Nelson RG, Walsh M, Sheehan JJ, Graham R: Methodology for estimating removable quantities of agricultural residues for bioenergy and bioproduct use. Appl Biochem Biotech 2004, 113: 13-26. Numbers1-3) 10.1385/ABAB:113:1-3:013
Article
Google Scholar
Xing Y, Ma HC, Fan YT, Hou HW, Chen JR: Cellulose-hydrogen production from corn stalk biomass by anaerobic fermentation. Chinese Sci Bull 2009, 54: 1434-1441. 10.1007/s11434-009-0147-x
Article
CAS
Google Scholar
Hendriks ATWM, Zeeman G: Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technol 2009, 100: 10-18. 10.1016/j.biortech.2008.05.027
Article
CAS
Google Scholar
Yang B, Wyman CE: Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofpr 2008, 2: 26-40.
CAS
Google Scholar
Keller FA, Hamilton JE, Nguyen QA: Microbial pretreatment of biomass potential for reducing severity of thermo-chemical biomass pretreatment. Appl Biochem Biotech 2003, 105: 27-41. 10.1385/ABAB:105:1-3:27
Article
Google Scholar
Kumar R, Mago G, Balan V, Wyman CE: Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Bioresour Technol 2009, 100: 3948-3962. 10.1016/j.biortech.2009.01.075
Article
CAS
Google Scholar
Hakala TK, Maijala P, Konnb J, Hatakkaa A: Evaluation of novel wood-rot polypores and corticioid fungi for the decay and biopulping of Norway spruce (Picea abies) wood. Enzyme Microb Tech 2004, 34: 255-263. 10.1016/j.enzmictec.2003.10.014
Article
CAS
Google Scholar
Zhang X, Yu H, Huang H, Liu Y: Evaluation of biological pretreatment with white rot fungi for the enzymatic hydrolysis of bamboo culms. Int Biodeterior Biodegrad 2007, 60: 159-164. 10.1016/j.ibiod.2007.02.003
Article
CAS
Google Scholar
Monrroy M, Ortega I, Ramirez M, Baeza J, Freer J: Structural change in wood by brown rot fungi and effect on enzymatic hydrolysis. Enzyme Microb Tech 2011,49(5):472-477. 10.1016/j.enzmictec.2011.08.004
Article
CAS
Google Scholar
Ray MJ, Leak DJ, Spanu PD, Murphy RJ: Brown rot fungal early stage decay mechanism as a biological pretreatment for softwood biomass in biofuel production. Biomass Bioenerg 2010,34(8):1257-1262. 10.1016/j.biombioe.2010.03.015
Article
CAS
Google Scholar
Schilling JS, Tewalt JP, Duncan SM: Synergy between pretreatment lignocellulose modifications and saccharification efficiency in two brown rot fungal systems. Appl Microbiol Biot 2009,84(3)):465-475.
Article
CAS
Google Scholar
Taniguchi M, Suzuki H, Watanabe D, Sakai K, Hoshino K, Tanaka T: Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw. J Biosci Bioeng 2005, 100: 637-643. 10.1263/jbb.100.637
Article
CAS
Google Scholar
Fissore A, Carrasco L, Reyes P, Rodriguez J, Freer J, Mendonca RT: Evaluation of a combined brown rot decay-chemical delignification process as a pretreatment for bioethanol production from Pinus radiata wood chips. J IND MICROBIOL BIOT 2010,37(9):893-900. 10.1007/s10295-010-0736-3
Article
CAS
Google Scholar
Bobleter O: Hydrothermal degradation of polymers derived from plants. Prog Polym Sci 1994, 19: 797-841. 10.1016/0079-6700(94)90033-7
Article
CAS
Google Scholar
Garrote G, Dominguez H, Parajo JC: Hydrothermal processing of lignocellulosic materials. Holz Roh Werkst 1999, 57: 191-202. 10.1007/s001070050039
Article
CAS
Google Scholar
Kohlmann KL, Westgate PJ, Sarikaya A, Velayudhan A, Weil J, Hendrickson R, Ladisch MR, Enhanced enzyme activities on hydrated lignocellulosic substrates. In ACS Symposium series No. 618. Edited by Saddler JN, Penner MH (Eds) Enzymatic Degradation of Insoluble Carbohydrates; 1995:237-255.
Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M: Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 2005, 96: 673-686. 10.1016/j.biortech.2004.06.025
Article
CAS
Google Scholar
Goodell B, Jellison J, Liu J, Daniel G, Paszczynski A, Fekete F, Krishnamurthy S, Jun L, Xu G: Low molecular weight chelators and phenolic compounds isolated from wood decay fungi and their role in the fungal biodegradation of wood. J Biotechnol 1997, 53: 133-162. 10.1016/S0168-1656(97)01681-7
Article
CAS
Google Scholar
Hyde SM, Wood PM: A mechanism for production of hydroxyl radicals by the brown-rot fungus Coniophora puteana: Fe(III) reduction by cellobiose dehydrogenase and Fe(II) oxidation at a distance from the hyphae. Microbiology 1997, 143: 259-266. 10.1099/00221287-143-1-259
Article
CAS
Google Scholar
Koenigs JW: Hydrogen peroxide and iron: a proposed system for decomposition of wood by brown-rot basidiomycetes. Wood Fiber 1974, 6: 66-80.
Google Scholar
Jellison J, Connolly J, Goodell B, Doyle B, Illman B, Fekete F, Ostrofsky A: The role of cations in the biodegradation of wood by the brown rot fungi. Int Biodeter Biodegr 1997, 39: 165-179. 10.1016/S0964-8305(97)00018-8
Article
CAS
Google Scholar
Martinez D, Challacombe J, Morgenstern I, Hibbett D, Schmoll M, Kubicek CP, Ferreira P, Ruiz-Duenas F, Martinez AT, Kersten P, Hammel KE, Wymelenberg AV, Gaskell J, Lindquist E, Sabat G, BonDurant SS, Larrondo LF, Canessa P, Vicuna R, Yadav J, Doddapaneni H, Subramanian V, Pisabarro AG, Lavin JL, Oguiza JA, Master E, Henrissat B, Coutinho PM, Harris P, Magnuson JK, Baker SE, Bruno K, Kenealy W, Hoegger PJ, Kües U, Ramaiya P, Lucas S, Salamov A, Shapiro H, Tu H, Chee CL, Misra M, Xie G, Teter S, Yaver D, James T, Mokrejs M, Pospisek M, Grigoriev IV, Brettin T, Rokhsar D, Berka R, Cullen D: Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. PNAS 2009, 106: 1954-1959. 10.1073/pnas.0809575106
Article
CAS
Google Scholar
Valášková V, Baldrian P: Degradation of cellulose and hemicelluloses by the brown rot fungus Piptoporous betulinus production of extracellular enzymes and characterization of the major cellulases. Microbiology 2006, 152: 3613-3622. 10.1099/mic.0.29149-0
Article
Google Scholar
Rasmussen ML, Shrestha P, Khanal SK, Pometto AL, Van Leeuwen J: Sequential saccharification of corn stover fiber and ethanol production by the brown rot fungus Gloeophyllum trabeum. Bioresour Technol 2010, 101: 3526-3533. Hans 10.1016/j.biortech.2009.12.115
Article
CAS
Google Scholar
Laureano-Perez L, Teymouri F, Alizadeh H, Dale BE: Understanding factors that limit enzymatic hydrolysis of biomass. Appl Biochem Biotech 2005, 6A: 1081-1099.
Article
Google Scholar
Thygesen A, Oddershede J, Lilholt H, Thomsen AB, Stahl K: On the determination of crystallinity and cellulose content in plant fibers. Cellulose 2005, 12: 563-576. 10.1007/s10570-005-9001-8
Article
CAS
Google Scholar
Jeoh T, Ishizawa CI, Davis MF, Himmel ME, Adney WS, Johnson DK: Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol Bioeng 2007, 98: 112-122. 10.1002/bit.21408
Article
CAS
Google Scholar
Change VS, Holtzapple MT: Fundamental factors affecting biomass enzymatic reactivity. Appl Biochem Biotech 2000, 84–86: 5-37.
Article
Google Scholar
Kim S, Holtzapple MT: Effect of structural features on enzyme digestibility of corn stover. Bioresource Techno 2006, 97: 583-591. 10.1016/j.biortech.2005.03.040
Article
CAS
Google Scholar
Grethlein HE: The effect of pore size distribution on the rate of enzymatic hydrolysis of cellulosic substrates. Nat Biotechnol 1985, 3: 155-160. 10.1038/nbt0285-155
Article
CAS
Google Scholar
Palonen H, Tjerneld F, Zacchi G, Tenkanen M: Adsorption of Trichoderma reesei CBH I and EG II and their catalytic domains on steam pretreated softwood and isolated lignin. J Biotechnol 2004, 107: 65-72. 10.1016/j.jbiotec.2003.09.011
Article
CAS
Google Scholar
Grous WR, Converse AO, Grethlein HE: Effect of steam explosion pretreatment on pore size and enzymatic hydrolysis of poplar. Enzyme Microb Tech 1986, 8: 274-280. 10.1016/0141-0229(86)90021-9
Article
CAS
Google Scholar
Marshall K, Sixsmith D: Some physical characteristics of microcrystalline cellulose. 1. Powders for pharmaceutical use. Drug Dev Commun 1974, 1: 57-71.
Article
Google Scholar
Gilkes NR, Jervis E, Henrissat B, Tekant B, Miller RC, Warren RAJ, Kilburn DG: The adsorption of a bacterial cellulase and its two isolated domains to crystalline cellulose. J Biol Chem 1992, 267: 6743-6749.
CAS
Google Scholar
Zhang YHP, Lynd LR: Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 2004, 88: 797-824. 10.1002/bit.20282
Article
CAS
Google Scholar
Deshpande MV, Eriksson KE: Reutilisation of enzymes for saccharification of lignocellulosic materials. Enzyme Microb Tech 1984, 6: 338-340. 10.1016/0141-0229(84)90045-0
Article
CAS
Google Scholar
Ishihara T, Ishihara M: Enzymatic hydrolysis of woods, IV. The effect of pretreatment with aqueous ammonia. Mokuzai Gakkaishi 1979, 25: 804-807.
CAS
Google Scholar
Fan LT, Gharpuray MM, Lee YH: Evaluation of pretreatments for the enzymatic conversion of agricultural residues. Biotechnol Bioeng Symp 1981, 11: 29-45.
CAS
Google Scholar
Millett MA, Baker AJ, Satter LD: Pretreatments to enhance chemical, enzymatic and microbiological attack of cellulosic materials. Biotechnol Bioeng Symp 1975, 5: 193-219.
CAS
Google Scholar
Sudo K, Matsumura Y, Shimizu K: Enzymatic hydrolysis of woods, I. Effect of delignification on hydrolysis of woods by Trichoderma virida cellulase. Mokuzai Gakkaishi 1976, 22: 670-676.
CAS
Google Scholar
Stranks DW: Utilisation of aspen wood residues. For Prod J 1961, 11: 288-292.
CAS
Google Scholar
Wong KKY, Deverell KF, Mackie KL, Clark TA, Donald LA: The relationship between fiber porosity and cellulose digestibility in steam exploded Pinusradiata. Biotechnol Bioeng 1988, 31: 447-456. 10.1002/bit.260310509
Article
CAS
Google Scholar
Gharpuray MM, Lee YH, Fan LT: Structural modification of lignocellulosics by pretreatments to enhance enzymatic hydrolysis. Biotechnol Bioeng 1983, 25: 157-172. 10.1002/bit.260250113
Article
CAS
Google Scholar
Ruel K, Barnoud F, Eriksson KE: Ultrastructural aspects of wood degradation by Sporotrichum pulverulentum. Holzforschung 1982, 38: 61-68.
Article
Google Scholar
Yelle DJ, Ralph J, Lu F, Hammel KE: Evidence for cleavage of lignin by brown rot basidiomycete. Environ. Microb 2008, 10: 1844-1849. 10.1111/j.1462-2920.2008.01605.x
Article
CAS
Google Scholar
Filley TR, Cody GD, Goodell B, Fellison J, Noser C, ostrofsky A: Lignin demethylation and polysaccharide decomposition in spruce sapwood degraded by brown rot fungi. Org Geochem 2002, 33: 111-124. 10.1016/S0146-6380(01)00144-9
Article
CAS
Google Scholar
Shimizu K, Usami K: Enzymatic hydrolysis of woods. Pretreatment of woods with acidic methanol–water mixture. Mokuzai Gakkaishi 1978, 24: 632-637.
CAS
Google Scholar
Shimizu K: Enzymatic hydrolysis of woods, V. Evaluation of papers and pulp-mill fiber residues as resources for sugar production. Mokuzai Gakkaishi 1980, 26: 488-493.
CAS
Google Scholar
Esteghlalian A, Bilodeau M, Mansfield SD, Saddler JN: Do enzymatic hydrolyzability and Simons’ stain reflect the changes in the accessibility of lignocellulosic substrates to cellulase enzymes? Biotechnol Progr 2001, 17: 1049-1054. 10.1021/bp0101177
Article
CAS
Google Scholar
Rivers DB, Emert GH: Factors affecting the enzymatic hydrolysis of municipal-solid-waste components. Biotechnol Bioeng 1988, 31: 278-281. 10.1002/bit.260310314
Article
CAS
Google Scholar
Sasaki T, Tanaka T, Nanbu N, Sato Y, Kainuma K: Correlation between X-ray diffraction measurements of cellulose crystalline structure and the susceptibility to microbial cellulose. Biotechnol Bioeng 1979, 21: 1031-1042. 10.1002/bit.260210608
Article
CAS
Google Scholar
Tanaka M, Taniguchi M, Morita T, Matsuno R, Kamikubo T: Effect of chemical treatment on solubilisation of crystalline cellulose and cellulosic wastes with Pelliculiiria filamentosa cellulase. J Ferment Technol 1979, 57: 186-190.
CAS
Google Scholar
Matsumura Y, Sudo K, Shimizu K: Enzymatic hydrolysis of woods, Effect of grinding and alkali treatment on hydrolysis of woods by Trichoderma viride cellulase. Mokuzai Gakkaishi 1977, 23: 562-570.
CAS
Google Scholar
Puri VP: Effect of crystallinity and degree of polymerisation on enzymatic saccharification. Biotechnol Bioeng 1984, 26: 1219-1222. 10.1002/bit.260261010
Article
CAS
Google Scholar
Cohen R, Suzuki MR, Hammel KE: Processive endoglucanase active in crystalline cellulose hydrolysis by the brown rot basidiomycete Gloeophyllum trabeum. Appl Environ Microbiol 2005, 71: 2412-2417. 10.1128/AEM.71.5.2412-2417.2005
Article
CAS
Google Scholar
Kondo R, Kurashiki K, Sakai K: In vitro bleaching of hard wood kraft pulp by extracellular enzymes excreted from white rot fungi in a cultivation system using a membrane filter. Appl Environ Microb 1994, 60: 921-926.
CAS
Google Scholar
Kondo R, Harazono K, Sakai K: Bleaching of hardwood kraft pulp with manganese peroxidase secreted from Phanerochaete sordida YK-624. Appl Environ Microb 1994, 60: 4359-4363.
CAS
Google Scholar
Goering HK, Van Soest PJ: Forage fiber analyses (apparatus, reagents, procedures, and some applications). In Agriculture Handbook 379 1970, 1-20.
Google Scholar
Tien M, Kirk TK: Lignin peroxidase of Phanerochaete chrysosporium. Method Enzymol 1988, 161: 238-249.
Article
CAS
Google Scholar
Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D: Determination of Structural Carbohydrates and Lignin in Biomass. 2011, 510-42618.
Google Scholar
Murai K, Uchida R, Okubo A, Kondo R: Characterization of the oil palm trunk as a material for bio-ethanol production (in Japanese). Mokuzai Gakkaishi 2009, 55: 346-355. 10.2488/jwrs.55.346
Article
CAS
Google Scholar
Brunauer S, Emmett PH, Teller E: Adsorption of gases in multimolecular layers. J Am Chem Soc 1938, 60: 309-319. 10.1021/ja01269a023
Article
CAS
Google Scholar