Central Intelligence Agency World Factbook www.cia.gov
Hansen J, Sato M: Greenhouse gas growth rates. Proc Natl Acad Sci U S A 2004, 101: 16109-16114. 10.1073/pnas.0406982101
CAS
Google Scholar
Pachauri RK, Reisinger A: IPCC Climate Change 2007. Geneva, Switzerland: Synthesis Report; 2007.
Google Scholar
Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P: Land clearing and the biofuel carbon debt. Science 2008, 319: 1235-1238. 10.1126/science.1152747
CAS
Google Scholar
Elobeid A, Tokgoz S, Hayes DJ, Babcock BA, Hart CE: The Long-Run Impact of Corn-Based Ethanol on the Grain, Oilseed, and Livestock Sectors: A Preliminary Assessment. In Book The Long-Run Impact of Corn-Based Ethanol on the Grain, Oilseed, and Livestock Sectors: A Preliminary Assessment. City: Iowa State University; 2006.
Google Scholar
Graham RL, Lichtenberg E, Roningen VO, Shapouri H, Walsh ME: The Economics of Biomass Production in the United States. http://bioenergy.ornl.gov/papers/bioam95/graham3.html
Vidal BC Jr, Dien BS, Ting KC, Singh V: Influence of feedstock particle size on lignocellulose conversion–a review. Appl Biochem Biotechnol 2011, 164: 1405-1421. 10.1007/s12010-011-9221-3
CAS
Google Scholar
Schell C, Riley C, Petersen GR: Pathways for development of a biorenewables industry. Bioresour Technol 2008, 99: 5160-5164. 10.1016/j.biortech.2007.09.085
CAS
Google Scholar
Renewable Fuels Association www.ethanolrfa.org
Valdes C: Brazil’s Ethanol Production: Looking Forward. http://www.ers.usda.gov/media/126865/bio02.pdf
Sims RE, Mabee W, Saddler JN, Taylor M: An overview of second generation biofuel technologies. Bioresour Technol 2010, 101: 1570-1580. 10.1016/j.biortech.2009.11.046
CAS
Google Scholar
Vermerris W (Ed): Genetic Improvement of Bioenergy Crops. Gainesville, FL: Springer; 2008.
Google Scholar
Evenson RE, Gollin D: Assessing the impact of the green revolution, 1960 to 2000. Science 2003, 300: 758-762. 10.1126/science.1078710
CAS
Google Scholar
Galbe M, Zacchi G: A review of the production of ethanol from softwood. Appl Microbiol Biotechnol 2002, 59: 618-628. 10.1007/s00253-002-1058-9
CAS
Google Scholar
Gruno M, Väljamäe P, Pettersson G, Johansson G: Inhibition of the Trichoderma reesei cellulases by cellobiose is strongly dependent on the nature of the substrate. Biotechnol Bioeng 2004, 86: 503-511. 10.1002/bit.10838
CAS
Google Scholar
Holtzapple M, Cognata M, Shu Y, Hendrickson C: Inhibition of Trichoderma reesei cellulase by sugars and solvents. Biotechnol Bioeng 1990, 36: 275-287. 10.1002/bit.260360310
CAS
Google Scholar
Johnson EA, Reese ET, Demain AL: Inhibition of Clostridium thermocellum Cellulase by End Products of Cellulolysis. J Appl Biochem 1982, 4: 64-71.
CAS
Google Scholar
Xiao Z, Zhang X, Gregg D, Saddler J: Effects of sugar inhibition on cellulases and β-glucosidase during enzymatic hydrolysis of softwood substrates. Appl Biochem Biotechnol 2004, 115: 1115-1126. 10.1385/ABAB:115:1-3:1115
Google Scholar
Wald S, Wilke CR, Blanch HW: Kinetics of the enzymatic hydrolysis of cellulose. Biotechnol Bioeng 1984, 26: 221-230. 10.1002/bit.260260305
CAS
Google Scholar
Stone JE, Scallan AM, Donefer E, Ahlgren E: Digestibility as a Simple Function of a Molecule of Similar Size to a Cellulase Enzyme. Advances in Chemistry. In Cellulases and Their Applications. Washington, D.C.: American Chemical Society; 1969:219-241.
Google Scholar
Grethlein HE: The Effect of Pore Size Distribution on the Rate of Enzymatic Hydrolysis of Cellulosic Substrates. Nat Biotechnol 1985, 3: 155-160. 10.1038/nbt0285-155
CAS
Google Scholar
Burns D, Ooshima H, Converse A: Surface area of pretreated lignocellulosics as a function of the extent of enzymatic hydrolysis. Appl Biochem Biotechnol 1989, 20–21: 79-94.
Google Scholar
Thompson DN, Chen H-C, Grethlein HE: Comparison of pretreatment methods on the basis of available surface area. Bioresour Technol 1992, 39: 155-163. 10.1016/0960-8524(92)90135-K
CAS
Google Scholar
Esteghlalian AR, Bilodeau M, Mansfield SD, Saddler JN: Do Enzymatic Hydrolyzability and Simons' Stain Reflect the Changes in the Accessibility of Lignocellulosic Substrates to Cellulase Enzymes? Biotechnol Prog 2001, 17: 1049-1054. 10.1021/bp0101177
CAS
Google Scholar
Holtzapple MT, Caram HS, Humphrey AE: Determining the inhibition constants in the HCH-1 model of cellulose hydrolysis. Biotechnol Bioeng 1984, 26: 753-757. 10.1002/bit.260260719
CAS
Google Scholar
Bommarius AS, Katona A, Cheben SE, Patel AS, Ragauskas AJ, Knudson K, Pu Y: Cellulase kinetics as a function of cellulose pretreatment. Metab Eng 2008, 10: 370-381. 10.1016/j.ymben.2008.06.008
CAS
Google Scholar
Caminal G, López-Santín J, Solà C: Kinetic modeling of the enzymatic hydrolysis of pretreated cellulose. Biotechnol Bioeng 1985, 27: 1282-1290. 10.1002/bit.260270903
CAS
Google Scholar
Gusakov AV, Sinitsyn AP, Klyosov AA: Kinetics of the enzymatic hydrolysis of cellulose: 2. A mathematical model for the process in a plug-flow column reactor. Enzym Microb Technol 1985, 7: 383-388. 10.1016/0141-0229(85)90127-9
CAS
Google Scholar
Lee Y-H, Fan LT: Kinetic studies of enzymatic hydrolysis of insoluble cellulose: (II). Analysis of extended hydrolysis times. Biotechnol Bioeng 1983, 25: 939-966. 10.1002/bit.260250406
CAS
Google Scholar
Chen H, Hayn M, Esterbauer H: Purification and characterization of two extracellular β-glucosidases from Trichoderma reesei. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology 1992, 1121: 54-60. 10.1016/0167-4838(92)90336-C
CAS
Google Scholar
Gong C-S, Ladisch MR, Tsao GT: Cellobiase from Trichoderma viride: Purification, properties, kinetics, and mechanism. Biotechnol Bioeng 1977, 19: 959-981. 10.1002/bit.260190703
CAS
Google Scholar
Decker CH, Visser J, Schreier P: β-Glucosidases from Five Black Aspergillus Species: Study of Their Physico-Chemical and Biocatalytic Properties. J Agric Food Chem 2000, 48: 4929-4936. 10.1021/jf000434d
CAS
Google Scholar
Günata Z, Vallier M-j: Production of a highly glucose-tolerant extracellular β-glucosidase by three Aspergillus strains. Biotechnol Lett 1999, 21: 219-223. 10.1023/A:1005407710806
Google Scholar
Watanabe T, Sato T, Yoshioka S, Koshijima T, Kuwahara M: Purification and properties of Aspergillus niger beta-glucosidase. Eur J Biochem 1992, 209: 651-659. 10.1111/j.1432-1033.1992.tb17332.x
CAS
Google Scholar
Yan TR, Lin CL: Purification and characterization of a glucose-tolerant β-glucosidase from Aspergillus niger. Biosci Biotechnol Biochem 1997, 61: 965-970. 10.1271/bbb.61.965
CAS
Google Scholar
Reczey KA, Brumbauer A, Bollok M, Szengyel Z, Zacchi G: Use of hemicellulose hydrolysate for β-glucosidase fermentation. Appl Biochem Biotechnol 1998, 70–72: 225-235.
Google Scholar
Sternberg D, Vijayakumar P, Reese ET: β-Glucosidase: microbial production and effect on enzymatic hydrolysis of cellulose. Can J Microbiol 1977, 23: 139-147. 10.1139/m77-020
CAS
Google Scholar
Ximenes E, Kim Y, Mosier N, Dien B, Ladisch M: Inhibition of cellulases by phenols. Enzym Microb Technol 2010, 46: 170-176. 10.1016/j.enzmictec.2009.11.001
CAS
Google Scholar
Tejirian A, Xu F: Inhibition of Cellulase-Catalyzed Lignocellulosic Hydrolysis by Iron and Oxidative Metal Ions and Complezes. Appl Environ Microbiol 2010, 76: 7673-7682. 10.1128/AEM.01376-10
CAS
Google Scholar
Ferchak JD, Pye EK: Effect of cellobiose, glucose, ethanol, and metal ions on the cellulase enzyme complex of Thermomonospora fusca. Biotechnol Bioeng 1983, 25: 2865-2872. 10.1002/bit.260251205
CAS
Google Scholar
Gardner RM, Doerner KC, White BA: Purification and characterization of an exo-beta-1,4-glucanase from Ruminococcus flavefaciens FD-1. J Bacteriol 1987, 169: 4581-4588.
CAS
Google Scholar
Harada K, Tanaka K, Fukuda Y, Hashimoto W, Murata K: Degradation of rice bran hemicellulose by Paenibacillus sp. strain HC1: gene cloning, characterization and function of β-D-glucosidase as an enzyme involved in degradation. Arch Microbiol 2005, 184: 215-224. 10.1007/s00203-005-0038-8
CAS
Google Scholar
Heredia A, Fernandez-Bolaños J, Guillen R: Inhibitors of cellulolytic activity in olive fruits (Olea europaea, Hojiblanca var.). Zeitschrift für Lebensmitteluntersuchung und -Forschung A 1989, 189: 216-218. 10.1007/BF01028066
CAS
Google Scholar
Kim DW, Jang YH, Kim CS, Lee NS: Effect of Metal Ions on the Degradation and Adsorption of Two Cellobiohydrolases on Microcrystalline Cellulose. Bulletin of the Korean Chemical Society 2001, 22: 716-720.
CAS
Google Scholar
Lee TK, Kim CH: Molecular cloning and expression of an endo-beta-1,4-D-glucanase I (Avicelase I) gene from Bacillus cellulyticus K-12 and characterization of the recombinant enzyme. Appl Biochem Biotechnol 1999, 80: 121-140. 10.1385/ABAB:80:2:121
CAS
Google Scholar
Li D-C, Lu M, Li Y-L, Lu J: Purification and characterization of an endocellulase from the thermophilic fungus Chaetomium thermophilum CT2. Enzym Microb Technol 2003, 33: 932-937. 10.1016/S0141-0229(03)00245-X
CAS
Google Scholar
Dekker RFH: Inhibitors of Trichoderma reesei β-glucosidase activity derived from autohydrolysis-exploded Eucalyptus regnans. Appl Microbiol Biotechnol 1988, 29: 593-598.
Google Scholar
Excoffier G, Toussaint B, Vignon MR: Saccharification of steam-exploded poplar wood. Biotechnol Bioeng 1991, 38: 1308-1317. 10.1002/bit.260381108
CAS
Google Scholar
Panagiotou G, Olsson L: Effect of compounds released during pretreatment of wheat straw on microbial growth and enzymatic hydrolysis rates. Biotechnol Bioeng 2007, 96: 250-258. 10.1002/bit.21100
CAS
Google Scholar
Klinke HB, Ahring BK, Schmidt AS, Thomsen AB: Characterization of degradation products from alkaline wet oxidation of wheat straw. Bioresour Technol 2002, 82: 15-26. 10.1016/S0960-8524(01)00152-3
CAS
Google Scholar
Du B, Sharma LN, Becker C, Chen S-F, Mowery RA, van Walsum GP, Chambliss CK: Effect of varying feedstock–pretreatment chemistry combinations on the formation and accumulation of potentially inhibitory degradation products in biomass hydrolysates. Biotechnol Bioeng 2010, 107: 430-440. 10.1002/bit.22829
CAS
Google Scholar
Fenske JJ, Griffin DA, Penner MH: Comparison of aromatic monomers in lignocellulosic biomass prehydrolysates. J Ind Microbiol Biotechnol 1998, 20: 364-368. 10.1038/sj.jim.2900543
CAS
Google Scholar
Ximenes E, Kim Y, Mosier N, Dien B, Ladisch M: Deactivation of cellulases by phenols. Enzym Microb Technol 2011, 48: 54-60. 10.1016/j.enzmictec.2010.09.006
CAS
Google Scholar
Pan X: Role of Functional Groups in Lignin Inhibition of Enzymatic Hydrolysis of Cellulose to Glucose. J Biobased Materials and Bioenergy 2008, 2: 25-32. 10.1166/jbmb.2008.005
Google Scholar
Mandels M, Reese ET: Inhibition of Cellulases. Annu Rev Phytopathol 1965, 3: 85-102. 10.1146/annurev.py.03.090165.000505
CAS
Google Scholar
Siniero J, Dominguez H, Nunez MJ, Lema JM: Inhibition of cellulase activity by sunflower polyphenols. Biotechnol Lett 1997, 19: 521-524. 10.1023/A:1018377001557
Google Scholar
Berlin A, Balakshin M, Gilkes N, Kadla J, Maximenko V, Kubo S, Saddler J: Inhibition of cellulase, xylanase and β-glucosidase activities by softwood lignin preparations. J Biotechnol 2006, 125: 198-209. 10.1016/j.jbiotec.2006.02.021
CAS
Google Scholar
Akin D, Rigsby L: Corn Fiber: Structure, Composition, and Response to Enzymes for Fermentable Sugars and Coproducts. Appl Biochem Biotechnol 2008, 144: 59-68. 10.1007/s12010-007-0053-0
CAS
Google Scholar
Ximenes E, Brandon S, Doran-Peterson J: Evaluation of a Hypocrea jecorina Enzyme Preparation for Hydrolysis of Tifton 85 Bermudagrass. Appl Biochem Biotechnol 2008, 146: 89-100. 10.1007/s12010-007-8129-4
CAS
Google Scholar
Tejirian A, Xu F: Inhibition of enzymatic cellulolysis by phenolic compounds. Enzym Microb Technol 2011, 48: 239-247. 10.1016/j.enzmictec.2010.11.004
CAS
Google Scholar
Kumar R: Prosopis cineraria leaf tannins: their inhibitory effect upon ruminal cellulase and the recovery of inhibition by polyethylene glycol-4000. Basic Life Science 1992, 59: 699-704.
CAS
Google Scholar
Zanobini A, Vanni P, Firenzuoli A: Effect of tween 80 on protein-tannic acid complex. Cellular and Molecular Life Sciences 1967, 23: 1015-1016. 10.1007/BF02136419
CAS
Google Scholar
Barriere Y, Guillet C, Goffner D, Pichon M: Genetic variation and breeding strategies for improved cell-wall digestibility in annual forage crops. Animal Res 2003, 52: 193-228. 10.1051/animres:2003018
CAS
Google Scholar
Barriere Y, Ralph J, Mechin V, Guillaumie S, Grabber JH, Argillier O, Chabbert B, Lapierre C: Genetic and molecular basis of grass cell-wall biosynthesis and degradability. II. Lessons from brown-rib mutants. C R Biol 2004, 327: 847-860. 10.1016/j.crvi.2004.05.010
CAS
Google Scholar
Buanafina MM d O: Feruloylation in Grasses: Current and Future Perspectives. Molecular Plant 2009, 2: 861-872. 10.1093/mp/ssp067
Google Scholar
Hatfield RD, Ralph J, Grabber JH: Cell wall cross-linking by ferulates and diferulates in grasses. J Sci Food Agric 1999, 79: 403-407. 10.1002/(SICI)1097-0010(19990301)79:3<403::AID-JSFA263>3.0.CO;2-0
CAS
Google Scholar
Anterola AM, Lewis NG: Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity. Phytochemistry 2002, 61: 221-294. 10.1016/S0031-9422(02)00211-X
CAS
Google Scholar
Grabber JH, Ralph J, Lapierre C, Barrière Y: Genetic and molecular basis of grass cell-wall degradability. I. Lignin–cell wall matrix interactions. Comptes Rendus Biologies 2004, 327: 455-465. 10.1016/j.crvi.2004.02.009
CAS
Google Scholar
Barrière Y, Ralph J, Méchin V, Guillaumie S, Grabber JH, Argillier O, Chabbert B, Lapierre C: Genetic and molecular basis of grass cell wall biosynthesis and degradability. II. Lessons from brown-midrib mutants. Comptes Rendus Biologies 2004, 327: 847-860. 10.1016/j.crvi.2004.05.010
Google Scholar
Ralph J, Hatfield Ronald D, Grabber John H, Jung Hans-Joachim G, Quideau S, Helm Richard F: Cell Wall Cross-Linking in Grasses by Ferulates and Diferulates. ACS Symposium Series. In Lignin and Lignan Biosynthesis. Washington, D.C.: Am Chemical Soc; 1998:209-236.
Google Scholar
Vogel J: Unique aspects of the grass cell wall. Current Opinion in Plant Biology 2008, 11: 301-307. 10.1016/j.pbi.2008.03.002
CAS
Google Scholar
Baucher M, Bernard-vailhé MA, Chabbert B, Besle J-M, Opsomer C, Van Montagu M, Botterman J: Down-regulation of cinnamyl alcohol dehydrogenase in transgenic alfalfa (Medicago sativa L.) and the effect on lignin composition and digestibility. Plant Mol Biol 1999, 39: 437-447. 10.1023/A:1006182925584
CAS
Google Scholar
Jung HG, Casler MD: Relationship of lignin and esterified phenolics to fermentation of smooth bromegrass fibre. Anim Feed Sci Technol 1991, 32: 63-68. 10.1016/0377-8401(91)90010-P
CAS
Google Scholar
Jung H-JG, Buxtono DR: Forage quality variation among maize inbreds: Relationships of cell-wall composition and in-vitro degradability for stem internodes. J Sci Food Agric 1994, 66: 313-322. 10.1002/jsfa.2740660308
CAS
Google Scholar
Jung H-JG, Ni W, Chapple CCS, Meyer K: Impact of lignin composition on cell-wall degradability in an Arabidopsis mutant. J Sci Food Agric 1999, 79: 922-928. 10.1002/(SICI)1097-0010(19990501)79:6<922::AID-JSFA307>3.0.CO;2-9
CAS
Google Scholar
Grohmann K, Torget R, Himmel M: Optimization of dilute acid pretreatment of biomass. In Biotechnology and Bioengineering Symposium: Wiley; 1986.
Google Scholar
Wong KKY, Deverell KF, Mackie KL, Clark TA, Donaldson LA: The relationship between fiber-porosity and cellulose digestibility in steam-exploded Pinus radiata. Biotechnol Bioeng 1988, 31: 447-456. 10.1002/bit.260310509
CAS
Google Scholar
Arora R, Manisseri C, Li C, Ong MD, Scheller HV, Vogel K, Simmons BA, Singh S: Monitoring and Analyzing Process Streams Towards Understanding Ionic Liquid Pretreatment of Switchgrass (Panicum virgatum L.). Bioenergy Research 2010, 3: 134-145. 10.1007/s12155-010-9087-1
Google Scholar
Mooney CA, Mansfield SD, Touhy MG, Saddler JN: The effect of initial pore volume and lignin content on the enzymatic hydrolysis of softwoods. Bioresour Technol 1998, 64: 113-119. 10.1016/S0960-8524(97)00181-8
CAS
Google Scholar
Yoshida M, Liu Y, Uchida S, Kawarada K, Ukagami Y, Ichinose H, Kaneko S, Fukuda K: Effects of cellulose crystallinity, hemicellulose, and lignin on the enzymatic hydrolysis of Miscanthus sinensis to monosaccharides. Biosci Biotechnol Biochem 2008, 72: 805-810. 10.1271/bbb.70689
CAS
Google Scholar
Zhao X-B, Wang L, Liu D-H: Peracetic acid pretreatment of sugarcane bagasse for enzymatic hydrolysis: a continued work. J Chem Technol Biotechnol 2008, 83: 950-956. 10.1002/jctb.1889
CAS
Google Scholar
Fu D, Mazza G, Tamaki Y: Lignin Extraction from Straw by Ionic Liquids and Enzymatic Hydrolysis of the Cellulosic Residues. J Agric Food Chem 2010, 58: 2915-2922. 10.1021/jf903616y
CAS
Google Scholar
Varanasi S, Schall CA, Dadi AP, Anderson J, Rao K: Biomass Pretreatment. 2008.http://www.faqs.org/patents/app/20080227162#b
Google Scholar
Kimon KS, Leslie Alan E, William Orlando Sinclair D: Enhanced saccharification kinetics of sugarcane bagasse pretreated in 1-butyl-3-methylimidazolium chloride at high temperature and without complete dissolution. Bioresour Technol 2011, 102: 9325-9329. 10.1016/j.biortech.2011.07.072
CAS
Google Scholar
Li C, Knierim B, Manisseri C, Arora R, Scheller HV, Auer M, Vogel KP, Simmons BA, Singh S: Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharification. Bioresour Technol 2010, 101: 4900-4906. 10.1016/j.biortech.2009.10.066
CAS
Google Scholar
Singh S, Simmons BA, Vogel KP: Visualization of biomass solubilization and cellulose regeneration during ionic liquid pretreatment of switchgrass. Biotechnol Bioeng 2009, 104: 68-75. 10.1002/bit.22386
CAS
Google Scholar
Cateto C, Hu G, Ragauskas A: Enzymatic hydrolysis of organosolv Kanlow switchgrass and its impact on cellulose crystallinity and degree of polymerization. Energy & Environmental Sci 2011, 4: 1516-1521. 10.1039/c0ee00827c
CAS
Google Scholar
Rollin JA, Zhu Z, Sathitsuksanoh N, Zhang YHP: Increasing cellulose accessibility is more important than removing lignin: A comparison of cellulose solvent-based lignocellulose fractionation and soaking in aqueous ammonia. Biotechnol Bioeng 2011, 108: 22-30. 10.1002/bit.22919
CAS
Google Scholar
Jorgenson LR: Brown midrib in maize and its linkage relations. J Am Soc Agronomy 1931, 23: 549-557. 10.2134/agronj1931.00021962002300070005x
Google Scholar
Porter KS, Axtell JD, Lechtenberg VL, Colenbrander VF: Phenotype, Fiber Composition, and in vitro Dry Matter Disappearance of Chemically Induced Brown Midrib (bmr) Mutants of Sorghum. Crop Sci 1977, 18: 205-208.
Google Scholar
Cherney JH, Axtell JD, Hassen MM, Anliker KS: Forage quality characterization of a chemically-induced brown-midrib mutant in pearl-mille. Crop Sci 1988, 28: 783-787. 10.2135/cropsci1988.0011183X002800050012x
Google Scholar
Kuc J, Nelson OE: The abnormal lignins produced by the brown-midrib mutants of maize: I. The brown-midrib-1 mutant. Archives of Biochemistry and Biophysics 1964, 105: 103-113. 10.1016/0003-9861(64)90240-1
CAS
Google Scholar
Gee MS, Nelson OE, Kuć J: Abnormal lignins produced by the brown-midrib mutants of maize: II. Comparative studies on normal and brown-midrib-1 dimethylformamide lignins. Arch Biochem Biophys 1968, 123: 403-408. 10.1016/0003-9861(68)90151-3
CAS
Google Scholar
Baucher M, Chabbert B, Pilate G, Van Doorsselaere J, Tollier MT, Petit-Conil M, Cornu D, Monties B, Van Montagu M, Inze D, et al.: Red Xylem and Higher Lignin Extractability by Down-Regulating a Cinnamyl Alcohol Dehydrogenase in Poplar. Plant Physiol 1996, 112: 1479-1490.
CAS
Google Scholar
Sibout R, Eudes A, Mouille G, Pollet B, Lapierre L, Jouanin L, Seguin A: Cinnamyl Alcohol Dehydrogenase-C and -D Are the Primary Genes Involved in Lignin Biosynthesis in the Floral Stem of Arabidopsis. Plant Cell 2005, 17: 2059-2076. 10.1105/tpc.105.030767
CAS
Google Scholar
Vincent D, Lapierre C, Pollet B, Cornic G, Negroni L, Zivy M: Water Deficits Affect Caffeate O-methyltransferase, Lignification and Related Enzymes in Maize Leaves. A Proteomic Investigation. Plant Physiology 2005, 137: 949-960. 10.1104/pp.104.050815
CAS
Google Scholar
Bout S, Vermerris W: A candidate-gene approach to clone the sorghum Brown midrib gene encoding caffeic acid O-methyltransferase. Mole Genetics and Genomics 2003, 269: 205-214.
CAS
Google Scholar
Vignols F, Rigau J, Torres MA, Capellades M, Puigdomenech P: The brown midrib3 (bm3) Mutation in Maize Occurs in the Gene Encoding Caffeic Acid O-Methyltransferase. Plant Cell 1995, 7: 407-416.
CAS
Google Scholar
Theerarattananoon K, Wu X, Staggenborg S, Propheter R, Madl R, Wang D: Evaluation and characterization of sorghum biomass as feedstock for sugar production. Trans ASABE 2010, 53: 509-525.
CAS
Google Scholar
Wu L, Arakane M, Ike M, Wada M, Takai T, Gau M, Tokuyasu K: Low temperature alkali pretreatment for improving enzymatic digestibility of sweet sorghum bagasse for ethanol production. Bioresour Technol 2011, 102: 4793-4799. 10.1016/j.biortech.2011.01.023
CAS
Google Scholar
Corredor DY, Salazar JM, Hohn KL, Bean S, Bean B, Wang D: Evaluation and Characterization of Forage Sorghum as Feedstock for Fermentable Sugar Production. Appl Biochem Biotechnol 2009, 158: 164-179. 10.1007/s12010-008-8340-y
CAS
Google Scholar
Sattler SE, Funnell-Harris DL, Pedersen JF: Efficacy of Singular and Stacked brown midrib 6 and 12 in the Modification of Lignocellulose and Grain Chemistry. J Agric Food Chem 2010, 58: 3611-3613. 10.1021/jf903784j
CAS
Google Scholar
Miller JE, Geadelmann JL, Marten GC: Effect Of The Brown Midrib-allele On Maize Silage Quality And Yield. Crop Sci 1983, 23: 493-496. 10.2135/cropsci1983.0011183X002300030013x
Google Scholar
Inoue N, Kasuga S: Agronomic traits and nutritive value of stover in brown midrib-3 maize hybrids. J Japanese Soc Grassland Sci 1989, 35: 220-227.
Google Scholar
Weller RF, Phipps RH, Cooper A: The effect of the brown midrib-3 gene on the maturity and yield of forage maize. Grass and Forage Sci 1985, 40: 335-339. 10.1111/j.1365-2494.1985.tb01761.x
Google Scholar
Hua SST, Grosjean OK, Baker JL: Inhibition of aflatoxin biosynthesis by phenolic compounds. Lett Appl Microbiol 1999, 29: 289-291. 10.1046/j.1472-765X.1999.00635.x
CAS
Google Scholar
McKeehen JD, Busch RH, Fulcher RG: Evaluation of Wheat (Triticum aestivum L.) Phenolic Acids during Grain Development and Their Contribution to Fusarium Resistance. J Agric Food Chem 1999, 47: 1476-1482. 10.1021/jf980896f
CAS
Google Scholar
Dowd PF, Duvick JP, Root T: Comparative toxicity of allelochemicals and their enzymatic oxidation products to maize fungal pathogens, emphasizing Fusarium graminearum. Natural Toxins 1997, 5: 180-185.
CAS
Google Scholar
Lee MH, Brewbacker JL: Effects of brown midrib-3 on yields and yield components of maize. Crop Sci 1984, 24: 105-108. 10.2135/cropsci1984.0011183X002400010024x
Google Scholar
Gentinetta E, Bertolini M, Rossi I, Lorenzoni C, Motto M: Effect of brown midrib-3 mutant on forage quality and yield in maize. J Genet Breeding 1990, 44: 21-26.
Google Scholar
Bean B, McCollum T, McCuistion K, Robinson J, Villeareal B, VanMeter R, Pietsch D: Texas panhandle Forage Sorghum Silage Trial. In Book Texas panhandle Forage Sorghum Silage Trial. City: exas Cooperative Extension and Texas Agricultural Experiment Station; 2006.
Google Scholar
Bean B, McCollum T, Villeareal B, Blumenthal J, Robinson J, Brandon R, Buttrey E, VanMeter R, Pietsch D: Texas panhandle Forage Sorghum Silage Trial. In Book Texas panhandle Forage Sorghum Silage Trial. City: Texas Cooperative Extension and Texas Agricultural Experiment Station; 2008.
Google Scholar
Oliver AL, Pedersen JF, Grant RJ, Klopfenstein TJ, Jose HD: Comparative Effects of the Sorghum bmr-6 and bmr-12 Genes: II. Grain Yield, Stover Yield, and Stover Quality in Grain Sorghum. Crop Sci 2005, 45: 2240-2245. 10.2135/cropsci2004.0660
CAS
Google Scholar
Fu C, Sunkar R, Zhou C, Shen H, Zhang J-Y, Matts J, Wolf J, Mann DGJ, Stewart CN, Tang Y, Wang Z-Y: Overexpression of miR156 in switchgrass (Panicum virgatum L.) results in various morphological alterations and leads to improved biomass production. Plant Biotechnology J 2012, 10: 443-452. 10.1111/j.1467-7652.2011.00677.x
CAS
Google Scholar
Xie K, Wu C, Xiong L: Genomic Organization, Differential Expression, and Interaction of SQUAMOSA Promoter-Binding-Like Transcription Factors and microRNA156 in Rice. Plant Physiol 2006, 142: 280-293. 10.1104/pp.106.084475
CAS
Google Scholar
Chuck G, Cigan AM, Saeteurn K, Hake S: The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA. Nat Genet 2007, 39: 544-549. 10.1038/ng2001
CAS
Google Scholar
Tamagnone L, Merida A, Parr A, Mackay S, Culianez-Macia FA, Roberts K, Martin C: The AmMYB308 and AmMYB330 Transcription Factors from Antirrhinum Regulate Phenylpropanoid and Lignin Biosynthesis in Transgenic Tobacco. Plant Cell 1998, 10: 135-154.
CAS
Google Scholar
Jin H, Cominelli E, Bailey P, Parr A, Mehrtens F, Jones J, Tonelli C, Weisshaar B, Martin C: Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis. EMBO J 2000, 19: 6150-6161. 10.1093/emboj/19.22.6150
CAS
Google Scholar
Fornalé S, Shi X, Chai C, Encina A, Irar S, Capellades M, Fuguet E, Torres J-L, Rovira P, Puigdomènech P, et al.: ZmMYB31 directly represses maize lignin genes and redirects the phenylpropanoid metabolic flux. The Plant J 2010, 64: 633-644. 10.1111/j.1365-313X.2010.04363.x
Google Scholar
Fornalé S, Sonbol F-M, Maes T, Capellades M, Puigdomènech P, Rigau J, Caparrós-Ruiz D: Down-regulation of the maize and Arabidopsis thaliana caffeic acid O-methyl-transferase genes by two new maize R2R3-MYB transcription factors. Plant Mol Biol 2006, 62: 809-823. 10.1007/s11103-006-9058-2
Google Scholar
Shen H, He X, Poovaiah CR, Wuddineh WA, Ma J, Mann DGJ, Wang H, Jackson L, Tang Y, Neal Stewart C, et al.: Functional characterization of the switchgrass (Panicum virgatum) R2R3-MYB transcription factor PvMYB4 for improvement of lignocellulosic feedstocks. New Phytol 2012, 193: 121-136. 10.1111/j.1469-8137.2011.03922.x
CAS
Google Scholar
Segal L, Creely JJ, Martin AE Jr, Conrad CM: An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Text Res J 1959, 29: 786-794. 10.1177/004051755902901003
CAS
Google Scholar
Newman RH: Homogeneity in cellulose crystallinity between samples of Pinus radiata wood. Holzforschung 2004, 58: 91-96.
CAS
Google Scholar
Åkerholm M, Hinterstoisser B, Salmén L: Characterization of the crystalline structure of cellulose using static and dynamic FT-IR spectroscopy. Carbohydr Res 2004, 339: 569-578. 10.1016/j.carres.2003.11.012
Google Scholar
Evans R, Newman RH, Roick UC: Changes in cellulose crystallinity during kraft pulping. Comparison of infrared, x-ray diffraction and solid state NMR results. Holzforschung 1995, 49: 498-504. 10.1515/hfsg.1995.49.6.498
CAS
Google Scholar
Kataoka Y, Kondo T: FT-IR Microscopic Analysis of Changing Cellulose Crystalline Structure during Wood Cell Wall Formation. Macromolecules 1998, 31: 760-764. 10.1021/ma970768c
CAS
Google Scholar
Schenzel K, Fischer S, Brendler E: New Method for Determining the Degree of Cellulose I Crystallinity by Means of FT Raman Spectroscopy. Cellulose 2005, 12: 223-231. 10.1007/s10570-004-3885-6
CAS
Google Scholar
Vandenbrink J, Hilten R, Das K, Paterson A, Feltus F: Analysis of Crystallinity Index and Hydrolysis Rates in the Bioenergy Crop Sorghum bicolor. BioEnergy Res 2011, 5: 1-11.
Google Scholar
Reddy N, Yang YQ: Structure and properties of natural cellulose fibers obtained from sorghum leaves and stems. J Agric Food Chem 2007, 55: 5569-5574. 10.1021/jf0707379
CAS
Google Scholar
Isogai A, Atalla RH: Dissolution of Cellulose in Aqueous NaOH Solutions. Cellulose 1998, 5: 309-319. 10.1023/A:1009272632367
CAS
Google Scholar
Mansikkamäki P, Lahtinen M, Rissanen K: Structural Changes of Cellulose Crystallites Induced by Mercerisation in Different Solvent Systems; Determined by Powder X-ray Diffraction Method. Cellulose 2005, 12: 233-242. 10.1007/s10570-004-3132-1
Google Scholar
Liu L, Sun J, Li M, Wang S, Pei H, Zhang J: Enhanced enzymatic hydrolysis and structural features of corn stover by FeCl3 pretreatment. Bioresour Technol 2009, 100: 5853-5858. 10.1016/j.biortech.2009.06.040
CAS
Google Scholar
Barl B, Biliaderis CG, Murray ED: Effect of chemical pretreatments on the thermal degradation of corn husk lignocellulosics. J Agric Food Chem 1986, 34: 1019-1024. 10.1021/jf00072a022
CAS
Google Scholar
Xiao Z, Gao P, Qu Y, Wang T: Cellulose-binding domain of endoglucanase III from Trichoderma reesei disrupting the structure of cellulose. Biotechnol Lett 2001, 23: 711-715. 10.1023/A:1010325122851
CAS
Google Scholar
Ciolacu D, Kovac J, Kokol V: The effect of the cellulose-binding domain from Clostridium cellulovorans on the supramolecular structure of cellulose fibers. Carbohydr Res 2010, 345: 621-630. 10.1016/j.carres.2009.12.023
CAS
Google Scholar
Harris D, DeBolt S: Relative Crystallinity of Plant Biomass: Studies on Assembly, Adaptation and Acclimation. PLoS One 2008, 3: e2897. 10.1371/journal.pone.0002897
Google Scholar
Hallac BB, Pu Y, Ragauskas AJ: Chemical Transformations of Buddleja davidii Lignin during Ethanol Organosolv Pretreatment. Energy Fuel 2010, 24: 2723-2732. 10.1021/ef901556u
CAS
Google Scholar
Fan LT, Lee YH, Beardmore DH: Mechanism of the enzymatic-hydrolysis of cellulose - efffects of major structural features of cellulose on enzymatic-hydrolysis. Biotechnol Bioeng 1980, 22: 177-199. 10.1002/bit.260220113
CAS
Google Scholar
Penttilä PA, Várnai A, Leppänen K, Peura M, Kallonen A, Jääskeläinen P, Lucenius J, Ruokolainen J, Siika-aho M, Viikari L, Serimaa R: Changes in Submicrometer Structure of Enzymatically Hydrolyzed Microcrystalline Cellulose. Biomacromolecules 2010, 11: 1111-1117. 10.1021/bm1001119
Google Scholar
Hall M, Bansal P, Lee JH, Realff MJ, Bommarius AS: Cellulose crystallinity – a key predictor of the enzymatic hydrolysis rate. FEBS J 2010, 277: 1571-1582. 10.1111/j.1742-4658.2010.07585.x
CAS
Google Scholar
Ramos LP, Nazhad MM, Saddler JN: Effect of enzymatic hydrolysis on the morphology and fine structure of pretreated cellulosic residues. Enzym Microb Technol 1993, 15: 821-831. 10.1016/0141-0229(93)90093-H
CAS
Google Scholar
Lu Y, Yang B, Gregg D, Saddler JN, Mansfield SD: Cellulase adsorption and an evaluation of enzyme recycle during hydrolysis of steam-exploded softwood residues. Appl Biochem Biotechnol 2002, 98–100: 641-654.
Google Scholar
Lee Y-H, Fan LT: Kinetic studies of enzymatic hydrolysis of insoluble cellulose: Analysis of the initial rates. Biotechnol Bioeng 1982, 24: 2383-2406. 10.1002/bit.260241107
CAS
Google Scholar
Converse A, Ooshima H, Burns D: Kinetics of enzymatic hydrolysis of lignocellulosic materials based on surface area of cellulose accessible to enzyme and enzyme adsorption on lignin and cellulose. Appl Biochem Biotechnol 1990, 24–25: 67-73.
Google Scholar
Jeoh T, Ishizawa CI, Davis MF, Himmel ME, Adney WS, Johnson DK: Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol Bioeng 2007, 98: 112-122. 10.1002/bit.21408
CAS
Google Scholar
Karlsson J, Medve J, Tjerneld F: Hydrolysis of steam-pretreated lignocellulose. Appl Biochem Biotechnol 1999, 82: 243-258. 10.1385/ABAB:82:3:243
CAS
Google Scholar
Kumar R, Wyman CE: Access of cellulase to cellulose and lignin for poplar solids produced by leading pretreatment technologies. Biotechnol Prog 2009, 25: 807-819. 10.1002/btpr.153
CAS
Google Scholar
Kumar R, Wyman CE: Cellulase adsorption and relationship to features of corn stover solids produced by leading pretreatments. Biotechnol Bioeng 2009, 103: 252-267. 10.1002/bit.22258
CAS
Google Scholar
Gharpuray MM, Lee Y-H, Fan LT: Structural modification of lignocellulosics by pretreatments to enhance enzymatic hydrolysis. Biotechnol Bioeng 1983, 25: 157-172. 10.1002/bit.260250113
CAS
Google Scholar
Sinitsyn A, Gusakov A, Vlasenko E: Effect of structural and physico-chemical features of cellulosic substrates on the efficiency of enzymatic hydrolysis. Appl Biochem Biotechnol 1991, 30: 43-59. 10.1007/BF02922023
CAS
Google Scholar
Nutor J, Converse A: The effect of enzyme and substrate levels on the specific hydrolysis rate of pretreated poplar wood. Appl Biochem Biotechnol 1991, 28–29: 757-772.
Google Scholar
Deshpande MV, Eriksson KE: Reutilization of enzymes for saccharification of lignocellulosic materials. Enzym Microb Technol 1984, 6: 338-340. 10.1016/0141-0229(84)90045-0
CAS
Google Scholar
Ooshima H, Sakata M, Harano Y: Adsorption of cellulase from Trichoderma viride on cellulose. Biotechnol Bioeng 1983, 25: 3103-3114. 10.1002/bit.260251223
CAS
Google Scholar
Girard D, Converse A: Recovery of cellulase from lignaceous hydrolysis residue. Appl Biochem Biotechnol 1993, 39–40: 521-533.
Google Scholar
Chernaglazov VM, Ermolova OV, Klyozov AA: Adsorption of high purity endo-1-4-β-glucanases from Trichoderma reesei on components of lignocellulosic materials: cellulose, lignin and xylan. Enzym Microb Technol 1988, 10: 503-507. 10.1016/0141-0229(88)90029-4
Google Scholar
Palonen H, Tjerneld F, Zacchi G, Tenkanen M: Adsorption of Trichoderma reesei CBH I and EG II and their catalytic domains on steam pretreated softwood and isolated lignin. J Biotechnol 2004, 107: 65-72. 10.1016/j.jbiotec.2003.09.011
CAS
Google Scholar
Kim DW, Kim TS, Jeong YK, Lee JK: Adsorption kinetics and behaviors of cellulase components on microcrystalline cellulose. J Ferment Bioeng 1992, 73: 461-466. 10.1016/0922-338X(92)90138-K
CAS
Google Scholar
Eriksson T, Karlsson J, Tjerneld F: A model explaining declining rate in hydrolysis of lignocellulose substrates with cellobiohydrolase I (Cel7A) and endoglucanase I (Cel7B) of Trichoderma reesei. Appl Biochem Biotechnol 2002, 101: 41-60. 10.1385/ABAB:101:1:41
CAS
Google Scholar
Yang B, Wyman CE: BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Biotechnol Bioeng 2006, 94: 611-617. 10.1002/bit.20750
CAS
Google Scholar
Brash John L, Horbett Thomas A: Proteins at Interfaces. ACS Symposium Series. In Proteins at Interfaces II. Washington, D.C.: Am Chemical Soc; 1995:1-23.
Google Scholar
Reinikainen T, Teleman O, Teeri TT: Effects of pH and high ionic strength on the adsorption and activity of native and mutated cellobiohydrolase I from Trichoderma reesei. Proteins: Structure, Function, and Bioinformatics 1995, 22: 392-403. 10.1002/prot.340220409
CAS
Google Scholar
Ramos L, Saddler J: Enzyme recycling during fed-batch hydrolysis of cellulose derived from steam-exploded Eucalyptus viminalis. Appl Biochem Biotechnol 1994, 45–46: 193-207.
Google Scholar
Lee D, Yu AHC, Saddler JN: Evaluation of cellulase recycling strategies for the hydrolysis of lignocellulosic substrates. Biotechnol Bioeng 1995, 45: 328-336. 10.1002/bit.260450407
CAS
Google Scholar
Lee D, Yu A, Wong K, Saddler J: Evaluation of the enzymatic susceptibility of cellulosic substrates using specific hydrolysis rates and enzyme adsorption. Appl Biochem Biotechnol 1994, 45–46: 407-415.
Google Scholar
Mes-Hartree M, Hogan CM, Saddler JN: Recycle of enzymes and substrate following enzymatic hydrolysis of steam-pretreated aspenwood. Biotechnol Bioeng 1987, 30: 558-564. 10.1002/bit.260300413
CAS
Google Scholar
Jackson LS, Joyce TW, Heitmann JA, Giesbrecht FG: Enzyme activity recovery from secondary fiber treated with cellulase and xylanase. J Biotechnol 1996, 45: 33-44. 10.1016/0168-1656(95)00137-9
CAS
Google Scholar
Tan LUL, Yu EKC, Campbell N, Saddler JN: Column cellulose hydrolysis reactor: An efficient cellulose hydrolysis reactor with continuous cellulase recycling. Appl Microbiol Biotechnol 1986, 25: 250-255.
CAS
Google Scholar
Mores W, Knutsen J, Davis R: Cellulase recovery via membrane filtration. Appl Biochem Biotechnol 2001, 91–93: 297-309.
Google Scholar
Ramos LP, Breuil C, Saddler JN: The use of enzyme recycling and the influence of sugar accumulation on cellulose hydrolysis by Trichoderma cellulases. Enzym Microb Technol 1993, 15: 19-25. 10.1016/0141-0229(93)90111-E
CAS
Google Scholar
Castanon M, Wilke CR: Adsorption and recovery of cellulases during hydrolysis of newspaper. Biotechnol Bioeng 1980, 22: 1037-1053. 10.1002/bit.260220512
CAS
Google Scholar
Tu M, Chandra RP, Saddler JN: Evaluating the Distribution of Cellulases and the Recycling of Free Cellulases during the Hydrolysis of Lignocellulosic Substrates. Biotechnol Prog 2007, 23: 398-406. 10.1021/bp060354f
CAS
Google Scholar
Vallander L, Eriksson K-E: Enzyme recirculation in saccharification of lignocellulosic materials. Enzym Microb Technol 1987, 9: 714-720. 10.1016/0141-0229(87)90030-5
CAS
Google Scholar
Otter DE, Munro PA, Scott GK, Geddes R: Desorption of Trichoderma reesei cellulase from cellulose by a range of desorbents. Biotechnol Bioeng 1989, 34: 291-298. 10.1002/bit.260340303
CAS
Google Scholar
Qi B, Chen X, Su Y, Wan Y: Enzyme adsorption and recycling during hydrolysis of wheat straw lignocellulose. Bioresour Technol 2011, 102: 2881-2889. 10.1016/j.biortech.2010.10.092
CAS
Google Scholar
Paterson AH, Lin Y, Li Z, Schertz KF, Doebley JF, Pinson SRM, S L, JW S, Irvine JE: Convergent Domestication of Cereal Crops by Independent Mutations at Corresponding Genetic Loci. Science 1995, 269: 1714-1718. 10.1126/science.269.5231.1714
CAS
Google Scholar
Brown PJ, Rooney WL, Franks C, Kresovich S: Efficient mapping of plant height quantitative trait loci in a sorghum association population with introgressed dwarfing genes. Genetics 2008, 180: 629-637. 10.1534/genetics.108.092239
Google Scholar
Ji-hua T, Wen-tao T, Jian-bing Y, Xi-qing M, Yi-jiang M, Jin-rui D, Jian-Sheng L: Genetic dissection of plant height by molecular markers using a population of recombinant inbred lines in maize. Euphytica 2007, 155: 117-124. 10.1007/s10681-006-9312-3
Google Scholar
Lin YR, Schertz KF, Paterson AH: Comparative Analysis of Qtls Affecting Plant Height and Maturity across the Poaceae, in Reference to an Interspecific Sorghum Population. Genetics 1995, 141: 391-411.
CAS
Google Scholar
Schnell RJ, Kuhn DN, Brown JS, Olano CT, Phillips-Mora W, Amores FM, Motamayor JC: Development of a marker assisted selection program for cacao. Phytopath 2007, 97: 1664-1669. 10.1094/PHYTO-97-12-1664
CAS
Google Scholar
Jannink JL, Lorenz AJ, Iwata H: Genomic selection in plant breeding: from theory to practice. Brief Funct Genomics 2010, 9: 166-177. 10.1093/bfgp/elq001
CAS
Google Scholar
Luo H, Lyznik LA, Gidoni D, Hodges TK: FLP-mediated recombination for use in hybrid plant production. The Plant J 2000, 23: 423-430. 10.1046/j.1365-313x.2000.00782.x
CAS
Google Scholar
Lander E, Schork N: Genetic dissection of complex traits. Science 1994, 265: 2037-2048. 10.1126/science.8091226
CAS
Google Scholar
Hamblin MT, Buckler ES, Jannink JL: Population genetics of genomics-based crop improvement methods. Trends Genet 2011, 27: 98-106. 10.1016/j.tig.2010.12.003
CAS
Google Scholar
McMullen MD, Kresovich S, Villeda HS, Bradbury P, Li HH, Sun Q, Flint-Garcia S, Thornsberry J, Acharya C, Bottoms C, et al.: Genetic Properties of the Maize Nested Association Mapping Population. Science 2009, 325: 737-740. 10.1126/science.1174320
CAS
Google Scholar
Tian F, Bradbury PJ, Brown PJ, Hung H, Sun Q, Flint-Garcia S, Rocheford TR, McMullen MD, Holland JB, Buckler ES: Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet 2011, 43: 159-162. 10.1038/ng.746
CAS
Google Scholar
Hirschhorn JN, Daly MJ: Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 2005, 6: 95-108.
CAS
Google Scholar
Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES: Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 2001, 28: 286-289. 10.1038/90135
CAS
Google Scholar
Pritchard JK, Stephens M, Donnelly P: Inference of Population Structure Using Multilocus Genotype Data. Genetics 2000, 155: 945-959.
CAS
Google Scholar
Kennedy BW, Quinton M, van Arendonk JA: Estimation of effects of single genes on quantitative traits. J Anim Sci 1992, 70: 2000-2012.
CAS
Google Scholar
Pritchard JK, Stephens M, Rosenberg NA, Donnelly P: Association Mapping in Structured Populations. Am J Hum Genet 2000, 67: 170-181. 10.1086/302959
CAS
Google Scholar
Paterson AH, Schertz KF, Lin Y-R, Liu S-C, Chang Y-L: The Weediness of Wild Plants: Molecular Analysis of Genes Influencing Dispersal and Persistence of Johnsongrass, Sorghum halepense (L.) Pers. Proc Natl Acad Sci U S A 1995, 92: 6127-6131. 10.1073/pnas.92.13.6127
CAS
Google Scholar
Xiao-ping L, Jin-feng Y, Cui-ping G, Acharya S: Quantitative trait loci analysis of economically important traits in Sorghum bicolor × S. sudanense hybrid. Canadian J Plant Sci 2011, 91: 81-90. 10.4141/cjps09112
Google Scholar
Murray SC, Rooney WL, Mitchell SE, Sharma A, Klein PE, Mullet JE, Kresovich S: Genetic Improvement of Sorghum as a Biofuel Feedstock: II. QTL for Stem and Leaf Structural Carbohydrates. Crop Sci 2008, 48: 2180-2193. 10.2135/cropsci2008.01.0068
Google Scholar
Brown P, Klein P, Bortiri E, Acharya C, Rooney W, Kresovich S: Inheritance of inflorescence architecture in sorghum. TAG Theor Appl Genet 2006, 113: 931-942. 10.1007/s00122-006-0352-9
CAS
Google Scholar
Feltus F, Hart G, Schertz K, Casa A, Kresovich S, Abraham S, Klein P, Brown P, Paterson A: Alignment of genetic maps and QTLs between inter- and intra-specific sorghum populations. TAG Theor Appl Genet 2006, 112: 1295-1305. 10.1007/s00122-006-0232-3
CAS
Google Scholar
Hart GE, Schertz KF, Peng Y, Syed NH: Genetic mapping of Sorghum bicolor (L.) Moench QTLs that control variation in tillering and other morphological characters. TAG Theor Appl Genet 2001, 103: 1232-1242. 10.1007/s001220100582
CAS
Google Scholar
Kebede H, Subudhi PK, Rosenow DT, Nguyen HT: Quantitative trait loci influencing drought tolerance in grain sorghum (Sorghum bicolor L. Moench). TAG Theor Appl Genet 2001, 103: 266-276. 10.1007/s001220100541
CAS
Google Scholar
Parh D, Jordan D, Aitken E, Mace E, Jun-ai P, McIntyre C, Godwin I: QTL analysis of ergot resistance in sorghum. TAG Theor Appl Genet 2008, 117: 369-382. 10.1007/s00122-008-0781-8
CAS
Google Scholar
Pereira MG, Lee M: Identification of genomic regions affecting plant height in sorghum and maize. TAG Theor Appl Genet 1995, 90: 380-388.
CAS
Google Scholar
Rami JF, Dufour P, Trouche G, Fliedel G, Mestres C, Davrieux F, Blanchard P, Hamon P: Quantitative trait loci for grain quality, productivity, morphological and agronomical traits in sorghum (Sorghum bicolor L. Moench). TAG Theor Appl Genet 1998, 97: 605-616. 10.1007/s001220050936
CAS
Google Scholar
Ritter K, Jordan D, Chapman S, Godwin I, Mace E, Lynne McIntyre C: Identification of QTL for sugar-related traits in a sweet × grain sorghum (Sorghum bicolor L. Moench) recombinant inbred population. Mol Breed 2008, 22: 367-384. 10.1007/s11032-008-9182-6
Google Scholar
Shiringani A, Frisch M, Friedt W: Genetic mapping of QTLs for sugar-related traits in a RIL population of Sorghum bicolor L. Moench. TAG Theoretical and Applied Genet 2010, 121: 323-336. 10.1007/s00122-010-1312-y
CAS
Google Scholar
Srinivas G, Satish K, Madhusudhana R, Nagaraja Reddy R, Murali Mohan S, Seetharama N: Identification of quantitative trait loci for agronomically important traits and their association with genic-microsatellite markers in sorghum. TAG Theor Appl Genet 2009, 118: 1439-1454. 10.1007/s00122-009-0993-6
CAS
Google Scholar
Chantereau J, Trouche G, Rami JF, Deu M, Barro C, Grivet L: RFLP mapping of QTLs for photoperiod response in tropical sorghum. Euphytica 2001, 120: 183-194. 10.1023/A:1017513608309
CAS
Google Scholar
Crasta OR, Xu WW, Rosenow DT, Mullet J, Nguyen HT: Mapping of post-flowering drought resistance traits in grain sorghum: association between QTLs influencing premature senescence and maturity. Mol Gen Genet MGG 1999, 262: 579-588. 10.1007/s004380051120
CAS
Google Scholar
Murray SC, Sharma A, Rooney WL, Klein PE, Mullet JE, Mitchell SE, Kresovich S: Genetic Improvement of Sorghum as a Biofuel Feedstock: I. QTL for Stem Sugar and Grain Nonstructural Carbohydrates. Crop Sci 2008, 48: 2165-2179. 10.2135/cropsci2008.01.0016
Google Scholar
Tuinstra MR, Grote EM, Goldsbrough PB, Ejeta G: Genetic analysis of post-flowering drought tolerance and components of grain development in Sorghum bicolor (L.) Moench. Mol Breed 1997, 3: 439-448. 10.1023/A:1009673126345
CAS
Google Scholar
Fernandez MGS, Hamblin MT, Li L, Rooney WL, Tuinstra MR, Kresovich S: Quantitative Trait Loci Analysis of Endosperm Color and Carotenoid Content in Sorghum Grain. Crop Sci 2008, 48: 1732-1743. 10.2135/cropsci2007.12.0684
Google Scholar
Winn JA, Mason RE, Robbins AL, Rooney WL, Hays DB: QTL Mapping of a High Protein Digestibility Trait in Sorghum bicolor. Int J Plant Genomics 2009, 2009: 1-6.
Google Scholar
Felderhoff TJ, Murray SC, Klein PE, Sharma A, Hamblin MT, Kresovich S, Vermerris W, Rooney WL: QTLs for Energy-related Traits in a Sweet × Grain Sorghum [Sorghum bicolor (L.) Moench] Mapping Population. Crop Sci 2012, 52: 2040-2049. 10.2135/cropsci2011.11.0618
Google Scholar
Méchin V, Argillier O, Hébert Y, Guingo E, Moreau L, Charcosset A, Barrière Y: Genetic Analysis and QTL Mapping of Cell Wall Digestibility and Lignification in Silage Maize. Crop Sci 2001, 41: 690-697. 10.2135/cropsci2001.413690x
Google Scholar
Roussel V, Gibelin C, Fontaine AS, Barriere Y: Genetic analysis in recombinant inbred lines of early dent forage maize. II - QTL mapping for cell wall constituents and cell wall digestibility from per se value and top cross experiments. Maydica 2002, 47: 9-20.
Google Scholar
Cardinal A, Lee M, Moore K: Genetic mapping and analysis of quantitative trait loci affecting fiber and lignin content in maize. TAG Theor Appl Genet 2003, 106: 866-874.
CAS
Google Scholar
Krakowsky M, Lee M, Coors J: Quantitative trait loci for cell wall components in recombinant imbred lines of maize (Zea mays L.) I. stalk tissue. TAG Theor Appl Genet 2005, 111: 337-346. 10.1007/s00122-005-2026-4
CAS
Google Scholar
Krakowsky M, Lee M, Coors J: Quantitative trait loci for cell wall components in recombinant imbred lines of maize (Zea mays L.) II. leaf sheath tissue. TAG Theor Appl Genet 2006, 112: 717-726. 10.1007/s00122-005-0175-0
CAS
Google Scholar
Ni W, Phillips RL, Jung HG: Quantitative trait loci for cell-wall traits in maize. In 8th international cell wall meeting; Sept 1–5. Norwhich, UK: John Innes Centre; 1998:1-38.
Google Scholar
Fontaine A-S, Bout S, Barrière Y, Vermerris W: Variation in Cell Wall Composition among Forage Maize (Zea mays L.) Inbred Lines and Its Impact on Digestibility: Analysis of Neutral Detergent Fiber Composition by Pyrolysis-Gas chromatography–mass spectrometry. J Agric Food Chem 2003, 51: 8080-8087. 10.1021/jf034321g
CAS
Google Scholar
Fontaine AS, Briand M, Barriere Y: Genetic variation and QTL mapping of para-coumaric and ferulic acid contents in maize stover at silage harvest. Maydica 2003, 48: 75-84.
Google Scholar
Krakowsky MD, Lee M, Holland JB: Genotypic Correlation and Multivariate QTL Analyses for Cell Wall Components and Resistance to Stalk Tunneling by the European Corn Borer in Maize. Crop Sci 2007, 47: 485-488. 10.2135/cropsci2006.05.0283
Google Scholar
Ribaut JM, Jiang C, Gonzalez-de-Leon D, Edmeades GO, Hoisington DA: Identification of quantitative trait loci under drought conditions in tropical maize. 2. Yield components and marker-assisted selection strategies. TAG Theor Appl Genet 1997, 94: 887-896. 10.1007/s001220050492
Google Scholar
Ribaut J-M, Fracheboud Y, Monneveux P, Banziger M, Vargas M, Jiang C: Quantitative trait loci for yield and correlated traits under high and low soil nitrogen conditions in tropical maize. Mol Breed 2007, 20: 15-29. 10.1007/s11032-006-9041-2
CAS
Google Scholar
Ajmone Marsan P, Monfredini G, Ludwig WF, Melchinger AE, Franceschini P, Pagnotto G, Motto M: In an elite cross of maize a major quantitative trait locus controls 1/4 of the geneticvariation for grain-yield. TAG Theor Appl Genet 1995, 90: 415-424.
CAS
Google Scholar
Frova C, Krajewski P, di Fonzo N, Villa M, Sari-Gorla M: Genetic analysis of drought tolerance in maize by molecular markers I. Yield components. TAG Theoretical and Applied Genet 1999, 99: 280-288. 10.1007/s001220051233
Google Scholar
Frascaroli E, Cane MA, Landi P, Pea G, Gianfranceschi L, Villa M, Morgante M, Enrico Pe M: Classical Genetic and Quantitative Trait Loci Analyses of Heterosis in a Maize Hybrid Between Two Elite Inbred Lines. Genetics 2007, 176: 625-644. 10.1534/genetics.106.064493
CAS
Google Scholar
Stuber CW, Lincoln SE, Wolff DW, Helentjaris T, Lander ES: Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics 1992, 132: 823-839.
CAS
Google Scholar
Beavis WD, Smith OS, Grant D, Fincher R: Identification of Quantitative Trait Loci Using a Small Sample of Topcrossed and F4 Progeny from Maize. Crop Sci 1994, 34: 882-896. 10.2135/cropsci1994.0011183X003400040010x
Google Scholar
Xiao Y, Li X, George M, Li M, Zhang S, Zheng Y: Quantitative trait locus analysis of drought tolerance and yield in Maize in China. Plant Mol Biol Rep 2005, 23: 155-165. 10.1007/BF02772706
CAS
Google Scholar
Li Y, Niu S, Dong Y, Cui D, Wang Y, Liu Y, Wei M: Identification of trait-improving quantitative trait loci for grain yield components from a dent corn inbred line in an advanced backcross BC2F2 population and comparison with its F2:3 population in popcorn. TAG Theor Appl Genet 2007, 115: 129-140. 10.1007/s00122-007-0549-6
CAS
Google Scholar
Austin DF, Lee M: Comparative mapping in F2:3 and F6:7 generations of quantitative trait loci for grain yield and yield components in maize. TAG Theor Appl Genet 1996, 92: 817-826. 10.1007/BF00221893
CAS
Google Scholar
Austin DF, Lee M, Veldboom LR, Hallauer AR: Genetic Mapping in Maize with Hybrid Progeny Across Testers and Generations: Grain Yield and Grain Moisture. Crop Sci 2000, 40: 30-39. 10.2135/cropsci2000.40130x
Google Scholar
Veldboom LR, Lee M: Genetic Mapping of Quantitative Trait Loci in Maize in Stress and Nonstress Environments: I. Grain Yield and Yield Components. Crop Sci 1996, 36: 1310-1319. 10.2135/cropsci1996.0011183X003600050040x
CAS
Google Scholar
Lu H, Romero-Severson J, Bernardo R: Genetic basis of heterosis explored by simple sequence repeat markers in a random-mated maize population. TAG Theor Appl Genet 2003, 107: 494-502. 10.1007/s00122-003-1271-7
CAS
Google Scholar
Agrama HAS, Moussa ME: Mapping QTLs in breeding for drought tolerance in maize (Zea mays L.). Euphytica 1996, 91: 89-97. 10.1007/BF00035278
CAS
Google Scholar
Austin DF, Lee M: Genetic resolution and verification of quantitative trait loci for flowering and plant height with recombinant inbred lines of maize. Genome 1996, 39: 957-968. 10.1139/g96-120
CAS
Google Scholar
Khairallah MM, Bohn M, Jiang C, Deutsch JA, Jewell DC, Mihm JA, Melchinger AE, González-De-León D, Hoisington DA: Molecular mapping of QTL for southwestern corn borer resistance, plant height and flowering in tropical maize. Plant Breeding 1998, 117: 309-318. 10.1111/j.1439-0523.1998.tb01947.x
Google Scholar
Koester RP, Sisco PH, Stuber CW: Identification of Quantitative Trait Loci Controlling Days to Flowering and Plant Height in Two Near Isogenic Lines of Maize. Crop Sci 1993, 33: 1209-1216. 10.2135/cropsci1993.0011183X003300060020x
Google Scholar
Veldboom LR, Lee M: Genetic Mapping of Qunatitative Trait Loci in Maize in Stress and Nonstress Environments: II. Plant Height and Flowering. Crop Sci 1996, 36: 1320-1327. 10.2135/cropsci1996.0011183X003600050041x
CAS
Google Scholar
Veldboom LR, Lee M, Woodman WL: Molecular marker-facilitated studies in an elite maize population: I. Linkage analysis and determination of QTL for morphological traits. TAG Theor Appl Genet 1994, 88: 7-16.
CAS
Google Scholar
Berke TG, Rocheford TR: Quantitative Trait Loci for Flowering, Plant and Ear Height, and Kernel Traits in Maize. Crop Sci 1995, 35: 1542-1549. 10.2135/cropsci1995.0011183X003500060004x
Google Scholar
Sari-Gorla M, Krajewski P, Di Fonzo N, Villa M, Frova C: Genetic analysis of drought tolerance in maize by molecular markers. II. Plant height and flowering. TAG Theoretical and Applied Genet 1999, 99: 289-295. 10.1007/s001220051234
Google Scholar
Bohn M, Khairallah MM, González-de-León D, Hoisington DA, Utz HF, Deutsch JA, Jewell DC, Mihm JA, Melchinger AE: QTL Mapping in Tropical Maize: I. Genomic Regions Affecting Leaf Feeding Resistance to Sugarcane Borer and Other Traits. Crop Science 1996, 36: 1352-1361. 10.2135/cropsci1996.0011183X003600050045x
Google Scholar
Yan J, Tang H, Huang Y, Shi Y, Li J, Zheng Y: Dynamic analysis of QTL for plant height at different developmental stages in maize (Zea mays L.). Chin Sci Bull 2003, 48: 2601-2607. 10.1360/03wc0044
Google Scholar
Wisser RJ, Balint-Kurti PJ, Nelson RJ: The Genetic Architecture of Disease Resistance in Maize: A Synthesis of Published Studies. Phytopathology 2006, 96: 120-129. 10.1094/PHYTO-96-0120
CAS
Google Scholar
Jines M, Balint-Kurti P, Robertson-Hoyt L, Molnar T, Holland J, Goodman M: Mapping resistance to Southern rust in a tropical by temperate maize recombinant inbred topcross population. TAG Theor Appl Genet 2007, 114: 659-667. 10.1007/s00122-006-0466-0
CAS
Google Scholar
Reymond M, Muller B, Leonardi A, Charcosset A, Tardieu F: Combining Quantitative Trait Loci Analysis and an Ecophysiological Model to Analyze the Genetic Variability of the Responses of Maize Leaf Growth to Temperature and Water Deficit. Plant Physiol 2003, 131: 664-675. 10.1104/pp.013839
CAS
Google Scholar
Reymond M, Muller B, Tardieu F: Dealing with the genotype×environment interaction via a modelling approach: a comparison of QTLs of maize leaf length or width with QTLs of model parameters. J Exp Bot 2004, 55: 2461-2472. 10.1093/jxb/erh200
CAS
Google Scholar
Sadok W, Naudin P, Boussuge B, Muller B, Welcker C, Tardieu F: Leaf growth rate per unit thermal time follows QTL-dependent daily patterns in hundreds of maize lines under naturally fluctuating conditions. Plant Cell Environ 2007, 30: 135-146. 10.1111/j.1365-3040.2006.01611.x
Google Scholar
Atienza SG, Satovic Z, Petersen KK, Dolstra O, Martín A: Identification of QTLs influencing agronomic traits in Miscanthus sinensis Anderss. I. Total height, flag-leaf height and stem diameter. TAG Theor Appl Genet 2003, 107: 123-129.
CAS
Google Scholar
Atienza SG, Satovic Z, Petersen KK, Dolstra O, Martín A: Identification of QTLs associated with yield and its components in Miscanthus sinensis Anderss. Euphytica 2003, 132: 353-361. 10.1023/A:1025041926259
CAS
Google Scholar
Jensen EF, Jones ST, Farrar K, Clifton-Brown JC, Donnison IS: Unravelling the genetic control of flowering time in the bioenergy grass Miscanthus. Comparative Biochemistry and Physiology 2008, 150: S181.
Google Scholar
Atienza SG, Ramirez MC, Martin A: Mapping QTLs controlling flowering date in Miscanthus sinensis Anderss. Cereal Res Communications 2003, 31: 265-271.
CAS
Google Scholar
Atienza SG, Satovic Z, Petersen KK, Dolstra O, Martin A: Influencing combustion quality in Miscanthus sinensis Anderss.: Identification of QTLs for calcium, phosphorus and sulphur content. Plant Breeding 2003, 122: 141-145. 10.1046/j.1439-0523.2003.00826.x
CAS
Google Scholar
Atienza SG, Satovic Z, Petersen KK, Dolstra O, Martín A: Identification of QTLs influencing combustion quality in Miscanthus sinensis Anderss. II. Chlorine and potassium content. TAG Theor Appl Genet 2003, 107: 857-863. 10.1007/s00122-003-1218-z
CAS
Google Scholar
Ming RM, Wang YW, Draye XD, Moore PM, Irvine JI, Paterson AP: Molecular dissection of complex traits in autopolyploids: mapping QTLs affecting sugar yield and related traits in sugarcane. TAG Theor Appl Genet 2002, 105: 332-345. 10.1007/s00122-001-0861-5
CAS
Google Scholar
Hoarau JY, Offmann B, D’Hont A, Risterucci AM, Roques D, Glaszmann JC, Grivet L: Genetic dissection of a modern sugarcane cultivar (Saccharum spp.). I. Genome mapping with AFLP markers. TAG Theor Appl Genet 2001, 103: 84-97. 10.1007/s001220000390
CAS
Google Scholar
Ming R, Liu S-C, Moore PH, Irvine JE, Paterson AH: QTL Analysis in a Complex Autopolyploid: Genetic Control of Sugar Content in Sugarcane. Genome Res 2001, 11: 2075-2084. 10.1101/gr.198801
CAS
Google Scholar
Aitken K, Jackson P, McIntyre C: Quantitative trait loci identified for sugar related traits in a sugarcane (Saccharum spp.) cultivar × Saccharum officinarum population. TAG Theor Appl Genet 2006, 112: 1306-1317. 10.1007/s00122-006-0233-2
CAS
Google Scholar
Liu L, Wu Y, Wang Y, Samuels T: A high-density simple sequence repeat-based genetic linkage map of switchgrass. G3 (Bethesda) 2012, 2: 357-370.
CAS
Google Scholar
Ma X-F, Jensen E, Alexandrov N, Troukhan M, Zhang L, Thomas-Jones S, Farrar K, Clifton-Brown J, Donnison I, Swaller T, Flavell R: High Resolution Genetic Mapping by Genome Sequencing Reveals Genome Duplication and Tetraploid Genetic Structure of the Diploid Miscanthus sinensis. PLoS One 2012, 7: e33821. 10.1371/journal.pone.0033821
CAS
Google Scholar
Swaminathan K, Chae W, Mitros T, Varala K, Xie L, Barling A, Glowacka K, Hall M, Jezowski S, Ming R, et al.: A framework genetic map for Miscanthus sinensis from RNAseq-based markers shows recent tetraploidy. BMC Genomics 2012, 13: 142. 10.1186/1471-2164-13-142
CAS
Google Scholar
Zhang NW, Pelgrom K, Niks RE, Visser RG, Jeuken MJ: Three combined quantitative trait loci from nonhost Lactuca saligna are sufficient to provide complete resistance of lettuce against Bremia lactucae. Mol Plant Microbe Interact 2009, 22: 1160-1168. 10.1094/MPMI-22-9-1160
CAS
Google Scholar
Wang P, Xing Y, Li Z, Yu S: Improving rice yield and quality by QTL pyramiding. Mol Breed 2012, 29: 903-913. 10.1007/s11032-011-9679-2
CAS
Google Scholar
Wang S, Wu K, Yuan Q, Liu X, Liu Z, Lin X, Zeng R, Zhu H, Dong G, Qian Q, et al.: Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet 2012, 44: 950-954. 10.1038/ng.2327
CAS
Google Scholar
Yu J, Holland JB, McMullen MD, Buckler ES: Genetic Design and Statistical Power of Nested Association Mapping in Maize. Genetics 2008, 178: 539-551. 10.1534/genetics.107.074245
Google Scholar
Kresovich S, Paterson AH, Feltus FA: Genomic and Breeding Foundations for Bioenergy Sorghum Hybrids. http://genomicscience.energy.gov/research/DOEUSDA/abstracts/2011Kresovich_abstract.shtml
Poland JA, Bradbury PJ, Buckler ES, Nelson RJ: Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize. Proc Natl Acad Sci U S A 2011, 108: 6893-6898. 10.1073/pnas.1010894108
CAS
Google Scholar
Doerge RW, Craig BA: Model selection for quantitative trait locus analysis in polyploids. Proc Natl Acad Sci 2000, 97: 7951-7956. 10.1073/pnas.97.14.7951
CAS
Google Scholar
Bowers JE, Abbey C, Anderson S, Chang C, Draye X, Hoppe AH, Jessup R, Lemke C, Lennington J, Li Z, et al.: A high-density genetic recombination map of sequence-tagged sites for sorghum, as a framework for comparative structural and evolutionary genomics of tropical grains and grasses. Genetics 2003, 165: 367-386.
CAS
Google Scholar
Casa AM, Pressoir G, Brown PJ, Mitchell SE, Rooney WL, Tuinstra MR, Franks CD, Kresovich S: Community Resources and Strategies for Association Mapping in Sorghum. Crop Sci 2008, 48: 30-40. 10.2135/cropsci2007.02.0080
Google Scholar
Ersoz ES, Yu J, Buckler ES: Applications of Linkage Disequilibrium and Association Mapping in Crop Plants. In Genomics-Assisted Crop Improvement. Volume 1. Edited by: Varshney RK, Tuberosa R. Netherlands: Springer; 2007:97-119.
Google Scholar
Buckler Iv ES, Thornsberry JM: Plant molecular diversity and applications to genomics. Current Opinion in Plant Biology 2002, 5: 107-111. 10.1016/S1369-5266(02)00238-8
Google Scholar
Flint-Garcia SA, Thornsberry JM, Buckler ES: Structure of linkage disequilibrium in plants. Annual Rev Plant Biol 2003, 54: 357-374. 10.1146/annurev.arplant.54.031902.134907
CAS
Google Scholar
Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR, Doebley J, Kresovich S, Goodman MM, Buckler ES: Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci U S A 2001, 98: 11479-11484. 10.1073/pnas.201394398
CAS
Google Scholar
Flint-Garcia SA, Thuillet A-C, Yu J, Pressoir G, Romero SM, Mitchell SE, Doebley J, Kresovich S, Goodman MM, Buckler ES: Maize association population: a high-resolution platform for quantitative trait locus dissection. The Plant J 2005, 44: 1054-1064. 10.1111/j.1365-313X.2005.02591.x
CAS
Google Scholar
Yang X, Yan J, Shah T, Warburton M, Li Q, Li L, Gao Y, Chai Y, Fu Z, Zhou Y, et al.: Genetic analysis and characterization of a new maize association mapping panel for quantitative trait loci dissection. TAG Theor Appl Genet 2010, 121: 417-431. 10.1007/s00122-010-1320-y
Google Scholar
Murray SC, Rooney WL, Hamblin MT, Mitchell SE, Kresovich S: Sweet Sorghum Genetic Diversity and Association Mapping for Brix and Height. Plant Gen 2009, 2: 48-62. 10.3835/plantgenome2008.10.0011
CAS
Google Scholar
Wei X, Jackson P, McIntyre C, Aitken K, Croft B: Associations between DNA markers and resistance to diseases in sugarcane and effects of population substructure. TAG Theor Appl Genet 2006, 114: 155-164. 10.1007/s00122-006-0418-8
CAS
Google Scholar
Wang Y-H, Bible P, Loganantharaj R, Upadhyaya H: Identification of SSR markers associated with height using pool-based genome-wide association mapping in sorghum. Mol Breed 2011, 30: 1-12.
Google Scholar
Shehzad T, Iwata H, Okuno K: Genome-wide association mapping of quantitative traits in sorghum (Sorghum bicolor (L.) Moench) by using multiple models. Breed Sci 2009, 59: 217-227. 10.1270/jsbbs.59.217
CAS
Google Scholar
Andersen JR, Schrag T, Melchinger AE, Zein I, Lübberstedt T: Validation of Dwarf8 polymorphisms associated with flowering time in elite European inbred lines of maize (Zea mays L.). TAG Theor Appl Genet 2005, 111: 206-217. 10.1007/s00122-005-1996-6
CAS
Google Scholar
Camus-Kulandaivelu L, Veyrieras J-B, Madur D, Combes V, Fourmann M, Barraud S, Dubreuil P, Gouesnard B, Manicacci D, Charcosset A: Maize Adaptation to Temperate Climate: Relationship Between Population Structure and Polymorphism in the Dwarf8 Gene. Genetics 2006, 172: 2449-2463.
CAS
Google Scholar
Wilson LM, Whitt SR, Ibáñez AM, Rocheford TR, Goodman MM, Buckler ES: Dissection of Maize Kernel Composition and Starch Production by Candidate Gene Association. Plant Cell 2004, 16: 2719-2733. 10.1105/tpc.104.025700
CAS
Google Scholar
Tracy WF, Whitt SR, Buckler ES: Recurrent Mutation and Genome Evolution: Example of and the Origin of Sweet Maize. Crop Sci 2006, 46: S-49-S-54. 10.2135/cropsci2006-03-0149tpg
Google Scholar
Burner DM, Legendre BL: Cytogenetic and fertility characteristics of elite sugarcane clones. Sugar Cane 1994, 1: 6-10.
Google Scholar
Comai L, Henikoff S: TILLING: practical single-nucleotide mutation discovery. The Plant J 2006, 45: 684-694. 10.1111/j.1365-313X.2006.02670.x
CAS
Google Scholar
Slade AJ, Knauf VC: TILLING moves beyond functional genomics into crop improvement. Transgenic Res 2005, 14: 109-115. 10.1007/s11248-005-2770-x
CAS
Google Scholar
Gilchrist EJ, Haughn GW: TILLING without a plough: a new method with applications for reverse genetics. Current Opinion in Plant Biology 2005, 8: 211-215. 10.1016/j.pbi.2005.01.004
CAS
Google Scholar
Xin Z, Chen J: A high throughput DNA extraction method with high yield and quality. Plant Methods 2012, 8: 26. 10.1186/1746-4811-8-26
CAS
Google Scholar
Tsai H, Howell T, Nitcher R, Missirian V, Watson B, Ngo KJ, Lieberman M, Fass J, Uauy C, Tran RK, et al.: Discovery of rare mutations in populations: TILLING by sequencing. Plant Physiol 2011, 156: 1257-1268. 10.1104/pp.110.169748
CAS
Google Scholar
Austin RS, Vidaurre D, Stamatiou G, Breit R, Provart NJ, Bonetta D, Zhang J, Fung P, Gong Y, Wang PW, et al.: Next-generation mapping of Arabidopsis genes. The Plant Journal 2011, 67: 715-725. 10.1111/j.1365-313X.2011.04619.x
CAS
Google Scholar
Xin Z, Wang M, Barkley N, Burow G, Franks C, Pederson G, Burke J: Applying genotyping (TILLING) and phenotyping analyses to elucidate gene function in a chemically induced sorghum mutant population. BMC Plant Biology 2008, 8: 103. 10.1186/1471-2229-8-103
Google Scholar
Blomstedt CK, Gleadow RM, O'Donnell N, Naur P, Jensen K, Laursen T, Olsen CE, Stuart P, Hamill JD, Moller BL, Neale AD: A combined biochemical screen and TILLING approach identifies mutations in Sorghum bicolor L. Moench resulting in acyanogenic forage production. Plant Biotechnol J 2012, 10: 54-66. 10.1111/j.1467-7652.2011.00646.x
Google Scholar
Till B, Reynolds S, Weil C, Springer N, Burtner C, Young K, Bowers E, Codomo C, Enns L, Odden A, et al.: Discovery of induced point mutations in maize genes by TILLING. BMC Plant Biology 2004, 4: 1-8. 10.1186/1471-2229-4-1
Google Scholar
Xin Z, Cross M, Burow G, Burke J: Sorghum TILLING Population - A Community Resource for Sorghum Improvement. [abstract]. American Society of Plant Biologists Annual Meeting 2011 2011. Paper No. 15020
Google Scholar
Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, et al.: The B73 maize genome: complexity, diversity, and dynamics. Science 2009, 326: 1112-1115. 10.1126/science.1178534
CAS
Google Scholar
Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, et al.: The Sorghum bicolor genome and the diversification of grasses. Nature 2009, 457: 551-556. 10.1038/nature07723
CAS
Google Scholar
Phytozome http://www.phytozome.net
Maize Genome Database http://www.maizesequence.org
Hunter S, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, Bork P, Das U, Daugherty L, Duquenne L, et al.: InterPro: the integrative protein signature database. Nucleic Acids Res 2009, 37: D211-D215. 10.1093/nar/gkn785
CAS
Google Scholar
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al.: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genetics 2000, 25: 25-29. 10.1038/75556
CAS
Google Scholar
Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y: KEGG for linking genomes to life and the environment. Nucleic Acids Res 2008, 36: D480-D484.
CAS
Google Scholar
Jaiswal P, Ni J, Yap I, Ware D, Spooner W, Youens-Clark K, Ren L, Liang C, Zhao W, Ratnapu K, et al.: Gramene: a bird's eye view of cereal genomes. Nucleic Acids Res 2006, 34: D717-D723. 10.1093/nar/gkj154
CAS
Google Scholar
Paterson AH, Bowers JE, Peterson DG, Estill JC, Chapman BA: Structure and evolution of cereal genomes. Curr Opin Genet Dev 2003, 13: 644-650. 10.1016/j.gde.2003.10.002
CAS
Google Scholar
IRGSP: The map-based sequence of the rice genome. Nature 2005, 436: 793-800. 10.1038/nature03895
Google Scholar
InternationalBrachypodiumInitiative: Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 2010, 463: 763-768. 10.1038/nature08747
Google Scholar
Paterson AH, Bowers JE, Feltus FA, Tang H, Lin L, Wang X: Comparative genomics of grasses promises a bountiful harvest. Plant Physiol 2009, 149: 125-131. 10.1104/pp.108.129262
CAS
Google Scholar
Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I: VISTA: computational tools for comparative genomics. Nucleic Acids Res 2004, 32: W273-W279. 10.1093/nar/gkh458
CAS
Google Scholar
Gramene: A Resource for Comparitive Plant Genomics http://www.gramene.org
Comparitive Saccharinae Genomics Resource http://csgr.pgml.uga.edu
Paterson AH: Genomics of the Saccharinae. New YorK, NY: Springer; 2012.
Google Scholar
Kliebenstein D: Quantitative genomics: analyzing intraspecific variation using global gene expression polymorphisms or eQTLs. Annu Rev Plant Biol 2009, 60: 93-114. 10.1146/annurev.arplant.043008.092114
CAS
Google Scholar
Morrell PL, Buckler ES, Ross-Ibarra J: Crop genomics: advances and applications. Nat Rev Genet 2011, 13: 85-96.
Google Scholar
Cloonan N, Grimmond SM: Transcriptome content and dynamics at single-nucleotide resolution. Genome Biol 2008, 9: 234. 10.1186/gb-2008-9-9-234
Google Scholar
Wang Y, Zeng X, Iyer NJ, Bryant DW, Mockler TC, Mahalingam R: Exploring the switchgrass transcriptome using second-generation sequencing technology. PLoS One 2012, 7: e34225. 10.1371/journal.pone.0034225
CAS
Google Scholar
Xu X, Liu X, Ge S, Jensen JD, Hu F, Li X, Dong Y, Gutenkunst RN, Fang L, Huang L, et al.: Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nat Biotechnol 2012, 30: 105-111.
CAS
Google Scholar
Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE: A Robust, Simple Genotyping By Sequencing (GBS) Approach For High Diversity Species. PLoS One 2011, 6: e19379. 10.1371/journal.pone.0019379
CAS
Google Scholar
Earl D, Bradnam K, St John J, Darling A, Lin D, Fass J, Yu HO, Buffalo V, Zerbino DR, Diekhans M, et al.: Assemblathon 1: a competitive assessment of de novo short read assembly methods. Genome Res 2011, 21: 2224-2241. 10.1101/gr.126599.111
CAS
Google Scholar
Feltus FA, Saski CA, Mockaitis K, Haiminen N, Parida L, Smith Z, Ford J, Staton ME, Ficklin SP, Blackmon BP, et al.: Sequencing of a QTL-rich region of the Theobroma cacao genome using pooled BACs and the identification of trait specific candidate genes. BMC Genomics 2011, 12: 379. 10.1186/1471-2164-12-379
CAS
Google Scholar
Gonzalez VM, Benjak A, Henaff EM, Mir G, Casacuberta JM, Garcia-Mas J, Puigdomenech P: Sequencing of 6.7 Mb of the melon genome using a BAC pooling strategy. BMC Plant Biol 2010, 10: 246. 10.1186/1471-2229-10-246
Google Scholar
Steuernagel B, Taudien S, Gundlach H, Seidel M, Ariyadasa R, Schulte D, Petzold A, Felder M, Graner A, Scholz U, et al.: De novo 454 sequencing of barcoded BAC pools for comprehensive gene survey and genome analysis in the complex genome of barley. BMC Genomics 2009, 10: 547. 10.1186/1471-2164-10-547
Google Scholar
Saski CA, Li Z, Feltus FA, Luo H: New genomic resources for switchgrass: a BAC library and comparative analysis of homoeologous genomic regions harboring bioenergy traits. BMC Genomics 2011, 12: 369. 10.1186/1471-2164-12-369
CAS
Google Scholar
Barabasi AL, Oltvai ZN: Network biology: understanding the cell's functional organization. Nat Rev Genet 2004, 5: 101-113. 10.1038/nrg1272
CAS
Google Scholar
Ficklin SP, Feltus FA: Gene coexpression network alignment and conservation of gene modules between two grass species: maize and rice. Plant Physiol 2011, 156: 1244-1256. 10.1104/pp.111.173047
CAS
Google Scholar
Butte AJ, Tamayo P, Slonim D, Golub TR, Kohane IS: Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks. Proc Natl Acad Sci U S A 2000, 97: 12182-12186. 10.1073/pnas.220392197
CAS
Google Scholar
Gu H, Zhu P, Jiao Y, Meng Y, Chen M: PRIN: a predicted rice interactome network. BMC Bioinforma 2011, 12: 161. 10.1186/1471-2105-12-161
Google Scholar
Seo YS, Chern M, Bartley LE, Han M, Jung KH, Lee I, Walia H, Richter T, Xu X, Cao P, et al.: Towards establishment of a rice stress response interactome. PLoS Genet 2011, 7: e1002020. 10.1371/journal.pgen.1002020
CAS
Google Scholar
Nadeau JH, Dudley AM: Genetics. Systems genetics. Science 2011, 331: 1015-1016. 10.1126/science.1203869
Google Scholar
Plaisier CL, Horvath S, Huertas-Vazquez A, Cruz-Bautista I, Herrera MF, Tusie-Luna T, Aguilar-Salinas C, Pajukanta P: A systems genetics approach implicates USF1, FADS3, and other causal candidate genes for familial combined hyperlipidemia. PLoS Genet 2009, 5: e1000642. 10.1371/journal.pgen.1000642
Google Scholar
Lee TH, Kim YK, Pham TT, Song SI, Kim JK, Kang KY, An G, Jung KH, Galbraith DW, Kim M, et al.: RiceArrayNet: a database for correlating gene expression from transcriptome profiling, and its application to the analysis of coexpressed genes in rice. Plant Physiol 2009, 151: 16-33. 10.1104/pp.109.139030
CAS
Google Scholar
Ficklin SP, Luo F, Feltus FA: The Association of Multiple Interacting Genes with Specific Phenotypes In Rice (Oryza sativa) Using Gene Co-Expression Networks. Plant Physiol 2010, 154: 13-24. 10.1104/pp.110.159459
CAS
Google Scholar
Spangler JB, Ficklin SP, Luo F, Freeling M, Feltus FA: Conserved Non-Coding Regulatory Signatures in Arabidopsis Co-expressed Gene Modules. PLoS One 2012, 7: e45041. 10.1371/journal.pone.0045041
CAS
Google Scholar
Massa AN, Childs KL, Lin H, Bryan GJ, Giuliano G, Buell CR: The transcriptome of the reference potato genome Solanum tuberosum Group Phureja clone DM1-3 516R44. PLoS One 2011, 6: e26801. 10.1371/journal.pone.0026801
CAS
Google Scholar