Binder JB, Raines RT: Fermentable sugars by chemical hydrolysis of biomass. Proc Natl Acad Sci USA 2010, 107: 4516-4521. 10.1073/pnas.0912073107
Article
CAS
Google Scholar
Sun Y, Cheng J: Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 2002, 83: 1-11. 10.1016/S0960-8524(01)00212-7
Article
CAS
Google Scholar
Louime C, Uckelmann H: Cellulosic ethanol: securing the planet future energy needs. Int J Mol Sci 2008, 9: 838-841. 10.3390/ijms9050838
Article
CAS
Google Scholar
Jørgensen H, Kristensen JB, Felby C: Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels, Bioprod Biorefin 2007, 1: 119-134. 10.1002/bbb.4
Article
Google Scholar
Petrus L, Noordermeer MA: Biomass to biofuels, a chemical perspective. Green Chemistry 2006, 8: 861-867. 10.1039/b605036k
Article
CAS
Google Scholar
Jurgen E: Secondary metabolites and plant defense. In Plant Physiology. 4th edition. Edited by: Lincoln T, Eduardo Z. Sunderland, Massachusetts: Sinauer Associates, Inc; 2006:316-341.
Google Scholar
NNFCC: Renewable Chemicals Factsheet: Lignin. http://www.nnfcc.co.uk/publications/nnfcc-renewable-chemicals-factsheet-lignin
Lauten RA, Myrvold BO, Gundersen SA: New Developments in the Commercial Utilization of Lignosulfonates. In Surfactants from Renewable Resources. John Wiley & Sons, Ltd; 2010:269-283.
Chapter
Google Scholar
Hoyt CH, Goheen DW: Utilization of Lignin- Polymeric Products. In Lignins. Edited by: Sarkanen KV, Ludwig CH. John Wiley & Sons, Inc, USA; 1971:833-859.
Google Scholar
Northey RA: The Use of Lignosulphonates as Water Reducing Agents in the Manufacture of Gypsum Wallboard. In Chemical Modification, Properties, and Usage of Lignin. Edited by: Hu TQ. New York, USA: Kluwer Academic/Plenum Publishers; 2002:139-150.
Chapter
Google Scholar
Berry BC, Viswanathan MN: Lignosulfonic Acid-Doped Polyaniline (Ligno-Pani)- A Versatile Conducting Polymer. In Chemical Modification, Properties, and Usage of Lignin. Edited by: Hu TQ. New York, USA: Kluwer Academic/Plenum Publishers; 2002:21-40.
Chapter
Google Scholar
Kadla JF, Kubo S, Gilbert RD, Venditti RA: Lignin- based Carbon Fibers. In Chemical Modification, Properties, and Usage of Lignin. Edited by: Hu TQ. New York, USA: Kluwer Academic/Plenum Publishers; 2002:121-138.
Chapter
Google Scholar
Nagel H, Pfitzer J, Nagele E, Inone ER, Eisenreich N, Eckl W, Eyerer P: Arboform- A thermoplastic, processable material from lignin and natural fibers. In Chemical Modification, Properties, and Usage of Lignin. Edited by: Hu TQ. New York, USA: Kluwer Academic/Plenum Publishers; 2002:101-120.
Chapter
Google Scholar
Feldman D: Lignins and its Polyblends-A Review. In Chemical Modification, Properties, and Usage of Lignin. Edited by: Hu TQ. New York, USA: Kluwer Academic/Plenum Publishers; 2002:81-100.
Chapter
Google Scholar
Gandini A, Belgacem MN, Guo Z-X, Montanari: Lignins as Macromonomers for Polyesters and Polyurethanes. In Chemical Modification, Properties, and Usage of Lignin. Edited by: Hu TQ. New York, USA: Kluwer Academic/Plenum Publishers; 2002:57-80.
Chapter
Google Scholar
Dimmel DR, Bozell JJ, Oepen DG, Savidakis MC: Pulping Catalysts from Lignin-the Diels-Alder Step. In Chemical Modification, Properties, and Usage of Lignin. Edited by: Hu TQ. New York, USA: Kluwer Academic/Plenum Publishers; 2002:199-220.
Chapter
Google Scholar
Goheen DW: Utilization of Lignin: Low Molecular Weight Chemicals. In Lignins. Edited by: Sarkanen KV, Ludwig CH. USA: John Wiley & Sons, Inc; 1971:797-824.
Google Scholar
Gandini A: The irruption of polymers from renewable resources on the scene of macromolecular science and technology. Green Chemistry 2011, 13: 1061-1083. 10.1039/c0gc00789g
Article
CAS
Google Scholar
Singh S, Simmons BA, Vogel KP: Visualization of biomass solubilization and cellulose regeneration during ionic liquid pretreatment of switchgrass. Biotechnol Bioeng 2009, 104: 68-75. 10.1002/bit.22386
Article
CAS
Google Scholar
Stark K, Taccardi N, Bosmann A, Wasserscheid P: Oxidative depolymerization of lignin in ionic liquids. ChemSusChem 2010, 3: 719-723. 10.1002/cssc.200900242
Article
Google Scholar
George A, Tran K, Morgan TJ, Benke PI, Berrueco C, Lorente E, Wu BC, Keasling JD, Simmons BA, Holmes BM: The effect of ionic liquid cation and anion combinations on the macromolecular structure of lignins. Green Chemistry 2011, 13: 3375-3385. 10.1039/c1gc15543a
Article
CAS
Google Scholar
Arora R, Manisseri C, Li CL, Ong MD, Scheller HV, Vogel K, Simmons BA, Singh S: Monitoring and Analyzing Process Streams Towards Understanding Ionic Liquid Pretreatment of Switchgrass (Panicum virgatum L.). BioEnergy Research 2010, 3: 134-145. 10.1007/s12155-010-9087-1
Article
Google Scholar
Cheng G, Kent MS, He L, Varanasi P, Dibble D, Arora R, Deng K, Hong K, Melnichenko YB, Simmons BA, Singh S: Effect of Ionic Liquid Treatment on the Structures of Lignins in Solutions: Molecular Subunits Released from Lignin. Langmuir 2012, 28: 11850-11857. 10.1021/la300938b
Article
CAS
Google Scholar
Holladay JE, Bozell JJ, White JF, Johnson D: Top Value-Added Chemicals from Biomass Volume II—Results of Screening for Potential Candidates from Biorefinery Lignin. 2007. Report prepared by Pacific Northwest National Laboratory for US DOE, Report number PNNL-16983, available for download at . http://www1.eere.energy.gov/biomass/pdfs/pnnl-16983.pdf Report prepared by Pacific Northwest National Laboratory for US DOE, Report number PNNL-16983, available for download at .
Book
Google Scholar
Reichert E, Wintringer R, Volmer DA, Hempelmann R: Electro-catalytic oxidative cleavage of lignin in a protic ionic liquid. Phys Chem Chem Phys 2012, 14: 5214-5221. 10.1039/c2cp23596j
Article
CAS
Google Scholar
Cox BJ, Ekerdt JG: Depolymerization of oak wood lignin under mild conditions using the acidic ionic liquid 1-H-3-methylimidazolium chloride as both solvent and catalyst. Bioresour Technol 2012, 118: 584-588.
Article
CAS
Google Scholar
Stärk K, Taccardi N, Bösmann A, Wasserscheid P: Oxidative Depolymerization of Lignin in Ionic Liquids. ChemSusChem 2010, 3: 719-723. 10.1002/cssc.200900242
Article
Google Scholar
Bandounas L, Wierckx N, de Winde J, Ruijssenaars H: Isolation and characterization of novel bacterial strains exhibiting ligninolytic potential. BMC Biotechnol 2011, 11: 94. 10.1186/1472-6750-11-94
Article
CAS
Google Scholar
Boeriu CG, Bravo D, Gosselink RJA, van Dam JEG: Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy. Ind Crop Prod 2004, 20: 205-218. 10.1016/j.indcrop.2004.04.022
Article
CAS
Google Scholar
Certificate of origin for lignin, alkali, low sulfonate content. . http://www.sigmaaldrich.com/catalog/CertOfOriginPage.do?symbol=471003brand=ALDRICHLotNo=04414PEVbrandTest=ALDRICH
Wallis AFA: Solvolysis by acids and bases. In Lignins Occurance, formation structure and reactions. Edited by: Sarkanen KV, Ludwig CH. New York, USA: John Wiley & Sons, Inc; 1971.
Google Scholar
Adler E, Lundquist K, Miksche GE: The structure and reactivity of lignin. In Lignin Structure and Reactions. Edited by: Gould RF. Washington, DC: American Chemical Society; 1966:22-35. Advances in chemistry]
Chapter
Google Scholar
Lai Y-Z: Chemical Degradation. In Wood and cellulosic chemistry. Edited by: Hon DNS, Shiraishi N. New York: Marcel Dekker; 2001:443-512.
Google Scholar
Varanasi P, Singh P, Arora R, Adams PD, Auer M, Simmons BA, Singh S: Understanding changes in lignin of Panicum virgatum and Eucalyptus globulus as a function of ionic liquid pretreatment. Bioresour Technol 2012, 126: 156-61.
Article
CAS
Google Scholar
Couchman PR: The Effect of Degree of Polymerization on Glass-Transition Temperatures. Polym Eng Sci 1981, 21: 377-380. 10.1002/pen.760210702
Article
CAS
Google Scholar