Skip to main content
Fig. 5 | Biotechnology for Biofuels

Fig. 5

From: A screening method to identify efficient sgRNAs in Arabidopsis, used in conjunction with cell-specific lignin reduction

Fig. 5

Biochemical phenotype of T2 pNST3::CAS9-pU6::HCT_gRNA14 plants. Senesced inflorescence stems from WT and transgenic plants (two independent lines) were analyzed for lignin monomer composition with Pyro–GC/MS analysis (a), lignin content with Klason method (b), and reducing sugars released after hot water pretreatment and enzymatic digestion (c). d Relative HCT activity was determined by measuring coumaroyl–shikimate formation in vitro. H, G, and S designate p-hydroxyphenyl, guaiacyl, and syringyl lignin units, respectively. Lignin monomer composition and saccharification analyses were performed with seven biological replicates; lignin content analysis was performed with 4–5 biological replicates; HCT activity was performed with 3–4 biological replicates. Mean value ± SD is shown. Asterisks indicate significant differences compared to WT using the unpaired Student’s t-test (*P < 0.05; **P < 0.005)

Back to article page