2010. 
https://​doi.​org/​10.​3791/​1745.

	42.	 Santoro N, Cantu SL, Tornqvist CE, Falbel TG, Bolivar JL, Patterson SE, et al. 
A high-throughput platform for screening milligram quantities of plant 
biomass for lignocellulose digestibility. Bioenerg Res. 2010;3:93–102.

	43.	 Robinson AR, Mansfield SD. Rapid analysis of poplar lignin monomer 
composition by a streamlined thioacidolysis procedure and near-infrared 
reflectance-based prediction modeling. Plant J. 2009;58:706–14.

	44.	 Updegraff DM. Semimicro determination of cellulose in biological mate-
rial. Anal Biochem. 1969;32:420–4.

	45.	 Lei M, Li H, Zhang L, Wang J. QTL IciMapping: Integrated software for 
genetic linkage map construction and quantitative trait locus mapping in 
biparental populations. Crop J. 2015;3:269–83.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.3791/1745

	Integrated NIRS and QTL assays reveal minor mannose and galactose as contrast lignocellulose factors for biomass enzymatic saccharification in rice
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Results
	Varied monosaccharide composition and biomass saccharification among large population of rice straws
	Distinct minor monosaccharides impacts on biomass enzymatic saccharification
	Potential mannose and galactose association with lignin deposition
	Optimal NIRS assays for mannose and galactose at large scale
	NIRS-assisted QTL identification for potential engineering of mannose and galactose

	Discussion
	Conclusions
	Methods
	Rice straw sample collection
	Monosaccharide analysis
	Biomass pretreatment and enzymatic hydrolysis
	Lignin and lignin monomer assay
	Crystalline cellulose analysis
	Cellulose crystallinity index detection
	Calibration and validation of NIRS equation
	QTL mapping and QTL cluster identification
	Statistical analyses

	Acknowledgements
	References




