Ren Nanqi, Guo Wanqian, Liu Bingfeng, Cao Gauangli, Ding Jie: Biological hydrogen production by dark fermentation: challenges and prospects towards scaled-up production. Curr Opin Biotechnol 2011, 22: 365-370. 10.1016/j.copbio.2011.04.022
Article
CAS
Google Scholar
Wang JL, Wan W: Factors influencing fermentative hydrogen production: A review. Int J Hydrogen Energy 2009, 34: 799-811. 10.1016/j.ijhydene.2008.11.015
Article
CAS
Google Scholar
Chieh-Lun Cheng, Yung-Chung Lo, Kuo-Shing Lee, Duu-Jong Lee, Chiu-Yue Lin, Jo-Shu Chang: Biohydrogen production from lignocellulosic feedstock. Bioresour Technol 2011, 102: 8514-8523. 10.1016/j.biortech.2011.04.059
Article
Google Scholar
Xia LM, Sheng XL: High yield cellulase production by Trichoderma reesei ZU-02 on corncob residues. Bioresour Technol 2004, 91: 259-262. 10.1016/S0960-8524(03)00195-0
Article
CAS
Google Scholar
Strobel HJ: Evidence for catabolite inhibition in regulation of pentose utilization and transport in the ruminal bacterium selenomonas-ruminantium. Appl Environ Microbiol 1993, 59: 40-46.
CAS
Google Scholar
Abreu AA, Alves JI, Pereira MA, Karakashev D, Alves MM, Angelidaki I: Engineered heat treated methanogenic granules: a promising biotechnological approach for extreme thermophilic biohydrogen production. Bioresour Technol 2010, 101: 9577-9586. 10.1016/j.biortech.2010.07.070
Article
CAS
Google Scholar
Jones DT, Woods DR: Acetone-butanol fermentation revisited. Microbiol Rev 1986, 50: 484-524.
CAS
Google Scholar
Turcot J, Bisaillon A, Hallenbeck PC: Hydrogen production by continuous cultures of Escherchia coli under different nutrient regimes. Int J Hydrogen Energy 2008, 33: 1465-1470. 10.1016/j.ijhydene.2007.09.034
Article
CAS
Google Scholar
Verhaart MRA, Bielen AAM, van der Oost J, Stams AJM, Kengen SWM: Hydrogen production by hyperthermophilic and extremely thermophilic bacteria and archaea: mechanisms for reductant disposal. Environ Technol 2010, 31: 993-1003. 10.1080/09593331003710244
Article
CAS
Google Scholar
Valdez-Vazquez I, Poggi-Varaldo HM: Hydrogen production by fermentative consortia. Renew Sustain Energy Rev 2011, 13: 1000-1013.
Article
Google Scholar
Stams AJM: Metabolic interactions between anaerobic-bacteria in methanogenic environments. Antonie Van Leeuwenhoek 1994, 66: 271-294. 10.1007/BF00871644
Article
CAS
Google Scholar
Hawkes FR, Dinsdale R, Hawkes DL, Hussy I: Sustainable fermentative hydrogen production: challenges for process optimisation. Int J Hydrogen Energy 2002, 27: 1339-1347. 10.1016/S0360-3199(02)00090-3
Article
CAS
Google Scholar
van Groenestijn JW, Hazewinkel JHO, Nienoord M, Bussmann PJT: Energy aspects of biological hydrogen production in high rate bioreactors operated in the thermophilic temperature range. Int J Hydrogen Energy 2002, 27: 1141-1147. 10.1016/S0360-3199(02)00096-4
Article
CAS
Google Scholar
Lu JQ, Gavala HN, Skiadas IV, Mladenovska Z, Ahring BK: Improving anaerobic sewage sludge digestion by implementation of a hyper-thermophilic prehydrolysis step. J Environ Manage 2008, 88: 881-889. 10.1016/j.jenvman.2007.04.020
Article
CAS
Google Scholar
Kleerebezem R, van Loosdrecht MCM: Mixed culture biotechnology for bioenergy production. Curr Opin Biotechnol 2007, 18: 207-212. 10.1016/j.copbio.2007.05.001
Article
CAS
Google Scholar
Temudo MF, Kleerebezem R, van Loosdrecht M: Influence of the pH on (open) mixed culture fermentation of glucose: a chemostat study. Biotechnol Bioeng 2007, 98: 69-79. 10.1002/bit.21412
Article
CAS
Google Scholar
Nanqi Ren, Aijie Wang, Guangli Cao, Jifei Xu, Lingfang Gao: Bioconversion of lignocellulosic biomass to hydrogen: potential and challenges. Biotechnol Adv 2009, 27: 1051-1060. 10.1016/j.biotechadv.2009.05.007
Article
Google Scholar
Willquist K, Zeidan AA, van Niel EWJ: Physiological characteristics of the extreme thermophile Caldicellulosiruptor saccharolyticus : an efficient hydrogen cell factory. Microb Cell Fac 2010, 9: 89. 10.1186/1475-2859-9-89
Article
CAS
Google Scholar
Mavrovouniotis ML: Estimation of standard Gibbs energy changes of biotransformations. J Biol Chem 1991, 266: 14440-14445.
CAS
Google Scholar
Thauer RK, Jungermann K, Decker K: Energy-Conservation in Chemotropic Anaerobic Bacteria. Bacteriol Rev 1977, 41: 100-180.
CAS
Google Scholar
Altaras NE, Etzel MR, Cameron DC: Conversion of sugars to 1,2-propanediol by Thermoanaerobacterium thermosaccharolyticum HG-8. Biotechnol Prog 2001, 17: 52-56. 10.1021/bp000130b
Article
CAS
Google Scholar
Wu KJ, Saratale GD, Lo YC, Chen WM, Tseng ZJ, Chang MC, Tsai BC, Su A, Chang JS: Simultaneous production of 2,3-butanediol, ethanol and hydrogen with a Klebsiella sp strain isolated from sewage sludge. Bioresour Technol 2008, 99: 7966-7970. 10.1016/j.biortech.2008.03.062
Article
CAS
Google Scholar
Kotay SM, Das D: Microbial hydrogen production with Bacillus coagulans IIT-BT S1 isolated from anaerobic sewage sludge. Bioresour Technol 2007, 98: 1183-1190. 10.1016/j.biortech.2006.05.009
Article
CAS
Google Scholar
Karadag D, Puhakka JA: Direction of glucose fermentation towards hydrogen or ethanol production through on-line pH control. Int J Hydrogen Energy 2010, 35: 10245-10251. 10.1016/j.ijhydene.2010.07.139
Article
CAS
Google Scholar
Karadag D, Puhakka JA: Effect of changing temperature on anaerobic hydrogen production and microbial community composition in an open-mixed culture bioreactor. Int J Hydrogen Energy 2010, 35: 10954-10959. 10.1016/j.ijhydene.2010.07.070
Article
CAS
Google Scholar
Kotay SM, Das D: Microbial hydrogen production from sewage sludge bioaugmented with a constructed microbial consortium. Int J Hydrogen Energy 2010, 35: 10653-10659. 10.1016/j.ijhydene.2010.03.059
Article
CAS
Google Scholar
Shaw AJ, Hogsett DA, Lynd LR: Identification of the [FeFe]-hydrogenase responsible for hydrogen generation in Thermoanaerobacterium saccharolyticum and demonstration of increased ethanol yield via hydrogenase knockout. J Bacteriol 2009, 191: 6457-6464. 10.1128/JB.00497-09
Article
CAS
Google Scholar
Kengen SWM, Stams AJM, deVos WM: Sugar metabolism of hyperthermophiles. FEMS Microbiol Rev 1996, 18: 119-137. 10.1111/j.1574-6976.1996.tb00231.x
Article
CAS
Google Scholar
Adams MWW: The metabolism of hydrogen by extremely thermophilic, sulfur-dependent bacteria. FEMS Microbiol Rev 1990, 75: 219-237. 10.1111/j.1574-6968.1990.tb04096.x
Article
CAS
Google Scholar
van Niel EWJ, Claassen PAM, Stams AJM: Substrate and product inhibition of hydrogen production by the extreme thermophile, Caldicellulosiruptor saccharolyticus. Biotechnol Bioeng 2003, 81: 255-262. 10.1002/bit.10463
Article
CAS
Google Scholar
Schafer T, Schonheit P: Pyruvate metabolism of the hyperthermophilic Archaebacterium pyrococcus-furiosus - acetate formation from acetyl-coa and Atp synthesis are catalyzed by an acetyl-coa synthetase (Adp forming). Arch Microbiol 1991, 155: 366-377.
Article
Google Scholar
Schroder C, Selig M, Schonheit P: Glucose fermentation to acetate, co2 and h-2 in the anaerobic hyperthermophilic Eubacterium thermotoga-maritima - involvement of the Embden-Meyerhof Pathway. Arch Microbiol 1994, 161: 460-470.
CAS
Google Scholar
Stams AJM, Vandijk JB, Dijkema C, Plugge CM: Growth of syntrophic propionate-oxidizing bacteria with fumarate in the absence of methanogenic bacteria. Appl Environ Microbiol 1993, 59: 1114-1119.
CAS
Google Scholar
Nubel U, Engelen B, Felske A, Snaidr J, Wieshuber A, Amann RI, Ludwig W, Backhaus H: Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J Bacteriol 1996, 178: 5636-5643.
CAS
Google Scholar
Sanguinetti CJ, Neto ED, Simpson AJG: Rapid silver staining and recovery of pcr products separated on polyacrylamide gels. Biotechniques 1994, 17: 914-.
CAS
Google Scholar
Hane BG, Jager K, Drexler HG: The Pearson Product-Moment Correlation-Coefficient Is better suited for identification of DNA fingerprint profiles than band matching algorithms. Electrophoresis 1993, 14: 967-972. 10.1002/elps.11501401154
Article
CAS
Google Scholar