Skip to main content
Fig. 3 | Biotechnology for Biofuels

Fig. 3

From: Nitrogen-dependent coordination of cell cycle, quiescence and TAG accumulation in Chlamydomonas

Fig. 3

Proposed role of putative DREAM-like complexes in the nutrient-dependent life-cycle transitions of Chlamydomonas. Although the existence of DREAM-like (DP, RB, E2F and Myb-MuvB) complexes has not been confirmed for the algal lineage, the repression of genes related to the cell cycle and the cessation of growth and division with 1C (one copy) DNA content in the absence of N have been previously observed. Furthermore, some components of DREAM-like complexes are conserved in Chlamydomonas, including the RB pathway proteins (MAT3/RB, Cre06.g255450; E2F1, Cre01.g052300; DP1, Cre07.g323000), three CXC domain-containing proteins (CHT7, Cre11.g481800; CXC2, Cre08.g361400 and CXC3, Cre12.g550250; potential orthologs of mammalian LIN54, fly Mip120, worm lin-54, and Arabidopsis TCX5), and one Myb protein with three Myb-repeats (Myb3R, Cre12.g522400). The model of their hypothetical functions within the putative DREAM-like complexes in mediating the nutrient-dependent entry into and exit from quiescence (G0) is illustrated. The grey dotted lines are used to denote the hypothesized interactions. In line with the literature demonstrating their importance in the transcriptional regulation of cell cycle-dependent gene expression in other model organisms, the putative Chlamydomonas DREAM-like repressor complex is postulated to repress the genes associated with cell cycle progression during the post-mitotic or G1 phase prior to the passage of commitment point (CP) in response to N deprivation (N−), allowing the exit from active proliferation and entry into quiescence. Conversely, upon sensing the replenishment of N, the cells need to reinstate their capacity for energy capture and macromolecular synthesis. Once their metabolism is sufficiently restored to sustain further growth, the cell cycle-related genes are postulated to become activated by the dissociation of a DREAM-like repressor complex and or the formation of its activator counterpart, allowing the cells to fully exit from quiescence to reenter the cell division cycle. Although these complexes may also play a role in the progression of the cell division cycle itself, they are omitted from the model for the sake of simplicity. The plus and the minus signs next to the energy status represent energy sufficient and deficient states, respectively. Cell cycle-dependent steps are represented by black arrow heads, while the nutrient-dependent steps are represented by white arrow heads. N+: N-replete growth; N−: N deprivation; NR: N refeeding

Back to article page