Himmel M, Xu Q, Luo Y, Ding S, Lamed R, Bayer E: Microbial enzyme systems for biomass conversion: emerging paradigms. Biofuels 2010, 1: 323-341.
Article
CAS
Google Scholar
Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B: The carbohydrate-active enZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 2009, 37: D233-D238.
Article
CAS
Google Scholar
Lamed R, Setter E, Bayer EA: Characterization of a cellulose-binding, cellulase-containing complex in clostridium thermocellum . J Bacteriol 1983, 156: 828-836.
CAS
Google Scholar
Lamed R, Setter E, Kenig R, Bayer EA: The cellulosome — a discrete cell surface organelle of clostridium thermocellum which exhibits separate antigenic, cellulose-binding and various cellulolytic activities. Biotechnol Bioeng Symp 1983, 13: 163-181.
CAS
Google Scholar
Bayer EA, Kenig R, Lamed R: Adherence of clostridium thermocellum to cellulose. J Bacteriol 1983, 156: 818-827.
CAS
Google Scholar
Garcia-Campayo V, McCrae SI, Zhang JX, Flint HJ, Wood TM: Mode of action, kinetic properties and physicochemical characterization of two different domains of a bifunctional (1–>4)-beta-D-xylanase from ruminococcus flavefaciens expressed separately in Escherichia coli. Biochem J 1993,296(Pt 1):235-243.
Article
CAS
Google Scholar
Najmudin S, Guerreiro CI, Ferreira LM, Romao MJ, Fontes CM, Prates JA: Overexpression, purification and crystallization of the two C-terminal domains of the bifunctional cellulase ctCel9D-Cel44A from clostridium thermocellum. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005, 61: 1043-1045.
Article
CAS
Google Scholar
Sakka K, Yoshikawa K, Kojima Y, Karita S, Ohmiya K, Shimada K: Nucleotide sequence of the clostridium stercorarium xylA gene encoding a bifunctional protein with beta-D-xylosidase and alpha-L- arabinofuranosidase activities, and properties of the translated product. Biosci Biotechnol Biochem 1993, 57: 268-272.
Article
CAS
Google Scholar
Saul DJ, Williams LC, Grayling RA, Chamley LW, Love DR, Bergquist PL: celB, a gene coding for a bifunctional cellulase from the extreme thermophile " Caldocellum saccharolyticum ". Appl Environ Microbiol 1990, 56: 3117-3124.
CAS
Google Scholar
Zhang JX, Flint HJ: A bifunctional xylanase encoded by the xynA gene of the rumen cellulolytic bacterium ruminococcus flavefaciens 17 comprises two dissimilar domains linked by an asparagine/glutamine-rich sequence. Mol Microbiol 1992, 6: 1013-1023.
Article
CAS
Google Scholar
Zverlov V, Mahr S, Riedel K, Bronnenmeier K: Properties and gene structure of a bifunctional cellulolytic enzyme (CelA) from the extreme thermophile ' Anaerocellum thermophilum ' with separate glycosyl hydrolase family 9 and 48 catalytic domains. Microbiology 1998, 144: 457-465.
Article
CAS
Google Scholar
Xu Q, Luo Y, Bu L, Ding S-Y, Lamed R, Bayer EA, Himmel ME: Bulk commodities – industrial enzymes: multifunctional enzyme systems for plant cell wall degradation. In Comprehensive biotechnology. volume 3. 2nd edition. Edited by: Moo-Young M, Butler M, Webb C, Moreira A, Bai F. Elsevier B.V, Amsterdam; 2011:15-25.
Chapter
Google Scholar
Fierobe H-P, Mechaly A, Tardif C, Belaich A, Lamed R, Shoham Y, Belaich J-P, Bayer EA: Design and production of active cellulosome chimeras: Selective incorporation of dockerin-containing enzymes into defined functional complexes. J Biol Chem 2001, 276: 21257-21261.
Article
CAS
Google Scholar
Fierobe H-P, Mechaly A, Tardif C, Belaich A, Lamed R, Shoham Y, Belaich J-P, Bayer EA: Designer nanosomes: Selective engineering of dockerin-containing enzymes into chimeric scaffoldins to form defined nanoreactors. In Carbohydrate bioengineering: interdisciplinary approaches. Edited by: Teeri TT, Svensson B, Gilbert HJ, Feizi T. The Royal Society of Chemistry, Cambridge; 2002:113-123.
Chapter
Google Scholar
Fierobe H-P, Mingardon F, Mechaly A, Belaich A, Rincon MT, Lamed R, Tardif C, Belaich J-P, Bayer EA: Action of designer cellulosomes on homogeneous versus complex substrates: controlled incorporation of three distinct enzymes into a defined tri-functional scaffoldin. J Biol Chem 2005, 280: 16325-16334.
Article
CAS
Google Scholar
Caspi J, Barak Y, Haimovitz R, Gilary H, Irwin D, Lamed R, Wilson DB, Bayer EA: Thermobifida fusca exoglucanase Cel6B is incompatible with the cellulosomal mode in contrast to endoglucanase Cel6A. Syst Synth Biol 2010, 4: 193-201.
Article
Google Scholar
Caspi J, Barak Y, Haimovitz R, Irwin D, Lamed R, Wilson DB, Bayer EA: Effect of linker length and dockerin position on conversion of a Thermobifida fusca endoglucanase to the cellulosomal mode. Appl Environ Microbiol 2009, 75: 7335-7342.
Article
CAS
Google Scholar
Caspi J, Irwin D, Lamed R, Fierobe H-P, Wilson DB, Bayer EA: Conversion of noncellulosomal thermobifida fusca free exoglucanases into cellulosomal components: comparative impact on cellulose-degrading activity. J Biotechnol 2008, 135: 351-357.
Article
CAS
Google Scholar
Caspi J, Irwin D, Lamed R, Shoham Y, Fierobe H-P, Wilson DB, Bayer EA: Thermobifida fusca family-6 cellulases as potential designer cellulosome components. Biocatalysis and Biotransformation 2006, 24: 3-12.
Article
CAS
Google Scholar
Moraïs S, Barak Y, Caspi J, Hadar Y, Lamed R, Shoham Y, Wilson DB, Bayer EA: Contribution of a xylan-binding module to the degradation of a complex cellulosic substrate by designer cellulosomes. Appl Environ Microbiol 2010, 76: 3787-3796.
Article
Google Scholar
Moraïs S, Barak Y, Caspi J, Hadar Y, Lamed R, Shoham Y, Wilson DB, Bayer EA: Cellulase-xylanase synergy in designer cellulosomes for enhanced degradation of a complex cellulosic substrate. mBio 2010, 1: e00285-00210.
Article
Google Scholar
Morais S, Barak Y, Hadar Y, Wilson DB, Shoham Y, Lamed R, Bayer EA: Assembly of xylanases into designer cellulosomes promotes efficient hydrolysis of the xylan component of a natural recalcitrant cellulosic substrate. mBio 2011, 2: e00233-11.
Article
Google Scholar
Moraïs S, Heyman A, Barak Y, Caspi J, Wilson DB, Lamed R, Shoseyov O, Bayer EA: Enhanced cellulose degradation by nano-complexed enzymes: synergism between a scaffold-linked exoglucanase and a free endoglucanase. J Biotechnol 2010, 147: 205-211.
Article
Google Scholar
Fan ZM, Wagschal K, Chen W, Montross MD, Lee CC, Yuan L: Multimeric hemicellulases facilitate biomass conversion. Appl Environ Microbiol 2009, 75: 1754-1757.
Article
CAS
Google Scholar
Fan ZM, Wagschal K, Lee CC, Kong Q, Shen KA, Maiti IB, Yuan L: The construction and characterization of two xylan-degrading chimeric enzymes. Biotechnol Bioeng 2009, 102: 684-692.
Article
CAS
Google Scholar
Hong SY, Lee JS, Cho KM, Math RK, Kim YH, Hong SJ, Cho YU, Kim H, Yun HD: Assembling a novel bifunctional cellulase-xylanase from thermotoga maritima by end-to-end fusion. Biotechnol Lett 2006, 28: 1857-1862.
Article
CAS
Google Scholar
Khandeparker R, Numan MT: Bifunctional xylanases and their potential use in biotechnology. J Ind Microbiol Biotechnol 2008, 35: 635-644.
Article
CAS
Google Scholar
Lee HL, Chang CK, Teng KH, Liang PH: Construction and characterization of different fusion proteins between cellulases and beta-glucosidase to improve glucose production and thermostability. Bioresour Technol 2011, 102: 3973-3976.
Article
CAS
Google Scholar
Irwin DC, Zhang S, Wilson DB: Cloning, expression and characterization of a family 48 exocellulase, Cel48A, from thermobifida fusca . Eur J Biochem 2000, 267: 4988-4997.
Article
CAS
Google Scholar
McGinnis K, Wilson DB: Disulfide arrangement and functional domains of beta-1,4-endoglucanse E5 from thermomonospora fusca . Biochemistry 1993, 32: 8157-8161.
Article
CAS
Google Scholar
Jung H, Wilson DB, Walker LP: Binding and reversibility of thermobifida fusca Cel5A, Cel6B, and Cel48A and their respective catalytic domains to bacterial microcrystalline cellulose. Biotechnol Bioeng 2003, 84: 151-159.
Article
CAS
Google Scholar
Ding S-Y, Rincon MT, Lamed R, Martin JC, McCrae SI, Aurilia V, Shoham Y, Bayer EA, Flint HJ: Cellulosomal scaffoldin-like proteins from ruminococcus flavefaciens . J Bacteriol 2001, 183: 1945-1953.
Article
CAS
Google Scholar
Morag E, Lapidot A, Govorko D, Lamed R, Wilchek M, Bayer EA, Shoham Y: Expression, purification and characterization of the cellulose-binding domain of the scaffoldin subunit from the cellulosome of clostridium thermocellum . Appl Environ Microbiol 1995, 61: 1980-1986.
CAS
Google Scholar
Barak Y, Handelsman T, Nakar D, Mechaly A, Lamed R, Shoham Y, Bayer EA: Matching fusion-protein systems for affinity analysis of two interacting families of proteins: the cohesin-dockerin interaction. J Mol Recognit 2005, 18: 491-501.
Article
CAS
Google Scholar
Vazana Y, Moraïs S, Barak Y, Lamed R, Bayer EA: Designer cellulosomes for enhanced hydrolysis of cellulosic substrates. Methods Enzymol 2012, 510: 429-452.
Article
CAS
Google Scholar
Irwin DC, Spezio M, Walker LP, Wilson DB: Activity studies of eight purified cellulases: specificity, synergism, and binding domain effects. Biotechnol Bioeng 1993, 42: 1002-1013.
Article
CAS
Google Scholar
Ko KC, Han Y, Choi JH, Kim GJ, Lee SG, Song JJ: A novel bifunctional endo-/exo-type cellulase from an anaerobic ruminal bacterium. Appl Microbiol Biotechnol 2011, 89: 1453-1462.
Article
CAS
Google Scholar
Gibbs MD, Reeves RA, Farrington GK, Anderson P, Williams DP, Bergquist PL: Multidomain and multifunctional glycosyl hydrolases from the extreme thermophile caldicellulosiruptor isolate Tok7B.1. Curr Microbiol 2000, 40: 333-340.
Article
CAS
Google Scholar
Mingardon F, Chanal A, Tardif C, Bayer EA, Fierobe H-P: Exploration of new geometries in cellulosome-like chimeras. Appl Environ Microbiol 2007, 73: 7138-7149.
Article
CAS
Google Scholar
Berger E, Zhang D, Zverlov VV, Schwarz WH: Two noncellulosomal cellulases of clostridium thermocellum , Cel9I and Cel48Y, hydrolyse crystalline cellulose synergistically. FEMS Microbiol Lett 2007, 268: 194-201.
Article
CAS
Google Scholar
Boisset C, Fraschini C, Schulein M, Henrissat B, Chanzy H: Imaging the enzymatic digestion of bacterial cellulose ribbons reveals the endo character of the cellobiohydrolase Cel6A from humicola insolens and its mode of synergy with cellobiohydrolase Cel7A. Appl Environ Microbiol 2000, 66: 1444-1452.
Article
CAS
Google Scholar
Boisset C, Petrequin C, Chanzy H, Henrissat B, Schulein M: Optimized mixtures of recombinant Humicola insolens cellulases for the biodegradation of crystalline cellulose. Biotechnol Bioeng 2001, 72: 339-345.
Article
CAS
Google Scholar
Irwin D, Walker L, Spezio M, Wilson D: Activity studies of eight purified cellulases: specificity, synergism, and binding domain effects. Biotechnol Bioeng 1993, 42: 1002-1013.
Article
CAS
Google Scholar
Walker LP, Belair CD, Wilson DB, Irwin DC: Engineering cellulase mixtures by varying the mole fraction of thermomonospora fusca E
5
and E
3
, trichoderma reesei CBHI, and caldocellum saccharolyticum β-glucosidase. Biotechnol Bioeng 1993, 42: 1019-1028.
Article
CAS
Google Scholar
Doi RH, Park JS, Liu CC, Malburg LM, Tamaru Y, Ichiishi A, Ibrahim A: Cellulosome and noncellulosomal cellulases of clostridium cellulovorans . Extremophiles 1998, 2: 53-60.
Article
CAS
Google Scholar
Flint HJ, Martin J, McPherson CA, Daniel AS, Zhang JX: A bifunctional enzyme, with separate xylanase and beta(1,3-1,4)-glucanase domains, encoded by the xynD gene of Ruminococcus flavefaciens. J Bacteriol 1993, 175: 2943-2951.
CAS
Google Scholar
Han SO, Cho HY, Yukawa H, Inui M, Doi RH: Regulation of expression of cellulosomes and noncellulosomal (hemi)cellulolytic enzymes in clostridium cellulovorans during growth on different carbon sources. J Bacteriol 2004, 186: 4218-4227.
Article
CAS
Google Scholar
Kosugi A, Murashima K, Doi RH: Characterization of two noncellulosomal subunits, ArfA and BgaA, from clostridium cellulovorans that cooperate with the cellulosome in plant cell wall degradation. J Bacteriol 2002, 184: 6859-6865.
Article
CAS
Google Scholar
Haimovitz R, Barak Y, Morag E, Voronov-Goldman M, Lamed R, Bayer EA: Cohesin-dockerin microarray: diverse specificities between two complementary families of interacting protein modules. Proteomics 2008, 8: 968-979.
Article
CAS
Google Scholar
Miller GL: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Biochem 1959, 31: 426-428.
CAS
Google Scholar