Nidetzky B, Kayn M, Macarron R, Steiner W: Synergism of Trichoderma reesei cellulases while degrading different celluloses. Biotechnol Lett 1993, 15: 71-76. 10.1007/BF00131556
Article
CAS
Google Scholar
Reis D, Vian B: Helicoidal pattern in secondary cell walls and possible role of xylans in their construction. Comptes Rendus Biologies 2004, 327: 785-790. 10.1016/j.crvi.2004.04.008
Article
CAS
Google Scholar
Yang B, Wyman CE: Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnol Bioeng 2004, 86: 88-95. 10.1002/bit.20043
Article
CAS
Google Scholar
Öhgren K, Bura R, Saddler J, Zacchi G: Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover. Bioresour Technol 2007, 98: 2503-2510. 10.1016/j.biortech.2006.09.003
Article
Google Scholar
García-Aparicio MP, Ballesteros M, Manzanares P, Ballesteros I, González A, Negro MJ: Xylanase contribution to the efficiency of cellulose enzymatic hydrolysis of barley straw. Appl Biochem Biotechnol 2007, 136–140: 353-366.
Google Scholar
Aspinall GO: Structural chemistry of the hemicelluloses. Adv Carbohydr Chem 1959, 14: 429-468.
CAS
Google Scholar
Mueller-Harvey I, Hartley RD, Harris PJ, Curzon EH: Linkage of p-coumaroyl and feruloyl groups to cell-wall polysaccharides of barley straw. Carbohydr Res 1986, 148: 71-85. 10.1016/0008-6215(86)80038-6
Article
CAS
Google Scholar
Berlin A, Gilkes N, Kilburn D, Bura R, Markov A, Skomarovsky A, et al.: Evaluation of novel fungal cellulase preparations for ability to hydrolyze softwood substrates –evidence for the role of accessory enzymes. Enzyme Microb Technol 2005, 37: 175-184. 10.1016/j.enzmictec.2005.01.039
Article
CAS
Google Scholar
Kumar R, Wyman CE: Effect of xylanase supplementation of cellulase on digestion of corn stover solids prepared by leading pretreatment technologies. Bioresour Technol 2009, 100: 4203-4213. 10.1016/j.biortech.2008.11.057
Article
CAS
Google Scholar
Zhang J, Tuomainen P, Siika-aho M, Viikari L: Comparison of the synergistic action of two thermostable xylanases from GH families 10 and 11 with thermostable cellulases in lignocellulose hydrolysis. Bioresour Technol 2011, 102: 9090-9095. 10.1016/j.biortech.2011.06.085
Article
CAS
Google Scholar
Tomme R, Warren RAJ, Gilkes NR: Cellulose hydrolysis by bacteria and fungi. Adv Microbiol Physiol 1995, 37: 1-81.
Article
CAS
Google Scholar
Boraston AB, Bolam DN, Gilbert HJ, Davies GJ: Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 2004, 382: 769-781. 10.1042/BJ20040892
Article
CAS
Google Scholar
Ståhlberg J, Johansson G, Pettersson G: A new model for enzymatic hydrolysis of cellulose based on the two-domain structure of cellobiohydrolase I. Biotechnol 1991, 9: 286-290. 10.1038/nbt0391-286
Article
Google Scholar
Hall J, Black G, Ferreira L, Millward-Saddler S, Ali B, Hazlewood G, Gilbert G: The non-catalytic cellulose-binding domain of a novel cellulase from Pseudomonas fluorescens subsp. cellulosa is important for the efficient hydrolysis of Avicel. Biochem J 1995, 309: 749-756.
Article
CAS
Google Scholar
Shoseyov O, Shani Z, Levy I: Carbohydrate-binding modules: biochemical properties and novel applications. Microbial Mol Biol Rev 2006, 70: 283-295. 10.1128/MMBR.00028-05
Article
CAS
Google Scholar
Jalak J, Väljamäe P: Mechanism of initial rapid rate retardation in cellobiohydrolase catalyzed cellulose hydrolysis. Biotechnol Bioeng 2010, 106: 871-883. 10.1002/bit.22779
Article
CAS
Google Scholar
Igarashi K, Koivula A, Wada M, Kimura S, Penttilä M, Samejima M: High speed atomic force microscopy visualizes processive movement of Trichoderma reesei cellobiohydrolase I on crystalline cellulose. J Biol Chem 2009, 284: 36186-36190. 10.1074/jbc.M109.034611
Article
CAS
Google Scholar
Hägglund P, Eriksson T, Collén A, Nerinckx W, Claeyssens M, Stålbrand H: A cellulose-binding module of the Trichoderma reesei β-mannanase Man5A increases the mannan-hydrolysis of complex substrates. J Biotechnol 2003, 101: 37-48. 10.1016/S0168-1656(02)00290-0
Article
Google Scholar
Pham TA, Berrin JG, Record E, To KA, Sigoillot JC: Hydrolysis of softwood by Aspergillus mannanase: role of a carbohydrate-binding module. J Biotechnol 2010, 148: 163-170. 10.1016/j.jbiotec.2010.05.012
Article
CAS
Google Scholar
Sun JL, Sakka K, Karita S, Kimura T, Ohmiya K: Adsorption of Clostridium stercorarium xylanase A to insoluble xylan and the importance of the CBMs to xylan hydrolysis. J Ferment Bioeng 1998, 85: 63-68. 10.1016/S0922-338X(97)80355-8
Article
CAS
Google Scholar
Ali MK, Hayashi H, Karita S, Goto M, Kimura T, Sakka K, Ohmiya K: Importance of the carbohydrate-binding module of Clostridium stercorarium xyn10B to xylan hydrolysis. Biosci Biotechnol Biochem 2001, 65: 41-47. 10.1271/bbb.65.41
Article
CAS
Google Scholar
Mangala SL, Kittur FS, Nishimoto M, Sakka K, Ohmiya K, Kitaoka M, Hayashi K: Fusion of family VI cellulose binding domains to Bacillus halodurans xylanase increases its catalytic activity and substrate-binding capacity to insoluble xylan. J Mol Catal B: Enzym 2003, 21: 221-230. 10.1016/S1381-1177(02)00226-6
Article
CAS
Google Scholar
Mamo G, Hatti-Kaul R, Mattiasson B: Fusion of carbohydrate binding modules from Thermotoga neapolitana with a family 10 xylanase from Bacillus halodurans S7. Extremopiles 2007, 11: 169-177. 10.1007/s00792-006-0023-4
Article
CAS
Google Scholar
Simpson PJ, Bolam DN, Cooper A, Ciruela A, Hazlewood GP, Gilbert HJ, Williamson MP: A family IIb xylan-binding domain has a similar secondary structure to a homologous family IIa cellulose-binding domain but different ligand specificity. Structure 1999, 7: 853-864. 10.1016/S0969-2126(99)80108-7
Article
CAS
Google Scholar
Bolam DN, Xie H, White P, Simpson PJ, Hancock SM, Williamson MP, Gilbert HJ: Evidence for synergy between family 2b carbohydrate binding modules in xylanase 11A. Biochem 2001, 40: 2468-2477. 10.1021/bi002564l
Article
CAS
Google Scholar
Kittur FS, Mangala SL, Rus’d AA, Kitaoka M, Tsujibo H, Hayashi K: Fusion of family 2b carbohydrate-binding module increases the catalytic activity of a xylanase from Thermotoga maritime to soluble xylan. FEBS Lett 2003, 549: 147-151. 10.1016/S0014-5793(03)00803-2
Article
CAS
Google Scholar
Palonen H, Tjerneld F, Zacchi G, Tenkanen M: Adsorption of Trichoderma reesei CBHI and EGII and their catalytic domains on steam pretreated softwood and isolated lignin. J Biotechnol 2004, 107: 65-72. 10.1016/j.jbiotec.2003.09.011
Article
CAS
Google Scholar
Rahikainen J, Mkander S, Marjamaa K, Tamminen T, Lappas A, Viikari L, Kruus K: Inhibition of enzymatic hydrolysis by residual lignins from softwood―study of enzyme binding and inactivation on lignin-rich surface. Biotechnol Bioeng 2011, 108: 2823-2834. 10.1002/bit.23242
Article
CAS
Google Scholar
Zhang J, Siika-aho M, Puranen T, Tang M, Tenkanen M, Viikari L: Thermostable recombinant xylanases from Nonomuraea flexuosa and Thermoascus aurantiacus show distinct properties in the hydrolysis of xylans and pretreated wheat straw. Biotechnol biofuels 2011, 4: 12. 10.1186/1754-6834-4-12
Article
CAS
Google Scholar
Leskinen S, Mäntylä A, Fagerström R, Vehmaanperä J, Lantto R, Paloheimo M, Suominen P: Thermostable xylanases, Xyn10A and Xyn11A, from the actinomycete Nonomuraea flexuosa: isolation of the genes and characterization of recombinant Xyn11A polypeptides produced in Trichoderma reesei. Appl Microbiol Biotechnol 2005, 67: 495-505. 10.1007/s00253-004-1797-x
Article
CAS
Google Scholar
Belldman GA, Voragen GJ, Rombouts FM, Leeuwen SMF, Pilnik W: Adsorption and kinetic behavior of purified endoglucanase and exoglucanases from Trichoderma viride. Biotechnol Bioeng 1987, 30: 251-257. 10.1002/bit.260300215
Article
Google Scholar
Kumar R, Wyman CE: Access of cellulase of cellulose and lignin for poplar solids produced by leading pretreatment technologies. Biotechnol Pro 2009, 25: 807-819. 10.1002/btpr.153
Article
CAS
Google Scholar
Kumar R, Wyman CE: Cellulase adsorption and relationship to features of corn stover solids produced by leading pretreatments. Biotehnol Bioeng 2009, 103: 252-267. 10.1002/bit.22258
Article
CAS
Google Scholar
Nakagame S, Chandra RP, Kadla JF, Saddler JN: Enhancing the enzymatic hydrolysis of lignocellulosic biomass by increasing the carboxylic acid content of the associated lignin. Biotechnol Bioeng 2011, 108: 538-548. 10.1002/bit.22981
Article
CAS
Google Scholar
Moilanen U, Kellock M, Galkin S, Viikari L: The laccase-catalyzed modification of lignin for enzymatic hydrolysis. Enzyme Microb Technol 2011, 49: 492-498. 10.1016/j.enzmictec.2011.09.012
Article
CAS
Google Scholar
Tenkanen M, Siika-aho M: An α-glucuronidase of Schizophyllum commune acting on polymeric xylan. J Biotechnol 2000, 78: 149-161. 10.1016/S0168-1656(99)00240-0
Article
CAS
Google Scholar
Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D: Determination of structural carbohydrates and lignin in biomass. , 02/11 2012 http://www.nrel.gov/biomass/pdfs/42618.pdf
Ryan SE, Nolan K, Thompson R, Gubitz GM, Savage AV, Tuohy MG: Purification and characterisation of a new low molecular weight endoxylanase from Penicillium capsulatum. Enzyme Microbiol Technol 2003, 33: 775-785. 10.1016/S0141-0229(03)00176-5
Article
CAS
Google Scholar
Suominen P, Mäntylä A, Karhunen T, Hakola S, Nevalainen H: High frequency one-step gene replacement in Trichoderma reesei: effects of deletions of individual genes. Mol Gen Genet 1993, 241: 523-530. 10.1007/BF00279894
Article
CAS
Google Scholar
Bailey MJ, Biely P, Poutanen K: Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol 1992, 23: 257-270. 10.1016/0168-1656(92)90074-J
Article
CAS
Google Scholar
Miller GL: Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal Chem 1959, 31: 426-428. 10.1021/ac60147a030
Article
CAS
Google Scholar
Lowry OH, Roseborough NJ, Farr AL, Randall RJ: Protein measurement with the Folin phenol reagent. J Biol Chem 1951, 193: 265-275.
CAS
Google Scholar
Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227: 680-685. 10.1038/227680a0
Article
CAS
Google Scholar
Ryu K, Kim Y: Adsorption of a xylanase purified from pulpzyme HC onto alkali-lignin and crystalline cellulose. Biotechnol Lett 1998, 20: 987-990. 10.1023/A:1005498703554
Article
CAS
Google Scholar
Zilliox C, Debeire P: Hydrolysis of wheat straw by a thermostable endoxylanase: adsorption and kinetic studies. Appl Microbiol Biotechnol 1998, 22: 58-63.
CAS
Google Scholar