Skip to main content

Table 3 Carbon balance accounting for metabolite production from fructose only (top) and Flux optimization of a C. autoethanogenum metabolic network using the experimental rates as constraints in CellNetAnalyzer (bottom)

From: Redox dependent metabolic shift in Clostridium autoethanogenum by extracellular electron supply

Condition

Fructose consumed

Metabolites produced (mmol/L)

C-balance (%)

Acetate

Lactate

Ethanol

2,3-BDO

CO2 a

Control

26.94

46.43

0.28

17.63

0.73

65.52

122.12

BES

27.24

42.36

0.34

21.57

0.78

65.49

120.83

BES + [Co(sep)]3+

27.24

48.22

0.34

13.83

0.48

63.01

116.28

BES + [Co(AMMEsar)]3+

25.47

40.90

0.31

19.74

0.68

62

122.32

BES + [Co(trans-diammac)]3+

25.99

21.11

9.87

19.04

2.21

44.57

104.71

Condition

Minimizing fructose consumption

Maximizing ATP maintenance

CO2 out

H2 out

ATP main

min fructose

YE (%)

CO2 out

H2 out

ATP main

YE (%)

Control

3.11

0.0

7.38

3.01

89.2

3.11

0.00

12.62

84.9

BES

3.19

0.0

7.19

2.67

87.3

3.01

0.00

12.09

53.6

BES + [Co(sep)]3+

1.85

0.0

6.29

2.23

88.0

3.16

3.10

7.81

0.0

BES + [Co(AMMEsar)]3+

2.68

0.0

7.38

2.74

88.0

3.83

2.76

9.96

0.0

BES + [Co(trans-diammac)]3+

4.94

0.0

9.02

4.51

88.6

5.02

0.81

12.75

0.0

  1. Surplus carbon is allowed to leave the system as CO2, surplus redox power leaves as H2, ATP main(tenance) flux highlights energy surplus. Yeast extract (YE) flux is calculated on the assumed molecular composition and given as a percentage (%) of the total available yeast extract flux (compare M&M). Minimal fructose flux is the minimal rate of fructose uptake required to meet the observed production rates, based on optimal use of the YE. Apart from the YE all fluxes are given in (mmol/gCDW h). The underlying network can be found in Additional file 1: Table S1
  2. aCO2 production assumed from stoichiometric decarboxylation steps needed for production of acetate and ethanol (1 mol/mol) and 2,3-butanediol (2 mol/mol)