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Abstract

Background: In terms of global demand, rapeseed is the third-largest oilseed crop after soybeans and palm, which
produces vegetable oil for human consumption and biofuel for industrial production. Roots are vital organs for plant
to absorb water and attain mineral nutrients, thus they are of great importance to plant productivity. However, the
genetic mechanisms regulating root development in rapeseed remain unclear. In the present study, seven root-
related traits and shoot biomass traits in 280 Brassica napus accessions at five continuous vegetative stages were
measured to establish the genetic basis of root growth in rapeseed.

Results: The persistent and stage-specific genetic mechanisms were revealed by root dynamic analysis. Sixteen
persistent and 32 stage-specific quantitative trait loci (QTL) clusters were identified through genome-wide associa-
tion study (GWAS). Root samples with contrasting (slow and fast) growth rates throughout the investigated stages
and those with obvious stage-specific changes in growth rates were subjected to transcriptome analysis. A total of
367 differentially expressed genes (DEGs) with persistent differential expressions throughout root development were
identified, and these DEGs were significantly enriched in GO terms, such as energy metabolism and response to biotic
or abiotic stress. Totally, 485 stage-specific DEGs with different expressions at specific stage were identified, and these
DEGs were enriched in GO terms, such as nitrogen metabolism. Four candidate genes were identified as key persis-
tent genetic factors and eight as stage-specific ones by integrating GWAS, weighted gene co-expression network
analysis (WGCNA), and differential expression analysis. These candidate genes were speculated to regulate root sys-
tem development, and they were less than 100 kb away from peak SNPs of QTL clusters. The homologs of three genes
(BnaA03g52990D, BnaA06g37280D, and BnaA09g07580D) out of 12 candidate genes have been reported to regulate
root development in previous studies.

Conclusions: Sixteen QTL clusters and four candidate genes controlling persistently root development, and 32 QTL
clusters and eight candidate genes stage-specifically regulating root growth in rapeseed were detected in this study.
Our results provide new insights into the temporal genetic mechanisms of root growth by identifying key candidate
QTL/genes in rapeseed.
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biodiesel is mainly made from the monounsaturated fatty
acids from vegetable oils [2]. Rapeseed oil has the high-
est percentage of monounsaturated fatty acids among
the plant oils. Biodiesel has been manufactured primarily
from rapeseed oil in Europe [3]. Rapestraw can be used
to produce liquid biofuel, particularly ethanol, since it
contains abundant lignocellulosic material [4]. Therefore,
it is necessary to boost rapeseed biomass and yield so as
to satisfy the increasing demand for edible oil and fuel
worldwide.

The root system architecture (RSA) usually denotes
the spatial configuration of complex assembly of the root
system, and root shape plays key role in healthy plant
growth, since root system penetrates the soil in search
for water and nutrients [5]. Therefore, plants rely on the
modulation of RSA in response to a changing soil envi-
ronment to increase yield potential and yield stability.
The genetic improvement of root architecture, such as
increasing lateral root (LR) number, facilitates resource
bioavailability in plants and increases crop yield and
stress tolerance [6, 7]. To breed the crops with better
RSA, a large number of studies have focused on varia-
tions in root architecture in many crops, such as rice,
wheat, maize, soybean, and rapeseed [8-12]. Several
studies have identified hundreds of root QTL in con-
trolled environments or in the field [11, 13-15]. Besides,
several of these QTL have also been reported to influence
such traits as yield, water/nutrient uptake, and abiotic
stress tolerance [13, 16—21].

Genome-wide association study (GWAS) has been suc-
cessfully used for the identification of the polymorphism
sites and/or genes related to complex traits including root
traits in crops, such as rice, wheat, maize, and rapeseed
[10, 14, 15, 22, 23]. The Brassica 60 K Illumina single-
nucleotide polymorphism (SNP) array has facilitated the
genetic improvement of different traits including flower-
ing time, seed oil content, and phosphate-efficiency to
obtain desirable alleles in B. napus [14, 24, 25]. Moreo-
ver, brassinosteroid signaling kinase 3 (BSK3) was con-
firmed to regulate root elongation at the low-nitrogen
condition in Arabidopsis by GWAS [26]. Transcriptome
analysis has become an effective technique for detecting
candidate genes. Many crucial differentially expressed
genes (DEGs) related to root development have been
identified by RNA sequencing in rice, maize, and B.
napus [27-29]. Weighted gene co-expression network
analysis (WGCNA) has been usually used to analyze the
relationship and network between different genes. Func-
tional candidate genes related to root development were
identified at different developmental stages in crops by
WGCNA, including DcMYB113, which was reported to
regulate anthocyanin transport in carrot root [30], and
three hub genes (GRMZM2G477658, GRMZM2G15536,
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and GRMZM2G072121) played a possible role in maize
root formation and growth through the division and/
or elongation of cells [31]. Recently, the combination of
GWAS, transcriptome sequencing, and/or WGCNA has
been turned out to be a rapid and efficient approach to
identifying crucial candidate genes regulating root devel-
opment [9, 15, 32, 33]. For example, OsNall and OsJAZ1
located in the peak SNPs have been confirmed to facili-
tate the root development in rice [33].

Root growth is a continuous and complex process with
temporal dynamics and spatial patterning. A previous
study has defined seven root growth types in a B. napus
recombinant inbred line (RIL) population derived from
two rapeseed cultivars (Zhongshuangl1 and NO. 73290)
with contrasting root systems, and identified two types of
QTL (persistent and stage-specific) by the analysis of root
traits in rapeseed [11]. To further identify the genetic fac-
tors controlling the dynamic root growth, we examined
five continuous stages during root development in 280
natural accessions of B. napus. Sixteen persistent and 32
stage-specific QTL clusters further confirmed the exist-
ence of the two types of QTL controlling root develop-
ment. In addition, we performed a transcriptome analysis
of samples of four root growth types with extremely con-
trasting growth rates during the investigated timepoints.
A total of 12 crucial candidate genes involved in root
growth were identified via combining GWAS, WGCNA,
and differential expression analysis, some of which have
been reported to be related to root development in previ-
ous studies.

Results

Phenotypic analysis of 280 B. napus accessions reveals
genetic stability of root development

To examine dynamic growth patterns of roots during
the vegetative stage, the hydroponic system was used for
evaluating root-related traits and shoot biomass traits of
280 B. napus accessions which were sampled at 13 days
after sowing (DAS) from the germination device and at
10 days after transplanting (10 DAT, equal to 16 DAS),
three expanding leaves (3 EL), 5 EL, and 7 EL from the
growth device with three biological replications for each
sample, respectively (Additional file 1: Figure Sla-e).
The statistics of the seven root-related traits (root fresh
weight (REW), root dry weight (RDW), primary root
length (PRL), total root length (TRL), total root surface
(TSA), total root volume (TRV), and total number of
roots (TNR)), and two shoot biomass traits (shoot fresh
weight (SFW) and shoot dry weight (SDW)) from each
replication at the five sampling timepoints were listed in
Additional file 2: Table S1, and the mean values of three
replications are presented in Table 1. All the investi-
gated traits showed a normal distribution or approximate
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Table 1 Nine trait statistics of 280 accessions collected at five continuous stages

Traits Environment Min Max Mean SD CV (%) ag? og x e? o2 H? H?
PRL, cm 13DAS 485 1848 11.22 214 19.06 52.74 10.95 245 093 0.93
10DAT 8.36 27.81 17.08 3.12 18.28 74.37 19.65 6.31 091
3EL 11.23 28.16 17.87 296 16.58 7847 2398 8.87 0.90
5EL 11.87 27.71 1891 2.88 15.21 74.52 19.45 8.00 091
7EL 13.03 31.30 20.09 3.10 15.44 85.20 2093 7.79 0.92
SFW, g 13DAS 0.21 0.94 052 0.11 20.95 0.129 0.020 0.009 0.94 0.65
10DAT 042 2.06 1.24 0.27 21.53 0450 0.112 0.020 0.92
3EL 1.22 458 295 0.56 18.97 2.79%4 0.816 0.207 0.90
5EL 3.87 17.21 10.92 191 17.51 32.64 8.86 253 0.85
7EL 10.20 39.97 2512 440 17.53 171.56 71.56 12.56 0.87
RFW, g 13DAS 0.031 0.152 0.084 0.020 23.23 0.003 0.001 0.000 093 0.67
T0DAT 0.046 0.270 0.175 0.039 22.03 0.010 0.003 0.001 0.90
3EL 0.218 0.839 0487 0.097 19.84 0.083 0.026 0.008 0.90
5EL 0.629 2.754 1.621 0.335 20.64 1.004 0.371 0.087 0.81
7EL 1.24 542 3.07 0.63 2045 3.52 145 0.286 0.87
SDW, mg 13DAS 9.89 46.42 27.03 5.88 21.75 291.57 73.0 40.6 0.74 0.64
10DAT 23.89 1289 74.57 15.79 21.18 24884 752.8 390.3 0.84
3EL 61.78 2503 160.9 32.63 20.28 9387.8 3590.5 1069.1 0.88
5EL 231.1 1067 659.7 1174 17.79 123,001 53,857 12,285 0.80
7EL 647.8 24822 16329 306.4 18.77 825,608 434,176 77,621 0.84
RDW, mg 13DAS 1.58 6.11 3.69 0.83 2243 203 - 0.50 - 0.63
10DAT 244 13.09 845 1.68 19.92 71.87 55.53 84.98 0.68
3EL 10.00 30.78 19.71 383 19.44 1155 493 19.2 0.81
5EL 29.11 98.78 61.26 1142 18.65 1169 479.3 127.7 0.76
7EL 59.00 294.3 1434 33.06 23.06 8580 4926 804.3 0.82
TRL, cm 13DAS 50.03 294.0 160.5 36.86 22.96 11,290 2049 934.16 0.93 0.71
10DAT 142.2 7722 4573 104.5 22.86 31,861 11,146 2112 0.89
3EL 495.7 1337 7781 1396 17.94 172,904 43177 15,901 091
5EL 980.3 2679 1671 297 17.77 784,719 260,737 68,229 0.89
7EL 1262.9 5134 2967 601 20.26 3,192,567 1,348,006 280,825 0.87
TSA, cm? 13DAS 4.68 19.65 11.23 240 21.38 4561 8.39 436 093 0.68
10DAT 8.11 4333 2791 5.69 20.39 116.64 41.60 9.13 0.89
3EL 34.81 93.31 59.95 9.56 15.94 812.0 221.1 89.99 091
S5EL 85.83 224.0 146.2 240 16.40 5090 1603 4855 0.90
7EL 116.2 483.7 268.1 519 19.35 23,836 10,067 2025 0.87
TRV, cm? 13DAS 0.025 0.119 0.063 0.014 22.20 0.002 0.000 0.000 093 0.64
10DAT 0.037 0211 0.137 0.028 20.13 0.003 0.001 0.000 0.89
3EL 0.185 0.570 0374 0.063 16.98 812.0 2211 89.99 091
S5EL 0.482 1.774 1.030 0.189 18.33 0315 0.100 0.029 0.90
7EL 0.859 3.639 1.947 0402 20.63 1427 0.584 0.112 0.87
TNR 13DAS 60.52 2333 1213 263 21.71 11,974 4531 972 0.88 0.59
10DAT 139.2 673.5 3828 823 2149 26,044 10,602 1977 0.87
3EL 284.7 924.8 5215 93.7 17.96 77915 22475 8438 0.90
5EL 603.3 2169 1273 2652 20.84 623914 319,736 61,184 0.85
7EL 1175 5318 2759 708.0 25.66 4,394,488 2,543,179 405,276 0.83

Min minimum of values in the population, Max maximum of values, Mean mean trait value, SD standard deviation of trait values, CV coefficient of variation. og?,
0g x e? and o? estimated variance associated with the effect of genotype, genotype x environment and the residual error, respectively (P<0.0001). H? broad-sense
heritability
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normal distribution (Additional file 1: Figure S2). The
coefficient of variation (CV) ranged from 15.21% to
25.66%, indicating considerable phenotypic variations
for all the traits in the population (Table 1). All the traits
showed a high broad-sense heritability (H?) at each devel-
opmental stage, ranging from 0.68 to 0.94. Furthermore,

TNR 0.7 04 036 033 055 047 042 0.58 0.4 0.65
TRV 0.82 058 0.46 0.46 061 051 047 0.71 06 0.76
TSA 0.82 0.56 048 0.47 0.54 045 0.44 0.71 0.58 0.77
TRL 0.79 055 0.5 047 049 043 045 073 0.56 0.76 .

1.0

0.5

RDW 075 04 044 04 053 056 043 0.71 049 0.7 00

SDW 0.81 0.62 0.59 046 0.55 0.57 042 0.8 0.57 0.71
RFW 0.79 055 0.49 048 049 043 045 0.74 0.61 0.75
SFW 0.85 0.67 0.57 0.5 0.63 0.54 047 082 0.66 0.79

PRL 0.78 0.75 0.72 0.69 069 066 0.6 0.87 0.81 0.87

Fig. 1 Correlations of each captured trait at five stages. Forward slash
represents the correlation, for example, 13DAS/10DAT represent the
correlation in the traits between 13 DAS and 10 DAT, P< 0.0001
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the H? of all the traits was also high, ranging from 0.59
to 0.92 during the five developmental stages. For root
traits, REW, TRL, TSA, and TRV had heritability slightly
higher than TNR and RDW (Table 1). We discovered sig-
nificant correlations of each trait among all five stages
with 7 ranging from 0.33 to 0.87 (P<0.0001). In general,
the highest root correlations were observed between two
adjacent stages in spite of the gradually decreased cor-
relation with the increased sampling interval, indicating
that the effects of environment on these traits increased
with plant development (Fig. 1). The PCA results of the
traits suggested that component 1 (X axis, 47.9%) and
component 2 (Y axis, 13.0%) explained the majority of
genetic variation in this population (Fig. 2). With excep-
tion of PRL (Group 1), all the other traits examined at
early stages (13 DAS and 10 DAT) were clustered into
Group 3, whereas the traits recorded at late stages (3
EL, 5 EL, and 7 EL) were clustered into another group
(Group 2). The separation of PRL and the other traits on
the X axis indicated the substantial differences between
PRL and the other traits. Traits captured at early stages
(Group 3) and late stages (Group 2) were separated by
the Y axis, but mapped to the same position on the X
axis, suggesting the high correlations; however, a degree
of specificity between the traits at early and late stages
(Fig. 2). As shown in Additional file 2: Table S2, all the
traits were significantly correlated with r* ranging from
0.24 to 0.74 (P<0.001) among the three biological
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replications. The results suggested that early root devel-
opment traits were positively correlated with late root
traits, thus suggesting that root development was a con-
tinuous process influenced by early genetic factors.

Persistent and stage-specific QTL clusters related

to the root system are identified by GWAS

After filtering, a total of 23,542 SNPs with known physi-
cal position in the B. napus Darmor-bzh reference
genome were selected for GWAS [34]. The distribution
of the 23,542 SNP markers and LD decay on each chro-
mosome were presented in Additional file 2: Table S3.
Approximately 58.1% of the kinship coefficients between
individual accessions were equal to zero, and 97.6% were
less than 0.2, suggesting a weak kinship for most acces-
sions in the natural population (Additional file 1: Figure
S3).

The 1,107 significant trait-SNP associations were
detected (—log, " >4.37, —log,,"****?) using the mixed
linear model (MLM) for three repetitions (Additional
file 2: Table S4). The manhattan plots were drawn using
the best linear unbiased prediction (BLUP) values of
three repetitions for all the traits to give visual GWAS
results at various stages (Fig. 3). We termed the SNPs
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with close proximity (within 1 Mb) and an LD r*>0.2
as one cluster, since these SNPs were identified as the
same QTL [24]. As a result, a total of 683 identified sig-
nificant trait—-SNP associations with 134 significant SNPs
markers, and 747 suggestive trait—-SNP associations
(3.5< —log,," <4.37) were integrated into 48 valid QTL
clusters (Fig. 4, Additional file 2: Table S5). Of these 48
clusters, 21 QTL clusters contained multiple SNPs and
27 QTL clusters harboured single SNPs. The maximum
genetic variation explained by these clusters ranged
from 7.55% to 16.15%. We detected 28, 19, 4, 23, and 26
QTL clusters at the 13 DAS, 10 DAT, 3 EL, 5 EL, and 7
EL stages, respectively. Except 8 QTL clusters S1, S2, #1,
S6, S8, S21, S26, and S18, all other clusters (40 out of 48)
were detected at two or more stages. Noteworthy, two
significant SNPs displaying the vast majority of trait—-SNP
associations for all the investigated traits except PRL on
chromosome C8 were detected at multiple stages (Fig. 3;
Additional file 2: Table S4). This suggested the existence
of genetic factors controlling multiple root-related traits
at various stages.

To reveal the genetic basis of root traits at the multi-
ple vegetative stages, these QTL clusters were divided
into three categories based on their identification stages:
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ES-specific clusters (early stage, 13 DAS and 10 DAT),
LS-specific clusters (later stage, 3 EL, 5 EL, and 7 EL),
and ES-LS common clusters. Sixteen out of the 48 QTL
clusters constituted ES-LS common clusters, indicat-
ing the existence of the persistent QTL controlling root
development. In addition, 16 ES-specific clusters and 16
LS-specific clusters revealed genetic mechanism in the
root system at specific stages (Fig. 2; Additional file 2:
Table S5). The major QTL identified in this study could
be applied for improving root system architecture in
rapeseed.

Transcriptome analysis reveals dynamic root development
Clustering analysis of the 280 accessions was per-
formed to examine the similarity and diversity of their
root growth patterns. At the same the growth stage, the
traits (except PRL) exhibited significant correlations
(P<0.0001) with each other (from 0.44 to 0.97, P<0.0001;

Additional file 2: Table S6), suggesting developmental rel-
evance among these root-related traits. SEFW was consid-
ered as the trait reflecting the plant growth status. REW
showed higher correlations with SEW (0.70-0.79) than
with other root traits (Additional file 2: Table S6). The
traits investigated at 13 DAS and 10 DAT were from dif-
ferent growth devices (germination device and growth
device), so growth rate (GR) from 13 DAS to 10 DAT
was not shown in this study. The normalized GRs were
calculated by RFW to present the root dynamic growth
patterns, the heatmap showed that the 280 accessions
fell into seven growth types (Types 1-7) (Fig. 5a). The 38
accessions (accounting for 13.57%) belonged to growth
type 1 with their GRs below the average GR from 10 DAT
to 7 EL, and at least one GR less than 80% of the aver-
age. The 48 accessions (17.14%) belonged to growth type
2 with their GRs greater than the average GR from 10
DAT to 7 EL, and at least one GR greater than 120% of
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the average. The majority of the accessions (64, 22.86%)
belonged to type 3 with a relatively stable GR ranging
from 80 to 120% of the average GR from 10 DAT to 7 EL.
Type 4 possessed 48 accessions (17.14%) whose GRs were
below average GR from 10 DAT to 3 EL or from 10 DAT
to 5 EL, but were above average from 3 to 7 EL or from
5 to 7 EL. Contrastive, type 5 consisted of 50 accessions
(17.86%) whose GRs were above average GR from 10
DAT to 3 EL or from 10 DAT to 5 EL, then below average
from 3 to 7 EL or from 5 to 7 EL (Fig. 5a, b). Type 6 con-
tained 17 accessions (6.07%) with its GR changing from
fast to slow, and then to fast again during the investigated
stages. On the contrary, the GRs of type 7 consisting of 15

accessions (5.36%) were subjected to the change pattern
of first slow, and then fast, followed by slow. Obviously,
the majority of accessions fell into type 1 (with consistent
slow GR) and type 2 (with consistent fast GR), and type
3 (with stable GR), indicating that genes expressed at an
early stage might control root growth at the late stage
with prolonged effects. In addition, type 4 and type 5 dis-
played obvious stage-specific changes in GRs, suggesting
the existence of genes functioning at a specific stage.

The GRs of type 3 were close to average GR. The GRs of
type 6 and type 7 exhibit two reverse changes during root
development. Considering this, we excluded type 3, 6,
and 7 in subsequent transcriptome analysis. We selected
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the four growth types (type 1, type 2, type 4, and type 5)  stage) and group 2 (5 EL and 7 EL stage) on component 1
for subsequent transcriptome analysis, because type 1  (Additional file 1: Figure S5), indicating a change in gene
and type 2 had contrasting (slow and fast) GRs through-  expression from 3 to 5 EL during root development.

out root development stage, type 4 and type 5 exhibited

opposite changing GRs at the specific stage. Five acces-  Persistent and stage-specific mechanisms underlying root

sions from each growth type were sampled at the 10 DAT,  development are revealed by transcriptome analysis

3 EL, 5 EL, and 7 EL stages, respectively (Fig. 5c¢), and  To explore the persistent genetic factors during root
were subjected to transcriptome analysis to reveal the development, the VENN analysis of the DEGs from
temporal molecular mechanisms of root development. A growth type 1 vs type 2 at the four root develop-
total of more than 41 million clean reads were obtained ment stages was performed. A total of 367 DEGs were
from each library after adaptor trimming, of which, found to be overlapped within the four stages (Addi-
73.47-91.59% clean reads were uniquely matched to B.  tional file 2: Table S8). A K-means clustering analysis
napus reference genome (Additional file 2: Table S7). The  of these persistent DEGs showed that the expressions
qRT-PCR of 20 genes was performed in all the samples of these genes were stabilized among the four stages,
(Additional file 2: Table S14). The results of qRT-PCR  but they exhibited significant difference between type
were highly consistent with those of RNA-Seq data, sug- 1 and type 2 (Fig. 6a). In addition, 35 persistent DEGs
gesting the reliability of the RNA-Seq data (Additional encoded transcription factors, belonging to the families
file 1: Figure S4). The PCA of the RNA-Seq data indi- of bHLH NAC, MYB, MYB_related, MADS-box, and
cated that all the four root growth types displayed an  E2F/DP. The genes BnaAnng09810D, BnaA01g20660D,
obvious separation between group 1 (10 DAT and 3 EL  BnaC03g61210D homologous to the MADS-box
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family member ARABIDOPSIS NITRATE REGULATED  genes (PETAL LOSS and PTL) and MYB_related genes
1, ANRI, the NAC transcription factor family PEROXI- (CAPRICE and CPC). These transcription factors have
DASE 34, PER34, and bHLH2S, respectively, which have  been reported to affect root development in Arabidop-
been reported to participate in root development [35—  sis [38, 39]. These results suggested that the biological
37], were expressed higher at all the stages of type 1 than  processes, energy metabolism, and response to biotic or
type 2. The GO enrichment analysis showed that the abiotic stress might influence the persistent root devel-
367 DEGs were enriched in GO terms related to energy = opment, whereas the nitrate metabolite process might
metabolism (including acetyl-CoA biosynthetic process function at a specific stage during root growth. The root
from pyruvate and glycolytic process) and biotic or abi- development was also regulated by several important
otic stress (such as response to oxidative stress, hydrogen transcription factors.
peroxide catabolic process and cold acclimation) (Fig. 6b;
Additional file 2: Table S9). Crucial candidate genes are identified by integrating
Meanwhile, 485 stage-specific DEGs were identified, GWAS, WGCNA, and differential expression analysis
which exhibited lower or higher expressions at type To investigate the gene regulatory network during root
4 early stages than at late stages, and displayed oppo- development, 26,039 DEGs from the four root growth
site expression patterns at type 5 corresponding stages types were used to identify co-expression gene modules
(Fig. 6¢; Additional file 2: Table S10). The GO enrich- by WGCNA. A total of 30 modules were identified in
ment analysis revealed that these genes were signifi- the dendrogram according to the correlations of genes
cantly enriched in GO terms, such as nitrate metabolism  (Fig. 7a), and the relationships between modules and
(including nitrate transport, response to nitrate, nitrate  samples were presented in Fig. 7b. The purple module
assimilation, and cellular response to nitrogen starva-  was associated with all the stages of type 1, whereas the
tion), plant-type cell wall organization, and glucosinolate =~ green module was associated with all the stages of type
catabolic process. (Fig. 6d; Additional file 2: Table S11). 2. The darkorange, darkturquoise, white, and darkred
In this study, a total of 16 stage-specific DEGs were modules were significantly associated with 10 DAT,
highly expressed at 10 DAT of type 5, and they encoded 3 EL, 5 EL and 7 EL of growth type 4, respectively, and
multiple transcription factors, including trihelix family the red, lightyellow, saddlebrown and darkgrey modules
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exhibited high correlations with 10 DAT, 3 EL, 5 EL and
7 EL of type 5, respectively. The heatmaps showed that
the genes within one module were highly expressed in
the samples highly correlated with the module (Addi-
tional file 2: Figure S6). GWAS results indicated that
2,461 genes were located in the haplotype blocks of the
48 QTL clusters (Additional file 2: Table S12). Consider-
ing a high correlation of WGCNA genes with each mod-
ule (r*>0.85), 9 persistent and 13 stage-specific candidate
genes each including 3 DEGs were screened from GWAS
and WGCNA overlapped genes (Tables 2, 3). In addition,
6 GWAS and DEGs overlapped genes with correlations
to the modules < 0.85 were also screened as stage-specific
candidate genes (Table 3).

Among the nine persistent candidate genes, two and
seven genes with high correlations to the purple and
green modules were highly expressed at all the stages
of type 1 and type 2, respectively (Table 2). Four genes
in the green module were located less than 100 kb
away from the peak SNPs, including BnaA05g03210D,
BnaC02g10480D, BnaA03g52990D, and BnaC08g39040D
which were 35.9 Kb, 50.6 Kb, 69.3 Kb, and 6.3 Kb apart
from the peak SNPs of #4, #9, S20, and S26 (Table 2).
BnaA03g52990D encodes the GATA transcription fac-
tor, whose homolog influences root development by
affecting auxin level and cell division in Arabidopsis
[40]. Two genes BnaC02¢10710D and BnaA05g03210D
exhibited high correlation with BrnaA03g52990D
(Fig. 8a). ROOT INITIATION DEFECTIVE 1, RIDI
(the homolog of BnaC02¢g10710D) has been reported to
function in root apical meristem and root morphogen-
esis in Arabidopsis [41]. Furthermore, three persistent
DEGs, BnaC02g10480D, BnaC02¢g10710D, and Bna-
A05g03210D, displayed high correlations to each other in
the green module (Fig. 8a).

Of the 19 stage-specific candidate genes, Bnua-
A03g47900D in the white module and seven genes
BnaA03g42930D, BnaA09g07840D, BnaC01g22700D,
BnaC02g14450D, BnaC03g26110D, BnaA06g37280D,
and BnaC02g14330D in the red module were located less
than 100 kb away from the peak SNPs (Table 3). Espe-
cially, BnaC01g22700D encoding ferredoxin-3 protein
was 0.06 kb apart from the peak SNP of S19 QTL clus-
ter. Our data indicated that PROTEIN BASIC PENTA-
CYSTEINES, BPC5 (the homologs of BnaA06¢g37280D)
was located 28.6 kb away from the peak SNP of #11, and
in previous study, BPC5 has been found to promote lat-
eral root growth in Arabidopsis [42]. Our WGCNA,
stage-specific DEG analysis, and GWAS results indi-
cated that BnaA03¢g42930D, BnaA09g07840D, and
BnaC01g22700D were detected and were highly
expressed at 10 DAT of type 5 (Table 3), and that these
three genes were highly correlated with another three

Page 10 of 20

closely linked genes BnaA08g24190D, BnaC02g14450D,
and BnaC03g26110D (Fig. 8b).

In the present study, four candidate genes were
screened as crucial persistent genetic factors and eight
as stage-specific genetic factors with less than 100 kb
physical distances from the peak SNPs in B. napus. Fur-
thermore, homologs of three candidate genes (Bna-
A03g52990D, BnaA06¢g37280D, and BnaA09g07580D)
have been reported to regulate root development in
previous studies. The results showed that the method
of screening candidate genes by combining GWAS,
WGCNA, and differential expression analysis was
effective.

Discussion

Two types (persistent and stage-specific) of temporal
genetic factors controlling root development in B. napus
Recent advances in high-resolution imaging of root
growth have indicated that the root system was deter-
mined by continuous spatial and temporal growth [11,
43-45]. Consistent with the previous report [11], our
phenotypic correlation analyses and root growth dynam-
ics study revealed two types (persistent and stage-
specific) of temporal genetic factors controlling root
development in B. napus. Furthermore, the persistent
and stage-specific genetic factors were verified by our
identified QTL clusters and DEGs (Fig. 2; Additional
file 2: Table S5). Our dynamic QTL analysis results were
in line with the previous reports on several dynamic
traits at different developmental stages in Arabidopsis,
barley, wheat, upland cotton, maize, and B. napus [11, 14,
46-55]. For example, 35 dynamic conditional QTL which
can enhance the number of roots were detected at differ-
ent root development stages in upland cotton, suggesting
the dynamic development of roots [46].

Furthermore, the peak SNPs of 18 QTL clusters in this
study were co-localized in the identical haplotype blocks
of the 27 previously reported significant SNPs related
to root traits at low or sufficient phosphorus conditions
(Additional file 2: Table S13) [14]. Clusters S10, S20, #15,
and S25 were also co-localized with previously identi-
fied QTL (qcA09-1, qcC02-2, qcC02-2, and ugqPRLCO06)
related to root surface area (RSA) trait, respectively [11,
14]. Our results provided useful QTL and the major QTL
can be used for marker-assisted selection of root traits in
rapeseed.

Possible regulatory pathways of persistent

and stage-specific genetic factors related to root
development

Root growth, as a complex process, is determined by the
interaction of many genes. Some genes play a persistent
role during root development, whereas others function at
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candidate genes overlapped by GWAS and WGCNA

a specific stage. In this study, we identified 367 persistent in acetyl-CoA biosynthetic process were homologs
DEGs from growth type 1 vs type 2 controlling root devel-  of PYRUVATE DEHYDROGENASE EI, ALPHA in A.
opment in rapeseed. Three persistent DEGs enriched thaliana affecting polar auxin transport during root
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development [56]. Oxidative stress response is a general
response of living organisms to biotic or abiotic stress
[57]. Ten out of the 14 persistent DEGs (Additional file 2:
Table S8) enriched in oxidative stress encoded 10 pro-
teins PEROXIDASE 34 (PRX34), CYP709B3, CYP87A3,
CYP78A6, PEROXIDASE 3 (PER3), PER34, PER44,
PER71, CATALASE-2 (CAT2), and ALPHA-DIOXYGE-
NASE 1 (DOX1), and these genes have been reported to
act as regulators in root development in Arabidopsis [58—
62]. For example, PRX34 mediated H,O, generation and
increased Ca* flux from the cytosol of Atmpké root cells
to inhibit root elongation [63]. CYP709B subfamily was
involved in cytokinin metabolism and signaling in roots
[58]. These results suggested that biological processes,
such as energy metabolism and biotic or abiotic stress
response, especially oxidative stress response might act
as the major molecule mechanisms influencing persistent
root development.

NO3?~ and nitrate metabolites can serve as regulatory
signals to control root system architecture [64]. Three
stage-specific DEGs (Additional file 2: Table S10) homol-
ogous to NRTI/NPF6.3 not only regulated auxin bio-
synthesis to promote LR primordia emergence, but also
repressed LR development by promoting auxin transport
at low nitrate in Arabidopsis [65]. High-affinity nitrate
transporter 2.1 (NRT2.1) homologous to our four stage-
specific DEGs has been reported to play an essential role
in root nitrate uptake (Additional file 2: Table S10) [66].
The 485 stage-specific DEGs were found to be enriched
in GO terms, such as nitrate transport, response to
nitrate, nitrate assimilation, and glucosinolate catabolic
process (Fig. 6; Additional file 2: Table S11). Furthermore,
some previous studies have reported that the glucosi-
nolate accumulation can restrain root growth and devel-
opment [67-71]. Defense metabolite Allyl-glucosinolates
(allyl-GSL) have been reported to affect Arabidopsis root
development through three different catabolic products
[72]. AtTGG4 and AtTGGS homologous to two genes,
BnaA08g01990D and BnaC06g08840D, enriching in the
glucosinolate catabolic process have been reported to
regulate root growth and play a part in flood tolerance
in Arabidopsis [73]. The above results suggested that
nitrate metabolism process and glucosinolate catabolic
process might mainly regulate the stage-specific root
development.

Efficient discovery of candidate genes by combining

GWAS, WGCNA, and differential expression analysis

Combination of GWAS, WGCNA, and differential
expression analysis has been reported as an efficient way
to acquire crucial genes in maize, rice, soybean, carrot,
and other crops [9, 15, 32, 33]. We identified four per-
sistent and eight stage-specific crucial candidate genes
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related to root development by integrating GWAS,
WGCNA and differential expression analysis in rapeseed.

Four crucial persistent candidate genes Bna-
A03g52990D,  BnaA05g03210D,  BnaC02g10480D,
BnaC08g39040D in the green module displayed high
correlations to each other (Fig. 8), and two genes, Bna-
A03g52990D and BnaC02g10710D in green module were
homologous to ATGATA3 and ATRIDI which have been
reported to function in root development in Arabidopsis
[40, 41]. Our identified ATRID1 had similar function with
SRD2 which affected LR morphogenesis by reducing the
level of auxin efflux facilitator (PIN) in A. thaliana [41,
74]. Furthermore, the homologs of other genes in the
green module, PROTEIN PHOSPHATASE 2C (AIPI),
REPLICATION PROTEIN A SUBUNIT B (RPA1B), HIS-
TIDINE KINASE 3 (AHK3), POLYADENYLATE-BIND-
ING PROTEIN 2 (PAB2), have also been reported to
affect root development by regulating phytohormone or
promoting cell elongation [75-78]. All these results indi-
cated that the crucial persistent candidate genes in the
green module might have similar functions during root
development.

Seven out of eight stage-specific crucial candidate
genes were in the red module, of which BnaA06¢g37280D
and BnaA09¢07580D were homologous to BPC5 and
RALFL34 reported to promote LR development by
inhibiting the abscisic acid insensitive 4 expression and
activating PIN1I level in Arabidopsis [42, 79]. Moreover,
the red module included several function-known genes
involved in root development, such as BnaA08g06170D
and BnaC08g06550D which were homologous to AtS-
MAPI reported to modulate root development by inter-
acting with 2,4-Dichlorophenoxyacetic acid [80]. The
results above further demonstrated that these seven can-
didate genes played significant roles in root growth.

The candidate genes and dynamic QTL identified in
this study can serve as exploitable resources to broaden
our research on molecular mechanism of root develop-
ment. More studies are needed to further analyze these
candidate genes and validate their functions.

Conclusions

Rapeseed provides not only edible vegetable oil for
human consumption, but also an important source for
biofuel production. To construct excellent root system by
genetic improvement is conducive to improve rapeseed
productivity. The seven dynamic patterns of root growth
rates and 16 persistent and 32 stage-specific quantitative
trait loci (QTL) clusters which were obtained by GWAS
supported the existence of two types of QTL (persistent
and stage-specific) controlling root growth at specific
or multiple developmental stages, respectively. Total of
367 identified persistent DEGs were enriched in energy
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metabolism and biotic or abiotic stress. Whereas 485
stage-specific DEGs were enriched in nitrogen metabo-
lism. By integrating GWAS, WGCNA, and differential
expression analysis, we identified four candidate genes
as crucial persistent genetic factors and eight as stage-
specific genes. Among these, three candidate genes (Bna-
A03g52990D, BnaA06g37280D, and BnaA09¢07580D)
had been reported to regulate root development in pre-
vious studies, supporting the validity of this method to
obtain candidate genes. Our results provide new insights
and useful candidate QTLs/genes into the temporal
genetic mechanisms of root growth in rapeseed.

Methods

Plant materials and growth conditions

The natural population used in this study consisted of
280 B. napus lines, including 156 semi-winter acces-
sions, 86 spring accessions and 38 winter accessions. A
total of the 280 rapeseed germplasm accessions were col-
lected, including 222 accessions from the Yangtze River
of China, 23 from northwestern China, 16 from Europe,
14 from Australia, and 5 from other places or unknown
origins. All the accessions were strictly self-crossed.

The previously reported hydroponic system was used
for the root-related trait evaluation of the 280 B. napus
accessions [11]. Briefly, uniform and stout rapeseed
seeds were placed on the medical gauze of the germi-
nation device for 2 days in the dark, then they grew in
the light (180 pmol photons m~2 s™!) for 4 d in a green-
house (60—-80% relative humidity) under 16/8 h day/night
cycles at 24 °C (Additional file 1: Figure S1f, g). A quarter
of modified Hoagland’s nutrient solution was filled into
germination device to retain moisture and provide nutri-
ents for seed germination [81]. Six days after sowing,
uniform seedlings were transferred to the growth device
containing 1/4 Hoagland’s solution. The 1/4 solution was
replaced with a 1/2 solution, and then with a 100% solu-
tion once a week until harvesting.

Phenotypic evaluation of association panel

The accessions from the natural population were com-
pletely randomly grown and evaluated with three rep-
lications. In each replication, three uniform plants per
accession were collected from the germination device at
13 days after sowing (DAS). At 6 DAS, 24 plants of an
accession were transplanted to one growth device (Addi-
tional file 1: Figure S1h). Then three plants per accession
were sampled from the growth device at four timepoints,
namely, 10 days after transplanting (10 DAT, equal to
16 DAS), three expanding leaves (3 EL), 5 EL, and 7 EL,
respectively. In total, 12,600 plants (280 accessions x
3 replicates x 3 plants x 5 timepoints) were sampled.
Once the plants were sampled, shoot fresh weight (SEW),

Page 16 of 20

root fresh weight (RFW), and primary root length (PRL)
were measured manually. The intact roots in a transpar-
ent box full of water were scanned with the root scanner
(EPSON, 11000XL). The obtained high-resolution root
images were analyzed using WinRHIZO-Pro software
(Regent Instruments, QC, Canada) to determine total
root length (TRL), total root surface (TSA), total root
volume (TRV), and total number of roots (TNR). Subse-
quently, shoot and root samples were dehydrated at 65 °C
for a week to determine shoot dry weight (SDW) and
root dry weight (RDW).

Data analysis

The variance and correlation analyses of the investigated
traits were performed using the software SAS 9.2. The
broad-sense heritability was calculated using the formula
reported by Liu et al. [24]. The principal component anal-
ysis (PCA) of all the investigated traits were conducted by
the software SAS 9.2. The first step of PCA was to obtain
the correlation matrix between different traits, then the
dimensionality reduction was performed to obtain eight
principal components, and PC1 and PC2 were plotted
by R. According to previous reported method [11], the
growth rate (GR) of accession sample was calculated as
the root fresh weight (REW) value at the late stage minus
that at the early stage, and then divided by the growing
days. GR of an accession was normalized according to the
following formula. Normalized GR=(GRg— GRp)/GRp
In the formula, GRg represented the GR of a genotype,
and GRp was the average GR of the population of 280
accessions which were clustered in terms of the normal-
ized GR using MeV_4_9_0 software (http://mev.ro/en/).

Population structure, relative kinship, and association
analysis

The Brassica 60 K Illumina® Infinium consortium SNP
array [82] (http://www.illumina.com/technology/beada
rray-technology/infinium-hd-assay.html) was used for
accessions genotype. SNP data were analyzed using Illu-
mina BeadStudio genotyping software (http://www.illum
ina.com/) with parameters set as a missing rate <0.2,
heterozygous rate<0.2, and minor allele frequency
(MAF)>0.05. BLAST was performed to search the probe
sequences of these SNPs against the B.napus Darmor-bzh
reference genome [34] with an threshold of e'%. SNPs
with merely one matched position in reference genome
were used for further analysis. The population structure
and relative kinship of the 280 B. napus accessions were
analyzed using STRUCTURE v. 2.3.4 and SPAGeDi soft-
ware, respectively [83]. The linkage disequilibrium (LD)
decay between all SNPs was assessed by TASSEL 4.0 [84].
The trait—-SNP association was analyzed using mixed lin-
ear model (MLM) for both the single repetition and the
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BLUP [85]. Marker haplotypes at each associated locus
were identified using the four-gamete rule with Haplov-
iew software [86].

Transcriptome sequencing and analysis

Five accessions from each of the four growth types (type
1, type 2, type 4, and type 5, detailed information pre-
sented in “Result” section) with contrasting GRs were
selected and replanted for further transcriptome analy-
sis. Total roots of three plants for each accession were
sampled at four timepoints (10 DAT, 3 EL, 5 EL, and 7
EL) with two biological replications. Samples of the five
accessions within one growth type at each sampling
timepoint with the same weight were mixed as a single
sample. A total of 32 obtained samples were fully mixed
for total RNA extraction with the IRIzol reagent (Invitro-
gen, USA). Sequencing library construction and Illumina
sequencing were performed by the Oebiotech Company
in Shanghai, China using an Illumina HiSeq" 2500 plat-
form. The raw reads with 150 paired-end base pair (bp)
were filtered and aligned as previously reported [25]. The
raw data were submitted into database of the National
Center for Biotechnology Information Sequence Read
Archive (SRA; http://www.ncbinlm.nih.gov/sra) (Acces-
sion No. PRINA714285).

The clean reads were mapped to the B.napus Darmor-
bzh reference genome [34] (http://www.genoscope.cns.
fr/brassicanapus/data/) using Hisat2. The gene expres-
sion levels were expressed as FPKM (fragments per
kilobase per million reads) value. The PCA of the gene
expressions was performed using the PCAtools package
in R. The WGCNA was conducted using the WGCNA
package in R [87]. P<0.05 for the false discovery rate
(FDR) and |log,™°|>1 were used as criteria to identify
DEGs with the DESeq package in R. The k-mean cluster-
ing was performed by MeV_4._9_0 software. Gene ontol-
ogy (GO) enrichment analysis was performed using the
ClusterProfiler package in R.

Real-time reverse transcription PCR

Quantitative real-time PCR (qRT-PCR) of 20 genes ran-
domly selected from the DEGs was performed to verify
the accuracy of RNA-seq data. The primer sequences
were presented in Additional file 2: Table S14. The SYBR
qPCR Master Mix (Vazyme) was used for qRT-PCR anal-
ysis with the CFX96 (BIO-RAD). Three technical rep-
lications were performed for each sample. The B. napus
ACTIN2 was used as an internal control to compute the
relative expression of target genes by the 27T method.

Abbreviations
13 DAS: 13 Days after sowing; 10 DAT: 10 Days after transferring; 3 EL: Three
expending leaves; 5 EL: Five expending leaves; 7 EL: Seven expending leaves;

Page 17 of 20

PRL: Primary root length; RDW: Root dry weight; RFW: Root fresh weight; SDW:
Shoot dry weight; SFW: Shoot fresh weight; TNR: Total root number; TRL: Total
root length; TRV: Total root volume; TSA: Total root surface area; LR: Lateral
root; GR: Growth rate; GWAS: Genome-wide association study; SNP: Single
nucleotide polymorphism; MAF: Minor allele frequency; DEGs: Differentially
expressed genes; QTL: Quantitative trait loci; gqRT-PCR: Quantitative real-time
PCR; RNA-seq: RNA sequencing; FPKM: Fragments per kilobase of exon per
million reads mapped; CV: Coefficient of variation; H% Broad-sense heritability;
BLUP: The best linear unbiased prediction.
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The online version contains supplementary material available at https://doi.
0rg/10.1186/513068-021-02032-7.

Additional file 1: Figure S1 Phenotype of plants at different stages in B.
napus. (a—e) Plants at 13 DAS, 10 DAT, 3 EL, 5 EL, and 7 EL, respectively. (f)
Materials sowed on germination device. (g) Plants in germination device
6 days after sowing. (h) Plants in growth device. Scale bars=3 cm (a-e),
4.cm (f, g), and 8 cm (h). Figure S2 Frequency distribution of root-related
traits and shoot-related traits at five stages. (a—i) Frequency distribution
of SFW, RFW, SDW, RDW, TNR, PRL, TRL, TSA, and TRV at the five stages (13
DAS, 10 DAT, 3 EL, 5 EL, and 7 EL), respectively. Figure S3 Analysis of popu-
lation structure and kinships of 280 B. napus accessions (a) Log-likelihood
data of possible clusters, K: from 1 to 10. (b) Distribution of pairwise rela-
tive kinship. (c) Population structure of 280 accessions. Figure S4 Positive
correlation between RNA-seq data and gRT-PCR data. Figure S5 Principal
component analysis of the transcriptome sequencing data. Figure S6
Heatmap of module eigengenes obtained by WGCNA. (a-1) Heatmaps of
the expression profile of eigengenes in the purple, green, black, brown,
darkorange, darkturquoise, white, darkred, red, lightyellow, saddlebrown
and darkgrey modules, respectively.

Additional file 2: Table S1 Trait statistics collected at the five stages

of each repetition. Table S2 Correlations in each captured trait among
replication at five stages. Table S3 Summary of SNPs and LD decay on 19
chromosomes of B. napus. Table S4 Detailed information on trait-related
significant SNPs identified by GWAS. Table S5 Detailed information on
48 valid QTL clusters. Table S6 Correlations among root-related traits at
each examined stage. Table S7 RNA-Seq statistics of four growth types
against B. napus reference genome. Table S8 FPKM of persistent DEGs.
Table S9 GO enrichment results of persistent DEGs. Table S10 FPKM of
stage-specific DEGs. Table S11 GO enrichment results of stage-specific
expressed genes. Table S12 FPKM of genes located in haplotype blocks
on 48 QTL clusters. Table S13 Information on peak SNPs overlapped with
SNPs reported by Wang et al. (2017). Table S14 Primers used in this study.
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