Skip to main content
Fig. 2 | Biotechnology for Biofuels

Fig. 2

From: Controlling microbial contamination during hydrolysis of AFEX-pretreated corn stover and switchgrass: effects on hydrolysate composition, microbial response and fermentation

Fig. 2

Biological fingerprinting via chemical genomics to assess hydrolysate variation. We grew the genome-wide yeast deletion mutant collection in the four different hydrolysate batches, or a synthetic hydrolysate (SynH) control (n = 3). The abundance of each mutant is assessed by sequencing of the strain specific barcodes, and this compared to the abundance in the SynH control allows us to determine sensitivity (blue) or resistance (yellow) of specific mutants to the hydrolysate conditions (chemical genetic interaction score). The performance of all mutants in a particular condition is the chemical genomic profile. Hydrolysates produced from corn stover or switchgrass via AC or NAC had highly correlated chemical genomic profiles, indicating little variation in the biological response between methods (a–d). Chemical genomic profiles were clustered as a heat map of chemical genomics interaction score in four different hydrolysates (e), and both biomass types had greater correlation with each other irrespective of the production methods. When we zoom in on particular gene clusters (i–vi), we see certain gene mutants were commonly responsive across all hydrolysates (e iii, v, vi), and others demonstrated a feedstock-specific response (e, i, ii, iv), showing sensitivity to switchgrass, but resistance in the ACSH (e.g., ERG3 in ii)

Back to article page