Skip to main content

Table 3 Carbon balance accounting for metabolite production from fructose only (top) and Flux optimization of a C. autoethanogenum metabolic network using the experimental rates as constraints in CellNetAnalyzer (bottom)

From: Redox dependent metabolic shift in Clostridium autoethanogenum by extracellular electron supply

Condition Fructose consumed Metabolites produced (mmol/L) C-balance (%)
Acetate Lactate Ethanol 2,3-BDO CO2 a
Control 26.94 46.43 0.28 17.63 0.73 65.52 122.12
BES 27.24 42.36 0.34 21.57 0.78 65.49 120.83
BES + [Co(sep)]3+ 27.24 48.22 0.34 13.83 0.48 63.01 116.28
BES + [Co(AMMEsar)]3+ 25.47 40.90 0.31 19.74 0.68 62 122.32
BES + [Co(trans-diammac)]3+ 25.99 21.11 9.87 19.04 2.21 44.57 104.71
Condition Minimizing fructose consumption Maximizing ATP maintenance
CO2 out H2 out ATP main min fructose YE (%) CO2 out H2 out ATP main YE (%)
Control 3.11 0.0 7.38 3.01 89.2 3.11 0.00 12.62 84.9
BES 3.19 0.0 7.19 2.67 87.3 3.01 0.00 12.09 53.6
BES + [Co(sep)]3+ 1.85 0.0 6.29 2.23 88.0 3.16 3.10 7.81 0.0
BES + [Co(AMMEsar)]3+ 2.68 0.0 7.38 2.74 88.0 3.83 2.76 9.96 0.0
BES + [Co(trans-diammac)]3+ 4.94 0.0 9.02 4.51 88.6 5.02 0.81 12.75 0.0
  1. Surplus carbon is allowed to leave the system as CO2, surplus redox power leaves as H2, ATP main(tenance) flux highlights energy surplus. Yeast extract (YE) flux is calculated on the assumed molecular composition and given as a percentage (%) of the total available yeast extract flux (compare M&M). Minimal fructose flux is the minimal rate of fructose uptake required to meet the observed production rates, based on optimal use of the YE. Apart from the YE all fluxes are given in (mmol/gCDW h). The underlying network can be found in Additional file 1: Table S1
  2. aCO2 production assumed from stoichiometric decarboxylation steps needed for production of acetate and ethanol (1 mol/mol) and 2,3-butanediol (2 mol/mol)