Skip to main content

Table 1 Isolated lignin-degrading strains

From: Bacterial transformation of lignin: key enzymes and high-value products

Phylum

Genus

Bacteria

Lignin type

Concentration/time

Degradation evidence

References

Actinomycetes

Streptomyces

Streptomyces viridosporus T7A

Corn stalk lignocellulose

5 g/L, 1344 h

Extent of lignin degradation: 36.20%

[16]

lignin

1.355 g/L, 1344 h

Extent of lignin degradation: 19.70%

Wheat straw biomass

–, 504 h

According to 13C CP-MAS NMR, the carbohydrate region and the aromatic region have relative fluctuations. Shift resonance between carbon and carboxyl groups, methoxy and carbon in etherification and/or non-etherification

[24]

Softwood spruce lignocellulose

0.25 g/mL, 2016 h

Extent of lignocellulose degradation: 18.80%; lignin loss 30.90%

[25]

Hardwood maple lignocellulose

0.25 g/mL, 2016 h

Extent of lignocellulose degradation: 23%; extent of lignin degradation: 19.30%

Grass lignocellulose

0.25 g/mL, 2016 h

Extent of lignocellulose degradation: 56.70%; lignin loss of 44.20%

Streptomyces coelicolor A3(2)

Grass lignocellulose

3.5 g/L, 168 h

To produce the intermediate product APPL

[26]

Lignin

0.7 g/L, 168 h

Streptomyces sp. S6

Kraft lignin

–, 144 h

Mw decreased by 55.30%; form aromatic products

[21]

Rhodococcus

Rhodococcus jostii RHA1

Fluorescently modified lignin from wheat straw, pine and miscanthus

–, 2 h

Strong fluorescent signal enhancement

[15]

Lignin made from nitrated wheat straw, pine and miscanthus

–, 2 h

Increased absorbance at 430 nm

Sulfate lignin

–, –

Form aromatic dicarboxylic acid products

[27]

Alkali pretreatment of corn straw lignin

10.5 g/L, 168 h

Extent of lignin degradation: 25–30%; absorbance increased at 280 nm

[22]

Rhodococcus jostii RHA1 VanA-

Straw lignin

–, 120 h

Extent of lignin degradation: 31.60%

[28]

Rhodococcus erythropolis

Lignin made from nitrated wheat straw, pine and miscanthus

–, 20 min

Absorbance increases at 430 nm

[16]

Rhodococcus opacus DSM 1069

Organic solvent lignin

0.3 w/v%, 168 h

Extent of lignin degradation: 23%

[29]

Ultrasonic lignin

0.5 w/v%, 216 h

As the only carbon source for bacterial growth, lignin has loss

Rhodococcus opacus PD630

Organic solvent lignin

0.3 w/v%, 168 h

Extent of lignin degradation: 36%

Straw lignin

–, 120 h

Extent of lignin degradation: 21.20%; depolymerization forms aromatic hydrocarbons

[28]

Rhodococcus jostii RHA1

Soluble lignin

0.43 g/L, 72 h

Extent of lignin degradation: 18.90%; the β-O-4 bond is broken

[30]

Rhodococcus erythropolis U23A

Alkali pretreatment of lignin

10.5 g/L, 168 h

Extent of lignin degradation: 10–15%; absorbance increased at 280 nm

[22]

Arthrobacter

Arthrobacter globiformis

Nitrated wheat lignin

–, 20 min

Increased absorbance at 430 nm

[16]

Arthrobacter sp. C2

Sodium lignosulfonate

–, 164.88 h

Extent of lignin degradation: 40%; the Cα-Cβ bond is broken

[31, 32]

Alkaline lignin

3 g/L, 216 h

Extent of lignin degradation: 65.50%

[18]

Arthrobacter sp. AXJ-M1

Lignin in black liquor

1.5 g/L, 24 h

Extent of lignin degradation was increased by 30–70%

[32]

Pyroactinomyces

Thermobifida fusca

Switchgrass

20 g/L, 100 h

As the only carbon source for bacterial growth

[33]

Corn stalk

20 g/L, 100 h

As the only carbon source for bacterial growth

Micrococcus

Micrococcus yunnanensis CL32

Alkaline lignin

–, 72 h

Extent of lignin degradation: 39%

[17]

Acidomyces pseudoacidus

Amycolatopsis sp. ATCC 39116

Soluble lignin

0.43 g/L, 72 h

Extent of lignin degradation: 24.40%; the β-O-4 bond is broken

[30]

Amycolatopsis sp. 75iv2

Softwood spruce lignocellulose

0.25 g/mL, 2016 h

Extent of lignocellulose degradation: 20.80%; extent of lignin degradation: 34.10%

[16]

Hardwood maple lignocellulose

0.25 g/mL, 2016 h

Extent of lignocellulose degradation: 32%; extent of lignin degradation: 29.50%

Proteobacteria

Enterobacter

Enterobacter lignolyticus SCF1

Sulfate lignin

–, 48 h

Cell density increased by more than 2 times; absorbance change at 280 nm; decreased lignin concentration

[14]

Alkali pretreatment of corn straw lignin

10.5 g/L, 168 h

Extent of lignin degradation: 17%

[22]

Enterobacter soil sp. nov

Sulfate lignin

0.05%, 48 h

Extent of lignin degradation: 45%

[34]

Enterobacter hormaechei KA3

Corn straw lignin

–, 168 h

Extent of lignin degradation: 32.05%

[35]

Enterobacter BS0669

Corn straw lignin

–, 168 h

Extent of lignin degradation: 10–20%

Enterobacter BS1957

Corn straw lignin

–, 168 h

Extent of lignin degradation: 20–30%

Pseudomonas

Pseudomonas putida KT2440

Alkali pretreatment of corn straw lignin

10.5 g/L, 168 h

Extent of lignin degradation: 25–30%; absorbance increased at 280 nm

[22]

Soluble lignin

0.43 g/L, 72 h

Extent of lignin degradation: 23.40%; the β-O-4 bond is broken

[30]

Alkaline lignin

1.6 g/L, 48 h

Extent of lignin degradation: 30%

[36]

Pseudomonas putida A514

Alkali insoluble lignin

1%(w/v), –

Grow as the only source of carbon

[37]

Pseudomonas putida NX-1

Sulfate lignin

1 g/L, 168 h

Particle size decreases; absorbance change at 280 nm

[38]

Pseudomonas putida mt-2

Fluorescently modified lignin from wheat straw, pine and miscanthus

–, 2 h

Strong fluorescent signal enhancement

[15]

Lignin made from nitrated wheat straw, pine and miscanthus

–, 2 h

Increased absorbance at 430 nm

Alkali pretreatment of corn straw lignin

10.5 g/L, 168 h

Extent of lignin degradation: 25–30%; absorbance increased at 280 nm

[22]

Pseudomonas putida 33,015

Nitrocellulose lignin

–, 20 min

Increased absorbance at 430 nm

[16]

Pseudomonas fluorescens Pf-5

Alkali pretreatment of corn straw lignin

10.5 g/L, 168 h

Extent of lignin degradation: 15–20%; absorbance increased at 280 nm

[22]

Pseudomonas sp. LD002

Sulfate lignin

0.5 g/L, 72 h

Lignin dye decolorization

[39]

Pseudocitrobacter anthropi MP-4

Alkali lignin

–, 168 h

In the FTIR spectrum, the aromatic framework vibration and C–H deformation vibration, there are aromatic compounds produced. Some characteristic peaks of lignin were found at 1218 cm−1. β-O-4 and Cβ disappear

[40]

Pseudomonas putida A514

Alkali lignin

1%, –

Extent of lignin degradation: 27%

[41]

Pseudomonas putida KT3-1

Alkali pretreated lignin (APL)

11.7 g/L, 72 h

p-Hydroxybenzoic acid accumulated 20.90% PHA, β-O-4 linkage and small molecule degradation

[42]

Pseudomonas putida B6-2

Alkali pretreated lignin (APL)

11.7 g/L, 72 h

Extent of vanillic acid degradation: 25.40% (72 h); extent of ferulic acid degradation: 100% (48 h); the molar conversion extent of ferulic acid into vanillic acid was 57.20%

Acinetobacter

Nocardia autotrophica

Nitrated pine lignin

–, 20 min

Absorbance increases at 430 nm

[16]

Acinetobacter PC/4

Nitrated wheat lignin

–, 20 min

Absorbance increases at 430 nm

Acinetobacter sp. ADP1

Alkali pretreatment of lignin

10.5 g/L, 168 h

Extent of lignin degradation: 20–25%; absorbance increased at 280 nm

[22]

Acinetobacter john­sonii LN2

Alkaline lignin

–, 72 h

Extent of lignin degradation: 38.80%

[17]

Acinetobacter lwoffii LN4

Alkaline lignin

–,72 h

Extent of lignin degradation: 52%

Cupriavidus

Cupriavidus necator H16

Alkali pretreatment of corn straw lignin

10.5 g/L, 168 h

Extent of lignin degradation: 15%; absorbance increased at 280 nm

[22]

Cupriavidus basilensis B-8

Sulfate lignin

0.5 g/L, 168 h

Extent of lignin degradation: 38%

[23]

Klebsiella

Klebsiella pneumoniae NX-1

Sulfate lignin

1 g/L, 168 h

Particle size decreased and guaiacyl unit decreased. 280 nm absorbance increased; the degradation extent of aromatic compounds was 23.80%

[38]

Klebsiella pneumoniae B-11

Sodium lignosulfonate

1 g/L, 168 h

Extent of lignin degradation: 11.10%

[13]

Klebsiella variicola P1CD1

Sulfate lignin

–, 96 h

Extent of lignin degradation: 30%, aromatic dye decolorization within 24 h;

[43]

Ochrobactrum

Ochrobactrum tritici NX-1

Sulfate lignin

1 g/L, 168 h

Particle size decreased and guaiacyl unit decreased. 280 nm absorbance increased; degradation extent of aromatic compounds: 19.40%,

[38]

Ochrobactrum pseudintermedium

B-04

Sodium lignosulfonate

1 g/L, 168 h

Extent of lignin degradation: 4.86%

[13]

Pandoraea

Pandoraea norimbergensis LD001

Sulfate lignin

0.5 g/L, 72 h

Lignin dye decolorization

[39]

Burkholderia

Burkholderia sp. H801

Sulfate lignin

1 g/L, 144 h

Extent of lignin degradation: 49.80%

[23]

Burkholderia cepacia B1-2

Alkaline Pretreatment Solution (APL)

11.7 g/L, 48 h

Ferulic acid and vanillic acid are completely consumed

[42]

Burkholderia sp. H1

Wheat straw lignin

3.0%(w/v), 168 h

Extent of lignin degradation: 6.74%

[44]

Lanorella

Raoultella ornithinolytica RS-1

Corn straw lignin

–, 168 h

Extent of lignin degradation: 19%; C=O tensile vibration of aromatic ring

[45]

Serratia

Serratia sp. AXJ- M

Lignin in black liquor

1.5 g/L, 24 h

Extent of lignin degradation: 30%

[32]

Stenotrophomonas

Stenotrophomonas sp. S2

Alkaline lignin

–, 72 h

Extent of lignin degradation: 50%

[46]

Firmicutes

Bacillus

Bacillus sp. LD003

Sulfate lignin

0.5 g/L, 72 h

Lignin dye decolorization

[39]

Bacillus pumilus C6

Sulfate lignin

–, 168 h

Mw decreased; GGE extent of lignin degradation: 35.10%

[47]

Bacillus atrophaeus B7

Sulfate lignin

–, 168 h

Mw decreased; the degradation extent of GGE was 27.50%

Bacillus sp.

ITRC-S8

Sulfate lignin

0.5 g/L, 144 h

Sample decolorization;

Increased absorbance at 620 nm

[20]

Bacillus ligninphilus

Alkaline lignin

1 g/L, 168 h

Extent of lignin degradation: 38.90%; extent of lignin degradation: 30%; form monomer aromatic compounds

[38]

Bacillus subtilis

Alkali pretreatment of corn straw lignin

10.5 g/L, 168 h

Extent of lignin degradation: 5–10%; absorbance increased at 280 nm

[22]

Bacillus megaterium

Alkali pretreatment of corn straw lignin

10.5 g/L, 168 h

Extent of lignin degradation: 5–10%; absorbance increased at 280 nm

Bacillus altitudinis SL7

Alkaline lignin

3 g/L, 120 h

Extent of lignin degradation: 44%; lignin decolorization; alcohol-OH bond stretching of phenol

[48]

Bacillus flexus

Sulfate lignin

0.4 g/L, 216 h

Extent of lignin degradation: 20%

[23]

Bacillus aryabhattai BY5

Alkaline lignin

–, 72 h

Extent of lignin degradation: 53.50%

[17]

Bacillus flexus RMWW II

Alkali lignin

0.1 g/L, 216 h

Extent of lignin degradation: 97.10%

[49]

Bacillus subtilis ACCC 11089

Alkali lignin

0.5 g/L, 360 h

Extent of lignin degradation: 17.30%; form aromatic compounds; the C4 ether and the Cα-Cβ bond are broken

[50]

Hydroxylated lignin

0.5 g/L, 360 h

Extent of lignin degradation: 11.40%; form aromatic compounds; the C4 ether and the Cα-Cβ bond are broken

BOC lignin

0.5 g/L, 360 h

Extent of lignin degradation: 24.60%; form aromatic compounds; the C4 ether and the Cα-Cβ bond are broken

Bacillus amyloliquefaciens SL-7

Lignin in tobacco straw

3 g/L, 360 h

Extent of lignin degradation: 28.55%; total carbon content goes down

[51]

Bacillus sonorensis

B-45

Sodium lignosulfonate

1 g/L, 168 h

Extent of lignin degradation: 7.68%

[13]

Bacillus sp. strain BL5

Alkali lignin

0.4%, 12 h

Extent of lignin degradation: 27.04%; –OH bond stretching between alcohol and phenol; form ethers, phenols and alcohols

[52]

Bacillus cereus AH7-7

Sulfate lignin

1 g/L, 144 h

Extent of lignin degradation: 25.90%

[53]

Bacillus aryabhattai

Kraft lignin

0.5 g/L, 336 h

The degradation extent was 84%. Absorbance changes at 280 nm

[54]

Bacillus cereus

Kraft lignin

1 g/L, 72 h

Extent of lignin degradation: 89%; decolorization extent: 40%

[19]

Bacillus subtilis

TR-03

Alkali lignin

2 g/L, 36 h

Extent of lignin degradation: 26.72%; decolorization extent: 71.23%; 280 nm absorbance increased; aromatic skeleton spectrum band vibration

[55]

Bacillus cereus

TR-25

Alkali lignin

2 g/L, 36 h

Extent of lignin degradation: 23%; decolorization extent: > 50%; 280 nm absorbance increased; aromatic skeleton spectrum band vibration

Bacillus subtilis S11Y

Alkaline lignin

–, 72 h

Extent of lignin degradation: 20%

[46]

Bacillus velezensis TSB1

Kraft lignin

0.6 g/L, 144 h

Extent of lignin degradation: 40.39%; extent of lignin degradation: 56.16%

[56]

Bacillus spinoides

Paenibacillus glucanolyticus SLM1

Bioselective lignin

0.2%, 400 h

Mw decreased; weight reduction

[57]

Paenibacillus glucanolyticus 5162

Bioselective lignin

0.2%, 400 h

Mw decreased; weight reduction

Paenibacillus sp.

Alkali pretreatment solution

10.5 g/L, 168 h

Extent of lignin degradation: 12%

[22]

Clostridium

Clostridium thermocellum

ATCC 27405

Populus lignin

–, –

The amount of β-O-4 chain reaction decreased; the S/G index increased

[58]

Bacillus geodesis

Geobacillus thermodenitrificans Y7

Switchgrass lignin

7.0 g/L, 120 h

Extent of lignin degradation: 17.21%

[44]

Acidobacter

Citrobacter

Citrobacter freundii

Alkali pretreatment of corn straw lignin

10.5 g/L, 168 h

The degradation extent is 5–10%; absorbance increased at 280 nm

[22]

 

Thermophilic anaerobes

Caldicellulosiruptor bescii

Switchgrass

0.5%, 240 h

Form monomer aromatic compounds

[59]

 

Azotobacter

Azotobacter vinelandii NRS 16

Alkali pretreatment of lignin

10.5 g/L, 168 h

Extent of lignin degradation: 5–10%

[22]

  

Microbial Alliance LDC

Rice straw lignin

–, 168 h

Extent of lignin degradation: 31.18%

[60]

  

AC-1

Straw lignin

–, 360 h

Extent of lignin degradation: 20.12%

[61]