Skip to main content
Fig. 2 | Biotechnology for Biofuels

Fig. 2

From: Nitrogen-dependent coordination of cell cycle, quiescence and TAG accumulation in Chlamydomonas

Fig. 2

Cellular changes accompanying the entry into and exit out of quiescence in Chlamydomonas. The quiescence cycle of Chlamydomonas cells is depicted, where the cells are colored in different shades of green according to the respective changes in chlorophyll content. The summary of characteristics that Chlamydomonas cells must acquire during the entry into (following N deprivation, N−) and exit of quiescence (G0) (following N refeeding, NR) are shown. The maintenance of a quiescent state is an active process. The repression of genes associated with cell cycle progression, DNA synthesis and replication must be maintained in order to prevent the premature entry into the cell division cycle in the absence of nutrient(s), such as N. The effective management of damaging reactive oxygen species (ROS) and the achievement of redox homeostasis are necessary to promote cellular survival during the non-dividing, energy-limited state. When N becomes available, the cells that remain viable and metabolically active are able to remobilize the accumulated carbon storage, such as triacylglycerols (TAG), remodel photosynthetic membranes, and resume the synthesis of macromolecules in order to reenter the growth (G1) phase. The white arrow heads depict the nutrient-dependent nature of these steps

Back to article page