Licht FO: World Ethanol Markets: The outlook to 2015. UK: Tunbridge Wells; 2006.
Google Scholar
Larsson M, Zacchi G: Production of ethanol from dilute glucose solutions A technical-economic evaluation of various refining alternatives. Bioprocess Biosyst Eng 1996, 15: 125-132. 10.1007/BF00369615
Article
CAS
Google Scholar
Larsen J, Østergaard Petersen M, Thirup L, Wen Li H, Krogh Iversen F: The IBUS Process – Lignocellulosic Bioethanol Close to a Commercial Reality. Chem Eng Technol 2008, 31: 765-772. 10.1002/ceat.200800048
Article
CAS
Google Scholar
Wang W, Kang L, Wei H, Arora R, Lee Y: Study on the decreased sugar yield in enzymatic hydrolysis of cellulosic substrate at high solid loading. Appl Biochem Biotechnol 2011, 164: 1139-1149. 10.1007/s12010-011-9200-8
Article
CAS
Google Scholar
Kristensen JB, Felby C, Jorgensen H: Yield-determining factors in high-solids enzymatic hydrolysis of lignocellulose. Biotechnology for Biofuels 2009, 2: 10. 10.1186/1754-6834-2-10
Article
Google Scholar
Yu ZY, Jameel H, Chang HM, Philips R, Park S: Evaluation of the factors affecting avicel reactivity using multi-stage enzymatic hydrolysis. Biotechnol Bioeng 2012, 109: 1131-1139. 10.1002/bit.24386
Article
CAS
Google Scholar
Roche C, Dibble C, Stickel J: Laboratory-scale method for enzymatic saccharification of lignocellulosic biomass at high-solids loadings. Biotechnology for Biofuels 2009, 2: 28. 10.1186/1754-6834-2-28
Article
Google Scholar
Xiao ZZ, Zhang X, Gregg DJ, Saddler JN: Effects of sugar inhibition on cellulases and beta-glucosidase during enzymatic hydrolysis of softwood substrates. Appl Biochem Biotechnol 2004, 113: 1115-1126.
Article
Google Scholar
Yang J, Zhang X, Yong Q, Yu S: Three-stage hydrolysis to enhance enzymatic saccharification of steam-exploded corn stover. Bioresour Technol 2010, 101: 4930-4935. 10.1016/j.biortech.2009.09.079
Article
CAS
Google Scholar
Roberts KM, Lavenson DM, Tozzi EJ, McCarthy MJ, Jeoh T: The effects of water interactions in cellulose suspensions on mass transfer and saccharification efficiency at high solids loadings. Cellulose 2011, 18: 759-773. 10.1007/s10570-011-9509-z
Article
CAS
Google Scholar
Selig MJ, Hsieh C-WC, Thygesen LG, Himmel ME, Felby C, Decker SR: Considering water availability and the effect of solute concentration on high solids saccharification of lignocellulosic biomass. Biotechnol Prog 2012, 28: 1478-1490. 10.1002/btpr.1617
Article
CAS
Google Scholar
Rahikainen J, Mikander S, Marjamaa K, Tamminen T, Lappas A, Viikari L, Kruus K: Inhibition of enzymatic hydrolysis by residual lignins from softwood-study of enzyme binding and inactivation on lignin-rich surface. Biotechnol Bioeng 2011, 108: 2823-2834. 10.1002/bit.23242
Article
CAS
Google Scholar
Yang MH, Li WL, Liu BB, Li Q, Xing JM: High-concentration sugars production from corn stover based on combined pretreatments and fed-batch process. Bioresour Technol 2010, 101: 4884-4888. 10.1016/j.biortech.2009.12.013
Article
CAS
Google Scholar
Andric P, Meyer AS, Jensen PA, Dam-Johansen K: Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis: I. Significance and mechanism of cellobiose and glucose inhibition on cellulolytic enzymes. Biotechnol Adv 2010, 28: 308-324. 10.1016/j.biotechadv.2010.01.003
Article
CAS
Google Scholar
Olofsson K, Bertilsson M, Liden G: A short review on SSF - an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnology for Biofuels 2008,1(1):1-14. 10.1186/1754-6834-1-1
Article
Google Scholar
Kemppainen K, Ranta L, Sipilä E, Östman A, Vehmaanperä J, Puranen T, Langfelder K, Hannula J, Kallioinen A, Siika-aho M, et al.: Ethanol and biogas production from waste fibre and fibre sludge – the FibreEtOH concept. Biomass and Bioenergy 2012, 46: 60-69.
Article
CAS
Google Scholar
Watanabe I, Miyata N, Ando A, Shiroma R, Tokuyasu K, Nakamura T: Ethanol production by repeated-batch simultaneous saccharification and fermentation (SSF) of alkali-treated rice straw using immobilized Saccharomyces cerevisiae cells. Bioresour Technol 2012, 123: 695-698.
Article
CAS
Google Scholar
Viikari L, Vehmaanperä J, Koivula A: Lignocellulosic ethanol: from science to industry. Biomass and Bioenergy 2012, 46: 13-24.
Article
CAS
Google Scholar
Holtzapple M, Cognata M, Shu Y, Hendrickson C: Inhibition of Trichoderma reesei cellulase by sugars and solvents. Biotechnol Bioeng 1990, 36: 275-287. 10.1002/bit.260360310
Article
CAS
Google Scholar
Wu Z, Lee YY: Inhibition of the enzymatic hydrolysis of cellulose by ethanol. Biotechnol Lett 1997, 19: 977-979. 10.1023/A:1018487015129
Article
CAS
Google Scholar
Mores W, Knutsen J, Davis R: Cellulase recovery via membrane filtration. Appl Biochem Biotechnol 2001, 91–93: 297-309.
Article
Google Scholar
Zhang MJ, Su RX, Li QA, Qi W, He ZM: Enzymatic saccharification of pretreated corn stover in a fed-batch membrane bioreactor. Bioenergy Research 2011, 4: 134-140. 10.1007/s12155-010-9107-1
Article
Google Scholar
Ramos LP, Breuil C, Saddler JN: The use of enzyme recycling and the influence of sugar accumulation on cellulose hydrolysis by Trichoderma-Cellulases. Enzyme Microb Technol 1993, 15: 19-25. 10.1016/0141-0229(93)90111-E
Article
CAS
Google Scholar
Van Dyk JS, Pletschke BI: A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes-Factors affecting enzymes, conversion and synergy. Biotechnol Adv 2012, 30: 1458-1480. 10.1016/j.biotechadv.2012.03.002
Article
CAS
Google Scholar
Weiss N, Borjesson J, Pedersen LS, Meyer AS: Enzymatic lignocellulose hydrolysis: Improved cellulase productivity by insoluble solids recycling. Biotechnology for Biofuels 2013, 6: 5. 10.1186/1754-6834-6-5
Article
CAS
Google Scholar
Chirico WJ, Brown RD: β-Glucosidase from Trichoderma reesei. Eur J Biochem 1987, 165: 343-351. 10.1111/j.1432-1033.1987.tb11447.x
Article
CAS
Google Scholar
Tu MB, Chandra RP, Saddler JN: Recycling cellulases during the hydrolysis of steam exploded and ethanol pretreated lodgepole pine. Biotechnol Prog 2007, 23: 1130-1137.
Article
CAS
Google Scholar
Varnai A, Viikari L, Marjamaa K, Siika-aho M: Adsorption of monocomponent enzymes in enzyme mixture analyzed quantitatively during hydrolysis of lignocellulose substrates. Bioresour Technol 2011, 102: 1220-1227. 10.1016/j.biortech.2010.07.120
Article
CAS
Google Scholar
Qing Q, Yang B, Wyman CE: Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresour Technol 2010, 101: 9624-9630. 10.1016/j.biortech.2010.06.137
Article
CAS
Google Scholar
Pan XJ, Xie D, Gilkes N, Gregg DJ, Saddler JN: Strategies to enhance the enzymatic hydrolysis of pretreated softwood with high residual lignin content. Appl Biochem Biotechnol 2005, 121: 1069-1079.
Article
Google Scholar
Taherzadeh MJ, Karimi K: Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review. Int J Mol Sci 2008, 9: 1621-1651. 10.3390/ijms9091621
Article
CAS
Google Scholar
Qi BK, Chen XR, Su Y, Wan YH: Enzyme adsorption and recycling during hydrolysis of wheat straw lignocellulose. Bioresour Technol 2011, 102: 2881-2889. 10.1016/j.biortech.2010.10.092
Article
CAS
Google Scholar
Zhang JH, Tang M, Viikari L: Xylans inhibit enzymatic hydrolysis of lignocellulosic materials by cellulases. Bioresour Technol 2012, 121: 8-12.
Article
CAS
Google Scholar
Sewalt VJH, Glasser WG, Beauchemin KA: Lignin Impact on Fiber Degradation. 3. Reversal of Inhibition of Enzymatic Hydrolysis by Chemical Modification of Lignin and by Additives. J Agric Food Chem 1997, 45: 1823-1828. 10.1021/jf9608074
Article
CAS
Google Scholar
Yang B, Wyman CE: BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Biotechnol Bioeng 2006, 94: 611-617. 10.1002/bit.20750
Article
CAS
Google Scholar
Zhang J, Lynd LR: Ethanol production from paper sludge by simultaneous saccharification and co-fermentation using recombinant xylose-fermenting microorganisms. Biotechnol Bioeng 2010, 107: 235-244. 10.1002/bit.22811
Article
CAS
Google Scholar
Yang J, Zhang X, Yong Q, Yu S: Three-stage enzymatic hydrolysis of steam-exploded corn stover at high substrate concentration. Bioresour Technol 2011, 102: 4905-4908. 10.1016/j.biortech.2010.12.047
Article
CAS
Google Scholar
Qi BK, Luo JQ, Chen GQ, Chen XR, Wan YH: Application of ultrafiltration and nanofiltration for recycling cellulase and concentrating glucose from enzymatic hydrolyzate of steam exploded wheat straw. Bioresour Technol 2012, 104: 466-472.
Article
CAS
Google Scholar
Humbird D, Davis R, Tao L, Kinchin C, Hsu D, Aden A, Schoen P, Lukas J, Olthof B, Worley M: Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol. NREL Technical report. In NREL/TP-5100-47764. NREL, Golden: CO, USA; 2011. http://www.nrel.gov/biomass/pdfs/47764.pdf
Google Scholar
Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D: Determination of Structural Carbohydrates and Lignin in Biomass. CO, USA: NREL, Golden; 2011. http://www.nrel.gov/biomass/analytical_procedures.html#lap-009
Google Scholar
Kitcherside MA, Glen EF, Webster AJF: FibreCap: an improved method for the rapid analysis of fibre in feeding stuffs. Anim Feed Sci Technol 2000, 86: 125-132. 10.1016/S0377-8401(00)00153-X
Article
CAS
Google Scholar
Pribowo A, Arantes V, Saddler JN: The adsorption and enzyme activity profiles of specific Trichoderma reesei cellulase/xylanase components when hydrolyzing steam pretreated corn stover. Enzyme Microb Technol 2012, 50: 195-203. 10.1016/j.enzmictec.2011.12.004
Article
CAS
Google Scholar
Ioelovich M, Morag E: Study of Enzymatic Hydrolysis of Pretreated Biomass at Increased Solids Loading. Bioresources 2012, 7: 4672-4682.
Article
CAS
Google Scholar
Rodrigues AC, Leitão AF, Moreira S, Felby C, Gama M: Recycling of cellulases in lignocellulosic hydrolysates using alkaline elution. Bioresour Technol 2012, 110: 526-533.
Article
CAS
Google Scholar
Wang QQ, Zhu JY, Hunt CG, Zhan HY: Kinetics of adsorption, desorption, and re-adsorption of a commercial endoglucanase in lignocellulosic suspensions. Biotechnol Bioeng 2012, 109: 1965-1975. 10.1002/bit.24483
Article
CAS
Google Scholar
Xue Y, Jameel H, Park S: Strategies to Recycle Enzymes and Their Impact on Enzymatic Hydrolysis for Bioethanol Production. Bioresources 2012, 7: 602-615.
Article
CAS
Google Scholar
Tu MB, Chandra RP, Saddler JN: Evaluating the distribution of cellulases and the recycling of free cellulases during the hydrolysis of lignocellulosic substrates. Biotechnol Prog 2007, 23: 398-406. 10.1021/bp060354f
Article
CAS
Google Scholar
Bu LT, Nimlos MR, Shirts MR, Stahlberg J, Himmel ME, Crowley MF, Beckham GT: Product Binding Varies Dramatically between Processive and Nonprocessive Cellulase Enzymes. J Biol Chem 2012, 287: 24807-24813. 10.1074/jbc.M112.365510
Article
CAS
Google Scholar
Várnai A, Siika-aho M, Viikari L: Restriction of the enzymatic hydrolysis of steam-pretreated spruce by lignin and hemicellulose. Enzyme Microb Technol 2010, 46: 185-193. 10.1016/j.enzmictec.2009.12.013
Article
Google Scholar
Hu JG, Arantes V, Saddler JN: The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect? Biotechnology for Biofuels 2011, 4: 36. 10.1186/1754-6834-4-36
Article
CAS
Google Scholar
Zhang X, Qin W, Paice MG, Saddler JN: High consistency enzymatic hydrolysis of hardwood substrates. Bioresour Technol 2009, 100: 5890-5897. 10.1016/j.biortech.2009.06.082
Article
CAS
Google Scholar
Zhang Y, Liu YY, Xu JL, Yuan ZH, Qi W, Zhuang XS, He MC: High Solid and Low Enzyme Loading Based Saccharification of Agricultural Biomass. Bioresources 2012, 7: 345-353.
CAS
Google Scholar
Xue Y, Jameel H, Phillips R, Chang HM: Split addition cif enzymes in enzymatic hydrolysis at high solids concentration to increase sugar concentration for bioethanol production. J Ind Eng Chem 2012, 18: 707-714. 10.1016/j.jiec.2011.11.132
Article
CAS
Google Scholar
Connor MR, Liao JC: Microbial production of advanced transportation fuels in non-natural hosts. Curr Opin Biotechnol 2009, 20: 307-315. 10.1016/j.copbio.2009.04.002
Article
CAS
Google Scholar
Ghose TK: Measurement of Cellulase Activities. Pure Appl Chem 1987, 59: 257-268. 10.1351/pac198759020257
CAS
Google Scholar
Davis MW: A rapid modified method for compositional carbohydrate analysis of lignocellulosics by high pH anion-exchange chromatography with pulsed amperometric detection (HPAEC/PAD). J Wood Chem Technol 1998, 18: 235-252. 10.1080/02773819809349579
Article
CAS
Google Scholar