Skip to main content
Figure 1 | Biotechnology for Biofuels

Figure 1

From: Leveraging transcription factors to speed cellobiose fermentation by Saccharomyces cerevisiae

Figure 1

Suboptimal cellobiose metabolism in engineered Saccharomyces cerevisiae . (A) Fermentation profiles of recombinant cellobiose-utilizing S. cerevisiae with plasmid pRS426-BT on cellobiose or glucose in anaerobic conditions with an initial OD600 of 1. Concentrations: cellobiose (blue circle), glucose (red circle), ethanol from cellobiose (blue triangle), and ethanol from glucose (red triangle). Data represent the mean and standard error of triplicate cultures grown on each source. The arrows indicate the times at which samples were taken for transcription profiling by RNA deep sequencing. (B) Model of the regulation of glucose metabolism and of glucose-sensing and signaling networks in the context of a cellobiose-utilizing pathway. The cellobiose-utilizing pathway was established in S. cerevisiae by introducing a cellodextrin transporter gene (cdt-1) and an intracellular β-glucosidase gene (gh1-1) from Neurospora crassa. Gpr1 and Gpa2 define a glucose-sensing pathway that works in parallel with Ras2 to activate protein kinase A (PKA), which induces genome-wide regulation. Signals emanating from Snf3 and Rgt2 regulate hexose transporter genes by inactivating the Rgt1 co-repressors Mth1 and Std1. The glucose repression signal that inactivates Snf1 kinase is generated through glucose metabolism, consequently inducing the Mig1/Hxk2-mediated glucose repression pathway. In addition, Snf1 kinase directly mediates phosphorylation of transcription activators of glucose-repressed genes to relieve glucose repression.

Back to article page