
Li et al. 
Biotechnology for Biofuels and Bioproducts           (2022) 15:27  
https://doi.org/10.1186/s13068-022-02114-0

RESEARCH

O‑Acetyl‑L‑homoserine production 
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and acetate supplementation 
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Abstract 

Background:  O-Acetyl-L-homoserine (OAH) is an important potential platform chemical. However, low levels of 
production of OAH are greatly limiting its industrial application. Furthermore, as a common and safe amino acid-pro-
ducing strain, Corynebacterium glutamicum has not yet achieved efficient production of OAH.

Results:  First, exogenous L-homoserine acetyltransferase was introduced into an L-homoserine-producing strain, 
resulting in the accumulation of 0.98 g/L of OAH. Second, by comparing different acetyl-CoA biosynthesis pathways 
and adding several feedstocks (acetate, citrate, and pantothenate), the OAH titer increased 2.3-fold to 3.2 g/L. Then, 
the OAH titer further increased by 62.5% when the expression of L-homoserine dehydrogenase and L-homoserine 
acetyltransferase was strengthened via strong promoters. Finally, the engineered strain produced 17.4 g/L of OAH in 
96 h with acetate as the supplementary feedstock in a 5-L bioreactor.

Conclusions:  This is the first report on the efficient production of OAH with C. glutamicum as the chassis, which 
would provide a good foundation for industrial production of OAH.
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CoA
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Introduction
O-Acetyl-L-homoserine (OAH) is a potential platform 
chemical for the production of high-value compounds, 
such as L-methionine [1] and γ-butyrolactone [2]. In 
biological systems, neither L-homoserine nor OAH is 
directly involved in protein biosynthesis, but they are 
precursors in the biosynthesis of L-methionine and 
S-adenosylmethionine. L-Methionine biosynthesis is 
strictly regulated, and its industrial production by micro-
bial fermentation has not been realized. The industrial 

production is usually carried out by enzyme conversion 
and chemical synthesis with L-homoserine or OAH as 
the precursor [3, 4]. When L-homoserine is used as the 
precursor, it needs to be activated by HCl before react-
ing with methanethiol to produce L-methionine [5]. 
Whereas, when OAH is selected as the precursor, it can 
directly react with methanethiol or 3-methylthiopro-
pionaldehyde to form L-methionine [6]. Therefore, the 
production of OAH is very important for the industrial 
production of L-methionine.

Escherichia coli and Corynebacterium glutamicum 
are the most popular strains used for the production 
of amino acids and their derivatives, such as L-gluta-
mate, L-lysine, L-threonine, L-serine, L-histidine [7–9], 
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5-aminolevulinic acid and L-ornithine [10, 11]. Com-
pared with E. coli, C. glutamicum is a safe industrial 
microorganism, which is more reliable for the produc-
tion of food and drug-related compounds. Reports have 
shown that L-homoserine and OAH have been pro-
duced efficiently in E. coli [12–16]. However, thus far, 
C. glutamicum has only achieved efficient production of 
L-homoserine [17, 18]. L-Homoserine and acetyl-CoA 
are the substrates for OAH biosynthesis, whereas the pro-
duction of OAH in C. glutamicum has not been reported. 
L-Homoserine can be efficiently accumulated in C. glu-
tamicum, indicating that OAH should also be efficiently 
accumulated through efficient acetyl transfer [19]. Unfor-
tunately, the engineered C. glutamicum strain only effi-
ciently accumulated L-homoserine but not OAH without 
knock-out of the metX gene in our previous studies [17, 
18], suggesting that some problems need to be solved to 
achieve OAH accumulation. These problems may include 
the total enzyme activity, specific enzyme activity, heat 
resistance of L-homoserine acetyltransferase (MetX), and 
even the supply of acetyl-CoA [20–22].

Acetyl-CoA is not only a key intermediate metabolite 
that plays an irreplaceable role in cell growth and meta-
bolic regulation, but also is the precursor of acetyl-CoA 
derivatives, whose accumulation needs to strengthen 
metabolic flow of acetyl-CoA biosynthesis [23, 24]. There 
are many biosynthetic pathways of acetyl-CoA based on 
different substrates, such as pyruvic acid, acetic acid, and 
fatty acids [25, 26]. Pyruvate forms acetyl-CoA through 
decarboxylation using the pyruvate dehydrogenase com-
plex (PDH) [27]; acetate forms acetyl-CoA through the 
reversible Pta–Ack pathway or the irreversible ACS 
pathway [28–30]; fatty acids form acetyl-CoA through 
β-oxidation [31]. In contrast to glucose, acetate can be 
converted to acetyl-CoA without carbon loss. Moreover, 
the carbon content of acetic acid and glucose is equal, 
and acetate is cheaper than glucose. Therefore, at the 
same price, the mass of acetate is more than that of glu-
cose [32]. In addition, strengthening the biosynthesis of 
CoA is another way to improve the biosynthesis of acetyl-
CoA [13]. By engineering these pathways, the biosyn-
thesis of acetyl-CoA in many microorganisms has been 
strengthened, resulting in the efficient accumulation of 
high-value acetyl-CoA derivatives [33].

In this study, an efficient OAH-producing strain was 
constructed via metabolic engineering based on an effi-
cient L-homoserine-producing C. glutamicum strain 
reported in our previous study [18]. First, various 
L-homoserine acetyltransferase genes were individually 
introduced into the efficient L-homoserine-producing 
C. glutamicum strain. The best performer was chosen 
for further study. Then, different acetyl-CoA biosynthe-
sis pathways were introduced to strengthen acetyl-CoA 

biosynthesis and explore the effects of acetyl-CoA on 
OAH accumulation. More importantly, different feed-
stocks (including acetate, citrate, and pantothenate) were 
added to the medium, resulting in significant increases in 
OAH accumulation. The production of OAH was further 
increased through the expression of L-homoserine dehy-
drogenase and L-homoserine acetyltransferase via strong 
promoters. These results showed that C. glutamicum 
efficiently accumulated not only L-homoserine, but also 
OAH. This system has great potential for the industrial 
production of OAH.

Materials and methods
Strains and plasmids
Corynebacterium glutamicum ATCC 13032 mutants 
were used to produce the target product. The plasmids 
pEC-XK99E and pXMJ19 were used to express the genes. 
The plasmid pKHAsgRNA was used for genome edit-
ing [18]. The detailed information is listed in Table 1 and 
Additional file 1: Table S1, respectively.

Culture conditions
The culture conditions were described as our previous 
study [17]. C. glutamicum strains were grown in LBHIS 
medium at 30°C. For preparation of competent cells, 
Epo medium was used. For the production of OAH, seed 
medium and fermentation medium were employed with 
4% inoculum. Ammonium acetate, ammonium citrate, 
and calcium pantothenate were added to the fermenta-
tion medium as required. For the 5-L bioreactor, the seed 
and fermentation media were the same as those of the 
shaking flask culture. The volume was 2.5  L, the rotary 
speed was 400 rpm, the air flow rate was 2 L/min, pH was 
6.0, and the inoculum was 4%. The working concentra-
tion of isopropyl-β-D-thiogalactopyranoside (IPTG) was 
0.5  mM when the seed was inoculated into the shaking 
flask and 5-L bioreactor. Ammonia (50% v/v) was used to 
adjust the pH.

Genetic operations
Heterologous genes were codon-optimized and synthe-
sized by GeneWiz (Suzhou, China). The genes used in this 
study are listed in Additional file 1: Table S2. The pKHAs-
gRNA was linearized with the primes pKHA2842-F and 
pKHA2842-R. The primers designed by Primer Premier 
5 software for the construction of plasmids are listed in 
Additional file 1: Table S3. The DNA sequence containing 
promoter elements is listed in Additional file 1: Table S4.

Analytical methods
The analytical method is the same as our previous study 
[17, 18]. A biophotometer D30 (Eppendorf ) was used to 
determine OD600. The concentration of amino acids was 
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measured after pre-column derivatization. The concen-
tration of acetate and glucose were measured by HPLC 
using an Aminex HPX-87H column (Bio-Rad) and a 
refractive-index detector.

Results and discussion
Construction of the OAH‑producing strain
Usually, the wild-type C. glutamicum ATCC 13032 has 
no capacity to accumulate OAH, even if there is a rel-
evant biosynthetic pathway. Recently, engineered C. 
glutamicum strains have exhibited the ability to biosyn-
thesize many amino acids including L-homoserine [18]. 
In biological systems, L-homoserine is the precursor of 
the biosynthesis of OAH [34]. Therefore, on the basis of 
high production of L-homoserine, a strain should be able 
to accumulate OAH via L-homoserine acetyltransferase. 
However, in our previous study, a high L-homoserine-
producing strain without knock-out of the metX gene did 
not accumulate detectable OAH. This may be because 

the native expression of the metX gene was too low, and 
the enzyme activity was strictly regulated, resulting in the 
failure of acetyl transfer to L-homoserine [35].

In order to achieve the accumulation of OAH in C. glu-
tamicum, an L-homoserine-producing strain (Cg13) was 
used as the starting strain, which was renamed Cg-Hser 
[18]. Strain Cg-Hser was derived from C. glutamicum 
ATCC 13032. In detail, some genes were successively 
knocked out, including mcbR (encoding a regulatory pro-
tein), metD (encoding amino acid import protein), thrB, 
pck, metB, and metY. The native genes including lysCT311I, 
asd, hom, pycP458S, brnFE, and the heterologous aspC 
(from E. coli K12-MG1655) were upregulated though 
strong promoter Psod in the genome. The native genes 
including dapA and icd were downregulated though 
weak start codon replacement in the genome. However, 
the engineered strain Cg-Hser without knock-out of the 
metX gene failed to accumulate detectable OAH. There-
fore, we should strengthen the expression of L-homoser-
ine acetyltransferase. The MetX from Leptospira meyeri 

Table 1  Strains used in this study

Strain Description Source

E. coli JM109 Plasmid amplification Invitrogen

C. glutamicum ATCC 13032 Wild type ATCC​

Cg-Hser 13032 derivative, ∆mcbR, ∆metD, ∆thrB, ∆NCgl2360::Psod-thrAS345F, ∆NCgl2688, ∆metY, ∆pck::Psod-aspC, 
Psod-pycP458S, Psod-lysCT311I, Psod-asd, Psod-homV59A, Psod-brnFE, icdM1V, dapAM1V

[18]

Cg-Hser-1 Cg-Hser harboring pEC-metXr_Lm This study

Cg-Hser-2 Cg-Hser harboring pEC-metX_Cg This study

Cg-1 ∆NCgl2688::PNCgl1676-metXr_Lm in the strain Cg-Hser This study

Cg-2 ∆NCgl2688::Psod-metXr_Lm in the strain Cg-Hser This study

Cg-3 ∆NCgl2688::Ptuf-metXr_Lm in the strain Cg-Hser This study

Cg-4 Cg-1 harboring pEC-acsL641P_Se This study

Cg-5 Cg-1 harboring pEC-acs_K12 This study

Cg-6 Cg-1 harboring pEC-acs_Pp This study

Cg-7 Cg-1 harboring pEC-acs2_Pp This study

Cg-8 Cg-1 harboring pEC-acs2_Sc This study

Cg-9 Cg-1 harboring pEC-acsA_Bs This study

Cg-10 Cg-1 harboring pEC-NCgl2656-Ptrc-NCgl2657 This study

Cg-11 Cg-1 harboring pEC-ackA-Ptrc-pta_K12 This study

Cg-12 Cg-1 harboring pEC-aceE-Ptrc-aceF-Ptrc-lpdA358V_K12 This study

Cg-13 Cg-1 harboring pEC-NCgl2167-Ptrc-NCgl2126-Ptrc-NCgl0355 This study

Cg-14 Cg-1 harboring pXM-metXr_Lm and pEC-XK99E This study

Cg-15 Cg-1 harboring pXM-metXr_Lm and pEC-acsL641P_Se This study

Cg-16 Cg-1 harboring pXM-metXr_Lm and pEC-acs2_Pp This study

Cg-17 Cg-1 harboring pEC-thrAS345F_Ec This study

Cg-18 Cg-1 harboring pEC-metXr_Lm This study

Cg-19 Cg-1 harboring pEC-thrAS345F-Ptrc-metXr This study

Cg-20 Cg-1 harboring pEC-thrAS345F-Ptac-metXr This study

Cg-21 Cg-1 harboring pEC-thrAS345F-PNCgl1676-metXr This study

Cg-22 ∆Cas9, ∆recET in the strain Cg-21 This study



Page 4 of 9Li et al. Biotechnology for Biofuels and Bioproducts           (2022) 15:27 

and C. glutamicum ATCC 13032, whose properties have 
been tested in vitro in previous study [13], were chosen. 
Same as previous studies [17, 36], we directly expressed 
the metX genes from Leptospira meyeri and C. glutami-
cum ATCC 13032 by plasmid pEC-XK99E in  vivo for 
faster screening of better performing enzymes, which 
generated strains Hser-1, Hser-2, respectively (Fig.  1). 
These engineered strains could accumulate about 0.9 g/L 
of OAH, and strain Hser-1 with expression of the metX 
variant gene (metXr) from L. meyeri could accumulate 
the highest titer of OAH (0.98 g/L) (Fig. 2A), as in E. coli 
[13].

Introduction of different acetyl‑CoA biosynthesis pathways
OAH did not accumulate efficiently after enhanced MetX 
expression though the pEC-XK99E with high copy num-
ber and strong promoter. Therefore, we turned to the 
supply of acetyl-CoA, which was a precursor of OAH 
biosynthesis in addition to L-homoserine. In order to 
enhance the biosynthesis of acetyl-CoA, different acetyl-
CoA biosynthesis pathways were introduced. Before 
introducing the acetyl-CoA biosynthesis pathways, the 
metXr from L. meyeri (metXr_Lm) gene was integrated 
into the genome of strain Cg-Hser with three strong 

promoters (PNCgl1676, Psod, Ptuf) [37] (Fig. 2C), generating 
Cg-1, Cg-2, and Cg-3, respectively. As shown in Fig. 2B, 
the titers of OAH in these strains were 0.97 g/L, 0.76 g/L, 
0.71  g/L, respectively. Then, we chose to upregulate the 
endogenous or introduce exogenous acetyl-CoA bio-
synthesis pathways, whose substrates were acetic acid 
or pyruvate, into strain Cg-1 to generate Cg-4, Cg-5, 
Cg-6, Cg-7, Cg-8, Cg-9, Cg-10, Cg-11, Cg-12, and 
Cg-13, respectively. However, the results showed that 
the enhancement of acetyl-CoA biosynthesis pathways 
did not improve the accumulation of OAH, and some 
of these strains even exhibited reduced accumulation 
(Fig. 3).

Acetyl-CoA is a direct precursor of OAH biosynthesis, 
and a very key intermediate metabolite and regulator in 
organisms [38]. Therefore, the effective supply of acetyl-
CoA should be an important factor for the efficient pro-
duction of OAH. Attempts were made to strengthen 
the acetyl-CoA biosynthesis by introducing different 
acetyl-CoA biosynthesis pathways, but none of them had 
a positive effect on OAH accumulation, and some even 
had negative effects. At the same time, L-homoserine 
production was diminished, indicating that the intro-
duction of acetyl-CoA biosynthesis pathways led to the 
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reduction of metabolic flow in the direction of biosynthe-
sis of L-homoserine and OAH. The acetyl-CoA biosyn-
thesis pathway (derived from S. enterica and P. putida) 
with acetate as its substrate had no positive or negative 
effects on OAH accumulation, probably because this 
pathway did not compete with L-aspartate family amino 
acids for pyruvate [39]. These results were very different 
from those in E. coli, in which acetyl-CoA biosynthesis 
was directly improved to promote the efficient accumu-
lation of OAH on the basis of the efficient production 
of L-homoserine [13]. This suggested that, as a branch 
substance, the rational distribution of pyruvate was very 
important when it formed two direct substrates of the 
target product in C. glutamicum. Therefore, the factors 
limiting the further accumulation of OAH in C. glutami-
cum needed to be further explored.
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Effects of several feedstocks on OAH accumulation
The introduction of the exogenous acetate derived 
acetyl-CoA biosynthesis pathway failed to improve the 
accumulation of OAH. We speculated that this might 
be because there was no acetate available as a sub-
strate for the biosynthesis of acetyl-CoA. Although 
some C. glutamicum strains can accumulate acetate 
[40], an analysis of the fermentation broth components 
found that all engineered strains in this study could 
not accumulate acetate under the culture conditions of 
this study. Therefore, to improve the biosynthesis effi-
ciency of acetyl-CoA from acetate, it was necessary to 
add acetate to the culture medium. To avoid an adverse 
effect on cell growth caused by a sudden drop in pH, 
ammonium acetate was selected as the additive instead 
of acetic acid. Previous studies showed that L-homoser-
ine could accumulate a high titer only after fermen-
tation for 24  h [17, 18]. To convert the added acetate 
into acetyl-CoA that could be used for acetylation of 
L-homoserine, 2.5 g/L of acetate was added at 24 h and 
36 h. The results showed that the OAH titer of the engi-
neered strains (Cg-4, Cg-7) did not increase when the 
metXr_Lm gene was only integrated into the genome. 
Whereas, the OAH titer increased significantly when 
the metXr_Lm gene was overexpressed via the plasmid. 
As shown in Fig.  4A, the OAH titers of strains Cg-15 
and Cg-16 were 2.1 g/L and 1.5 g/L, respectively. At this 
time, acetate was fully utilized, and the consumption 
of glucose did not change much, but the OD600 of the 
strains increased. Interestingly, the OAH titer of strain 
Cg-14, which only expressed the metXr_Lm gene with-
out introducing acetyl-CoA biosynthase, was higher 
after addition of acetate, up to 2.5 g/L.

Acetate was completely consumed, indicating that its 
addition may be the limiting factor in the OAH accumu-
lation. Therefore, five feeding methods of acetate were 
chosen to study the effects on the OAH titers. The OAH 
titer of Cg-14 was the highest (3.2  g/L) after 5.0  g/L of 
acetate was added at 24  h and 36  h, and this was 28% 
higher than when 2.5  g/L of acetate was added at 24  h 
and 36 h (Fig. 4A). However, when the addition of acetate 
was increased by 100%, the OAH titer increased by only 
28%. Pantothenate is the precursor of CoA, which is the 
precursor of Acetyl-CoA. Acetyl-CoA is the competitive 
precursor for the biosynthesis of citric acid and OAH. To 
enhance the supply of acetyl-CoA for OAH biosynthe-
sis and reduce the consumption of acetyl-CoA for citric 
acid biosynthesis in TCA cycle, pantothenate and citrate 
were also added to the culture medium. Strain Cg-14 was 
again employed and five feeding methods were chosen. 
The results showed that the citrate feeding significantly 
increased the biomass of the strain, but the OAH titer 

decreased sharply to about 0.5 g/L, indicating that citrate 
was not conducive to OAH accumulation. Different from 
citrate, the pantothenate feeding did not affect the OAH 
accumulation (Fig. 4B).

Corynebacterium glutamicum has an acetic acid bio-
synthesis pathway and the ability to accumulate acetic 
acid, but this ability is different under different culture 
conditions [41]. Under the culture conditions of this 
study, the strains could not accumulate acetic acid. 
Therefore, acetate needed to be added to make the intro-
duced acetyl-CoA synthase function [42]. After acetate 
feeding, the titers of L-homoserine and OAH were both 
increased. Unexpectedly, the titer of OAH decreased 
after the introduction of acetyl-CoA biosynthase, indi-
cating that the strains had a sufficient native capacity 
of acetate acetylation [43], and overexpression could 
cause a metabolic burden. Acetyl-CoA condenses with 
oxaloacetic acid by citrate synthase to form citric acid 
and then enters the TCA cycle. The citric acid feeding 
can improve the efficiency of the TCA cycle, but it leads 
to a sharp decrease in OAH accumulation, which may 
be because the ability to biosynthesize acetyl-CoA was 
strongly inhibited by citric acid, resulting in insufficient 
supply for L-homoserine acetylation even though acetate 
was added [44].
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Enhanced expression of L‑homoserine acetyltransferase
In addition to acetate feeding, the introduction of dif-
ferent exogenous acetyl-CoA biosynthesis pathways and 
the citrate and pantothenate feeding failed to improve 
OAH accumulation. We speculated that the expres-
sion level of pathway enzymes would become the main 
limiting factor for the OAH accumulation after acetate 
feeding. Therefore, the thrAS345F gene (encoding bifunc-
tional L-aspartokinase and L-homoserine dehydroge-
nase) from E. coli and the metXr_Lm was overexpressed 
by pEC-XK99E in strain Cg-1, resulting in strains Cg-17 
and Cg-18, respectively. However, the OAH titer only 
reached 1.1 g/L and 3.2 g/L when 5.0 g/L of acetate was 
added at 24 h and 36 h, respectively (Fig. 5A). In order 
to further enhance OAH accumulation, we used three 
strong promoters (Ptrc, Ptac, PNCgl1676) to control the 
expression of the metXr gene from L. meyeri after over-
expression of the thrAS345F gene in plasmid pEC-XK99E 
[37], resulting in strains Cg-19, Cg-20, and Cg-21, 
respectively. As shown in Fig.  5A, the L-homoserine 
titers of the strains were 8.5  g/L, 8.2  g/L, and 8.0  g/L, 

respectively; and the OAH titers were 3.5 g/L, 4.8 g/L, 
and 5.2 g/L, which increased by 9.4%, 50.0%, and 62.5% 
compared with the control strain Cg-14, when 5.0 g/L 
of acetate was added at 24  h and 36  h, respectively. 
These results showed that the supply of acetyl-CoA was 
improved after the addition of acetate, and the OAH 
titer could be increased through the enhanced expres-
sion of L-homoserine acetyltransferase.

The 5‑L bioreactor for OAH production
A high concentration of acetate has a strong inhibitory 
effect on strain growth, and the pH of the fermenta-
tion process cannot be controlled in the shaking flask. 
Therefore, in order to explore the potential of acetate 
as a feedstock and improve OAH production, a 5-L 
bioreactor was used to carry out further experiments. 
As L-homoserine is the precursor of OAH biosynthe-
sis, we chose the same conditions as in the previous 
L-homoserine production for OAH production. Before 
that, the cas9 and recET genes in the genome of strain 
Cg-21 were deleted, generating strain Cg-22. According 
to the above experiments, acetate (20% v/v) was added 
at 24 h to reach the concentration of 5 g/L, then it was 
added every 12 h. As shown in Fig. 5B, the OAH titer 
of strain Cg-22 reached 17.4 g/L after 96 h, which was 
the highest titer, with 14.1 g/L of L-homoserine. These 
results suggested that acetate could improve the con-
version of L-homoserine and the titer of OAH. This will 
provide a good basis for the industrial production of 
OAH.

Conclusion
In this study, exogenous L-homoserine acetyltrans-
ferase was introduced into an L-homoserine-producing 
strain. Then, the effects of the introduction of the acetyl-
CoA biosynthesis pathway and the addition of various 
feedstocks on the OAH biosynthesis were compared, 
resulting in improving OAH production to 3.2  g/L. 
Through the strong promoters to control the expres-
sion of L-homoserine acetyltransferase, the titer of OAH 
increased to 5.2  g/L. Finally, the OAH titer reached 
17.4 g/L at 96 h in a 5-L bioreactor. This is the first time 
to achieve efficient production of OAH in C. glutamicum.
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