IPCC: Special report on renewable energy sources and climate change Mitigation (SRREN). Cambridge University Press, Cambridge; 2011.
Google Scholar
Walker GM: 125th anniversary review: fuel alcohol: current production and future challenges. J Inst Brew 2011, 117: 3-22.
Article
Google Scholar
Hamelinck CN, Faaij APC: Production of advanced biofuels. Int Sugar J 2006, 108: 168-175.
CAS
Google Scholar
Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW: The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng 2012, 109: 1083-1087.
Article
CAS
Google Scholar
Chundawat SPS, Beckham GT, Himmel ME, Dale BE: Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu Rev Chem Biomol Eng 2011, 2: 121-145.
Article
CAS
Google Scholar
Merino S, Cherry J: Progress and challenges in enzyme development for biomass utilization. Adv Biochem Eng Biotechnol 2007, 108: 95-120.
CAS
Google Scholar
Reese ET: Enzymatic hydrolysis of cellulose. Appl Microbiol 1956, 4: 39-45.
CAS
Google Scholar
Vaaje-Kolstad G, Westereng B, Horn SJ, Liu ZL, Zhai H, Sørlie M, Eijsink VGH: An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 2010, 330: 219-222.
Article
CAS
Google Scholar
Forsberg Z, Vaaje-Kolstad G, Westereng B, Bunæs AC, Stenstrøm Y, MacKenzie A, Sørlie M, Horn SJ, Eijsink VGH: Cleavage of cellulose by a CBM33 protein. Prot Science 2011, 20: 1479-1483.
Article
CAS
Google Scholar
Vaaje-Kolstad G, Bøhle LA, Gåseidnes S, Dalhus B, Bjørås M, Mathiesen G, Eijsink VGH: Characterization of the chitinolytic machinery of Enterococcus faecalis V583 and high resolution structure of its oxidative CBM33 enzyme. J Mol Biol 2012, 416: 239-254.
Article
CAS
Google Scholar
Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B: The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 2009, 37: 233-238.
Article
Google Scholar
Harris PV, Welner D, McFarland KC, Re E, Poulsen JCN, Brown K, Salbo R, Ding HS, Vlasenko E, Merino S, et al.: Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry 2010, 49: 3305-3316.
Article
CAS
Google Scholar
Quinlan RJ, Sweeney MD, Lo Leggio L, Otten H, Poulsen JCN, Johansen KS, Krogh K, Jorgensen CI, Tovborg M, Anthonsen A, et al.: Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc Natl Acad Sci U S A 2011, 108: 15079-15084.
Article
CAS
Google Scholar
Beeson WT, Phillips CM, Cate JHD, Marletta MA: Oxidative cleavage of cellulose by fungal copper-dependent polysaccharide monooxygenases. J Am Chem Soc 2012, 134: 890-892.
Article
CAS
Google Scholar
Langston JA, Shaghasi T, Abbate E, Xu F, Vlasenko E, Sweeney MD: Oxidoreductive cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61. Appl Environ Microbiol 2011, 77: 7007-7015.
Article
CAS
Google Scholar
Phillips CM, Beeson WT, Cate JH, Marletta MA: Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa. ACS Chem Biol 2011, 6: 1399-1406.
Article
CAS
Google Scholar
Westereng B, Ishida T, Vaaje-Kolstad G, Wu M, Eijsink VGH, Igarashi K, Samejima M, Ståhlberg J, Horn SJ, Sandgren M: The putative endoglucanase PcGH61D from Phanerochaete chrysosporium is a metal-dependent oxidative enzyme that cleaves cellulose. PLoS One 2011, 6: e27807.
Article
CAS
Google Scholar
Li X, Beeson WT, Phillips CM, Marletta MA, Cate JHD: Structural basis for substrate targeting and catalysis by fungal polysaccharide monooxygenases. Structure 2012, 20: 1051-1061.
Article
Google Scholar
Chandra R, Bura R, Mabee W, Berlin A, Pan X, Saddler J: Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics? Adv Biochem Eng Biotechnol 2007, 108: 67-93.
CAS
Google Scholar
Pauly M, Keegstra K: Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J 2008, 54: 559-568.
Article
CAS
Google Scholar
Parthasarathi R, Bellesia G, Chundawat SPS, Dale BE, Langan P, Gnanakaran S: Insights into hydrogen bonding and stacking interactions in cellulose. J Phys Chem A 2011, 115: 14191-14202.
Article
CAS
Google Scholar
Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, Osborne E, Paredez A, Persson S, Raab T, et al.: Toward a systems approach to understanding plant cell walls. Science 2004, 306: 2206-2211.
Article
CAS
Google Scholar
Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsyth VT, Apperley DC, Kennedy CJ, Jarvis MC: Nanostructure of cellulose microfibrils in spruce wood. Proc Natl Acad Sci U S A 2011, 108: E1195-E1203.
Article
Google Scholar
Endler A, Persson S: Cellulose synthases and synthesis in arabidopsis. Mol Plant 2011, 4: 199-211.
Article
CAS
Google Scholar
Mittal A, Katahira R, Himmel ME, Johnson DK: Effects of alkaline or liquid-ammonia treatment on crystalline cellulose: changes in crystalline structure and effects on enzymatic digestibility. Biotechnol Biofuels 2011, 4: 41.
Article
CAS
Google Scholar
Beckham GT, Matthews JF, Peters B, Bomble YJ, Himmel ME, Crowley MF: Molecular-level origins of biomass recalcitrance: decrystallization free energies for four common cellulose polymorphs. J Phys Chem B 2011, 115: 4118-4127.
Article
CAS
Google Scholar
Liu YS, Baker JO, Zeng YN, Himmel ME, Haas T, Ding SY: Cellobiohydrolase hydrolyzes crystalline cellulose on hydrophobic faces. J Biol Chem 2011, 286: 11195-11201.
Article
CAS
Google Scholar
Scheller HV, Ulvskov P: Hemicelluloses. Annu Rev Plant Biol 2010, 61: 263-289.
Article
CAS
Google Scholar
Biely P, Mastihubova M, Tenkanen M, Eyzaguirre J, Li XL, Vrsanska M: Action of xylan deacetylating enzymes on monoacetyl derivatives of 4-nitrophenyl glycosides of beta-D-xylopyranose and alpha-L-arabinofuranose. J Biotechnol 2011, 151: 137-142.
Article
CAS
Google Scholar
Bunzel M: Chemistry and occurrence of hydroxycinnamate oligomers. Phytochem Rev 2010, 9: 47-64.
Article
CAS
Google Scholar
Gilbert HJ, Stalbrand H, Brumer H: How the walls come crumbling down: recent structural biochemistry of plant polysaccharide degradation. Curr Opin Plant Biol 2008, 11: 338-348.
Article
CAS
Google Scholar
Agger J, Vikso-Nielsen A, Meyer AS: Enzymatic xylose release from pretreated corn bran arabinoxylan: differential effects of deacetylation and deferuloylation on insoluble and soluble substrate fractions. J Agric Food Chem 2010, 58: 6141-6148.
Article
CAS
Google Scholar
Varnai A, Huikko L, Pere J, Siika-aho M, Viikari L: Synergistic action of xylanase and mannanase improves the total hydrolysis of softwood. Bioresour Technol 2011, 102: 9096-9104.
Article
CAS
Google Scholar
Chen F, Dixon RA: Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 2007, 25: 759-761.
Article
CAS
Google Scholar
Zoia L, Orlandi M, Argyropoulos DS: Microwave-assisted lignin isolation using the enzymatic mild acidolysis (EMAL) protocol. J Agric Food Chem 2008, 56: 10115-10122.
Article
CAS
Google Scholar
Takahashi N, Koshijima T: Ester linkages between lignin and glucuronoxylan in a lignin-carbohydrate complex from beech (Fagus crenata) wood. Wood Sci Technol 1988, 22: 231-241.
Article
CAS
Google Scholar
Martinez AT, Speranza M, Ruiz-Duenas FJ, Ferreira P, Camarero S, Guillen F, Martinez MJ, Gutierrez A, del Rio JC: Biodegradation of lignocellulosics: microbial chemical, and enzymatic aspects of the fungal attack of lignin. Int Microbiol 2005, 8: 195-204.
CAS
Google Scholar
Fuchs G, Boll M, Heider J: Microbial degradation of aromatic compounds — from one strategy to four. Nat Rev Microbiol 2011, 9: 803-816.
Article
CAS
Google Scholar
Horn SJ, Sikorski P, Cederkvist JB, Vaaje-Kolstad G, Sørlie M, Synstad B, Vriend G, Vårum KM, Eijsink VGH: Costs and benefits of processivity in enzymatic degradation of recalcitrant polysaccharides. Proc Natl Acad Sci U S A 2006, 103: 18089-18094.
Article
CAS
Google Scholar
Payne CM, Bomble YJ, Taylor CB, McCabe C, Himmel ME, Crowley MF, Beckham GT: Multiple functions of aromatic-carbohydrate interactions in a processive cellulase examined with molecular simulation. J Biol Chem 2011, 286: 41028-41035.
Article
CAS
Google Scholar
Horn SJ, Sørlie M, Vårum KM, Väljamäe P, Eijsink VGH: Measuring processivity. Methods Enzymol 2012, 510: 69-96.
Article
CAS
Google Scholar
Wood TM, McCrae SI: Synergism between enzymes involved in the solubilization of native cellulose. Adv Chem Ser 1979, 181: 181-209.
Article
Google Scholar
Kostylev M, Wilson DB: Synergistic interactions in cellulose hydrolysis. Biofuels 2012, 3: 61-70.
Article
CAS
Google Scholar
Carrard G, Koivula A, Soderlund H, Beguin P: Cellulose-binding domains promote hydrolysis of different sites on crystalline cellulose. Proc Natl Acad Sci U S A 2000, 97: 10342-10347.
Article
CAS
Google Scholar
Lehtio J, Sugiyama J, Gustavsson M, Fransson L, Linder M, Teeri TT: The binding specificity and affinity determinants of family 1 and family 3 cellulose binding modules. Proc Natl Acad Sci U S A 2003, 100: 484-489.
Article
CAS
Google Scholar
Linder M, Teeri TT: The roles and function of cellulose-binding domains. J Biotechnol 1997, 57: 15-28.
Article
CAS
Google Scholar
Boraston AB, Bolam DN, Gilbert HJ, Davies GJ: Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 2004, 382: 769-781.
Article
CAS
Google Scholar
Davies G, Henrissat B: Structures and mechanisms of glycosyl hydrolases. Structure 1995, 3: 853-859.
Article
CAS
Google Scholar
Rosgaard L, Pedersen S, Langston J, Akerhielm D, Cherry JR, Meyer AS: Evaluation of minimal Trichoderma reesei cellulase mixtures on differently pretreated barley straw substrates. Biotechnol Prog 2007, 23: 1270-1276.
Article
CAS
Google Scholar
Eijsink VGH, Vaaje-Kolstad G, Vårum KM, Horn SJ: Towards new enzymes for biofuels: lessons from chitinase research. Trends Biotechnol 2008, 26: 228-235.
Article
CAS
Google Scholar
Reese ET, Siu RGH, Levinson HS: The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. J Bacteriol 1950, 59: 485-497.
CAS
Google Scholar
Vaaje-Kolstad G, Horn SJ, van Aalten DMF, Synstad B, Eijsink VGH: The non-catalytic chitin-binding protein CBP21 from Serratia marcescens is essential for chitin degradation. J Biol Chem 2005, 280: 28492-28497.
Article
CAS
Google Scholar
Moser F, Irwin D, Chen SL, Wilson DB: Regulation and characterization of Thermobifida fusca carbohydrate-binding module proteins E7 and E8. Biotechnol Bioeng 2008, 100: 1066-1077.
Article
CAS
Google Scholar
Karkehabadi S, Hansson H, Kim S, Piens K, Mitchinson C, Sandgren M: The first structure of a glycoside hydrolase family 61 Member, Cel61B from Hypocrea jecorina, at 1.6 angstrom resolution. J Mol Biol 2008, 383: 144-154.
Article
CAS
Google Scholar
Cannella D, Hsieh C-w, Felby C, Jorgensen H: Production and effect of aldonic acids during enzymatic hydrolysis of lignocellulose at high dry matter content. Biotechnol Biofuels 2012, 5: 26.
Article
CAS
Google Scholar
Igarashi K, Samejima M, Eriksson KEL: Cellobiose dehydrogenase enhances Phanerochaete chrysosporium cellobiohydrolase I activity by relieving product inhibition. Eur J Biochem 1998, 253: 101-106.
Article
CAS
Google Scholar
Fan Z, Wu W, Hildebrand A, Kasuga T, Zhang R, Xiong X: A novel biochemical route for fuels and chemicals production from cellulosic biomass. PLoS One 2012, 7: e31693.
Article
CAS
Google Scholar
Langston JA, Brown K, Xu F, Borch K, Garner A, Sweeney MD: Cloning, expression, and characterization of a cellobiose dehydrogenase from Thielavia terrestris induced under cellulose growth conditions. Biochim Biophys Acta 2012, 1824: 802-812.
Article
CAS
Google Scholar
Mason MG, Nicholls P, Divne C, Hallberg BM, Henriksson G, Wilson MT: The heme domain of cellobiose oxidoreductase: a one-electron reducing system. Biochim Biophys Acta-Bioenerg 2003, 1604: 47-54.
Article
CAS
Google Scholar
Zamocky M, Ludwig R, Peterbauer C, Hallberg BM, Divne C, Nicholls P, Haltrich D: Cellobiose dehydrogenase - A flavocytochrome from wood-degrading, phytopathogenic and saprotropic fungi. Curr Protein Pept Sci 2006, 7: 255-280.
Article
CAS
Google Scholar
Felby C, Nielsen BR, Olesen PO, Skibsted LH: Identification and quantification of radical reaction intermediates by electron spin resonance spectrometry of laccase-catalyzed oxidation of wood fibers from beech (Fagus sylvatica). Appl Microbiol Biotechnol 1997, 48: 459-464.
Article
CAS
Google Scholar
Henrissat B: A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 1991, 280: 309-316.
Article
CAS
Google Scholar
Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K, et al.: The Pfam protein families database. Nucleic Acids Res 2010, 38: D211-D222.
Article
CAS
Google Scholar
Hori C, Igarashi K, Katayama A, Samejima M: Effects of xylan and starch on secretome of the basidiomycete Phanerochaete chrysosporium grown on cellulose. FEMS Microbiol Lett 2011, 321: 14-23.
Article
CAS
Google Scholar
Hervé C, Rogowski A, Blake AW, Marcus SE, Gilbert HJ, Knox JP: Carbohydrate-binding modules promote the enzymatic deconstruction of intact plant cell walls by targeting and proximity effects. Proc Natl Acad Sci U S A 2010, 107: 15293-15298.
Article
Google Scholar
Bhowmick R, Ghosal A, Das B, Koley H, Saha DR, Ganguly S, Nandy RK, Bhadra RK, Chatterjee NS: Intestinal adherence of Vibrio cholerae involves a coordinated interaction between colonization factor GbpA and mucin. Infect Immun 2008, 76: 4968-4977.
Article
CAS
Google Scholar
Sanchez B, Gonzalez-Tejedo C, Ruas-Madiedo P, Urdaci MC, Margolles A: Lactobacillus plantarum extracellular chitin-binding protein and its role in the interaction between chitin, caco-2 cells, and mucin. Appl Environ Microbiol 2011, 77: 1123-1126.
Article
CAS
Google Scholar
Chater KF, Biro S, Lee KJ, Palmer T, Schrempf H: The complex extracellular biology of Streptomyces. FEMS Microbiol Rev 2010, 34: 171-198.
Article
CAS
Google Scholar
Vebo HC, Snipen L, Nes IF, Brede DA: The transcriptome of the nosocomial pathogen Enterococcus faecalis V583 reveals adaptive responses to growth in blood. PLoS One 2009, 4: e7660.
Article
Google Scholar
Hukuhara T, Hayakawa T, Wijonarko A: Increased baculovirus susceptibility of armyworm larvae feeding on transgenic rice plants expressing an entomopoxvirus gene. Nat Biotechnol 1999, 17: 1122-1124.
Article
CAS
Google Scholar
Mitsuhashi W, Miyamoto K: Disintegration of the peritrophic membrane of silkworm larvae due to spindles of an entomopoxvirus. J Invertebr Pathol 2003, 82: 34-40.
Article
CAS
Google Scholar
Vaaje-Kolstad G, Houston DR, Riemen AHK, Eijsink VGH, van Aalten DMF: Crystal structure and binding properties of the Serratia marcescens chitin-binding protein CBP21. J Biol Chem 2005, 280: 11313-11319.
Article
CAS
Google Scholar
Chundawat SPS, Bellesia G, Uppugundla N, Sousa LD, Gao DH, Cheh AM, Agarwal UP, Bianchetti CM, Phillips GN, Langan P, et al.: Restructuring the crystalline cellulose hydrogen bond network enhances its depolymerization rate. J Am Chem Soc 2011, 133: 11163-11174.
Article
CAS
Google Scholar
Arantes V, Saddler JN: Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates. Biotechnol Biofuels 2011, 4: 3.
Article
CAS
Google Scholar
Langan P, Gnanakaran S, Rector KD, Pawley N, Fox DT, Cho DW, Hammel KE: Exploring new strategies for cellulosic biofuels production. Energy Environ Sci 2011, 4: 3820-3833.
Article
CAS
Google Scholar
Payne CM, Himmel ME, Crowley MF, Beckham GT: Decrystallization of oligosaccharides from the cellulose I beta surface with molecular simulation. J Phys Chem Lett 2011, 2: 1546-1550.
Article
CAS
Google Scholar
Adav SS, Ravindran A, Sze SK: Quantitative proteomic analysis of lignocellulolytic enzymes by Phanerochaete chrysosporium on different lignocellulosic biomass. J Proteomics 2012, 75: 1493-1504.
Article
CAS
Google Scholar
Eastwood DC, Floudas D, Binder M, Majcherczyk A, Schneider P, Aerts A, Asiegbu FO, Baker SE, Barry K, Bendiksby M, et al.: The plant cell wall-decomposing machinery underlies the functional diversity of forest fungi. Science 2011, 333: 762-765.
Article
CAS
Google Scholar
Foreman PK, Brown D, Dankmeyer L, Dean R, Diener S, Dunn-Coleman NS, Goedegebuur F, Houfek TD, England GJ, Kelley AS, et al.: Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei. J Biol Chem 2003, 278: 31988-31997.
Article
Google Scholar
MacDonald J, Doering M, Canam T, Gong YC, Guttman DS, Campbell MM, Master ER: Transcriptomic responses of the softwood-degrading white-rot fungus Phanerochaete carnosa during growth on coniferous and deciduous wood. Appl Environ Microbiol 2011, 77: 3211-3218.
Article
CAS
Google Scholar
Wymelenberg AV, Gaskell J, Mozuch M, Sabat G, Ralph J, Skyba O, Mansfield SD, Blanchette RA, Martinez D, Grigoriev I, et al.: Comparative transcriptome and secretome analysis of wood decay fungi Postia placenta and Phanerochaete chrysosporium. Appl Environ Microbiol 2010, 76: 3599-3610.
Article
Google Scholar
Webb KJ, Zurita-Lopez CI, Al-Hadid Q, Laganowsky A, Young BD, Lipson RS, Souda P, Faull KF, Whitelegge JP, Clarke SG: A novel 3-methylhistidine modification of yeast ribosomal protein Rpl3 is dependent upon the YIL110W methyltransferase. J Biol Chem 2010, 285: 37598-37606.
Article
CAS
Google Scholar
Vaaje-Kolstad G, Farkaš V, Hrmova M, Fincher GB: Xyloglucan xyloglucosyl transferases from barley (Hordeum vulgare L.) bind oligomeric and polymeric xyloglucan molecules in their acceptor binding sites. Biochim Biophys Acta 1800, 2010: 674-684.
Google Scholar
Uhlin KI, Atalla RH, Thompson NS: Influence of hemicelluloses on the aggregation patterns of bacterial cellulose. Cellulose 1995, 2: 129-144.
Article
CAS
Google Scholar
Whitney SEC, Brigham JE, Darke AH, Reid JSG, Gidley MJ: Structural aspects of the interaction of mannan-based polysaccharides with bacterial cellulose. Carbohydr Res 1998, 307: 299-309.
Article
CAS
Google Scholar
Bu L, Beckham GT, Crowley MF, Chang CH, Matthews JF, Bomble YJ, Adney WS, Himmel ME, Nimlos MR: The energy landscape for the interaction of the family 1 carbohydrate-binding module and the cellulose surface is altered by hydrolyzed glycosidic bonds. J Phys Chem B 2009, 113: 10994-11002.
Article
CAS
Google Scholar
Saloheimo M, Paloheimo M, Hakola S, Pere J, Swanson B, Nyyssönen E, Bhatia A, Ward M, Penttilä M: Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials. Eur J Biochem 2002, 269: 4202-4211.
Article
CAS
Google Scholar
Jager G, Girfoglio M, Dollo F, Rinaldi R, Bongard H, Commandeur U, Fischer R, Spiess A, Buchs J: How recombinant swollenin from Kluyveromyces lactis affects cellulosic substrates and accelerates their hydrolysis. Biotechnol Biofuels 2011, 4: 33.
Article
Google Scholar
Shcherban TY, Shi J, Durachko DM, Guiltinan MJ, McQueen-Mason SJ, Shieh M, Cosgrove DJ: Molecular cloning and sequence analysis of expansins-a highly conserved, multigene family of proteins that mediate cell wall extension in plants. Proc Natl Acad Sci U S A 1995, 92: 9245-9249.
Article
CAS
Google Scholar
Pope PB, Denman SE, Jones M, Tringe SG, Barry K, Malfatti SA, McHardy AC, Cheng JF, Hugenholtz P, McSweeney CS, Morrison M: Adaptation to herbivory by the Tammar wallaby includes bacterial and glycoside hydrolase profiles different from other herbivores. Proc Natl Acad Sci U S A 2010, 107: 14793-14798.
Article
CAS
Google Scholar
Hess M, Sczyrba A, Egan R, Kim T-W, Chokhawala H, Schroth G, Luo S, Clark DS, Chen F, Zhang T, et al.: Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 2011, 331: 463-467.
Article
CAS
Google Scholar
Pope PB, Mackenzie AK, Gregor I, Smith W, Sundset MA, McHardy AC, Morrison M, Eijsink VGH: Metagenomics of the svalbard reindeer rumen microbiome reveals abundance of polysaccharide utilization loci. PLoS One 2012, 7: e38571.
Article
CAS
Google Scholar
Fairley P: Introduction: Next generation biofuels. Nature 2011, 474: S2-S5.
Article
CAS
Google Scholar