Henrissat B: A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 1991, 280: 309-316.
Article
CAS
Google Scholar
Henrissat B, Bairoch A: Updating the sequence-based classification of glycosyl hydrolases. Biochem J 1996, 316: 695-696.
Article
Google Scholar
Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B: The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 2009, 37: D233-D238. 10.1093/nar/gkn663
Article
CAS
Google Scholar
Ruiz-Dueñas FJ, Martínez AT: Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this. Microb Biotechnol 2009, 2: 164-177. 10.1111/j.1751-7915.2008.00078.x
Article
Google Scholar
Martínez AT, Ruiz-Dueñas FJ, Martínez MJ, Del Río JC, Gutiérrez A: Enzymatic delignification of plant cell wall: from nature to mill. Curr Opin Biotechnol 2009, 20: 348-357. 10.1016/j.copbio.2009.05.002
Article
Google Scholar
Fernandez-Fueyo E, Ruiz-Dueñas FJ, Ferreira P, Floudas D, Hibbett DS, Canessa P, Larrondo LF, James TY, Seelenfreund D, Lobos S, Polanco R, Tello M, Honda Y, Watanabe T, Watanabe T, Ryu JS, Kubicek CP, Schmoll M, Gaskell J, Hammel KE, St John FJ, Vanden Wymelenberg A, Sabat G, Splinter BonDurant S, Syed K, Yadav JS, Doddapaneni H, Subramanian V, Lavín JL, Oguiza JA: Comparative genomics of Ceriporiopsis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis. Proc Natl Acad Sci U S A 2012, 109: 5458-5463. 10.1073/pnas.1119912109
Article
CAS
Google Scholar
van Hellemond EW, Leferink NG, Heuts DP, Fraaije MW, van Berkel WJ: Occurrence and biocatalytic potential of carbohydrate oxidases. Adv Appl Microbiol 2006, 60: 17-54.
Article
CAS
Google Scholar
Quinlan RJ, Sweeney MD, Lo Leggio L, Otten H, Poulsen JC, Johansen KS, Krogh KB, Jørgensen CI, Tovborg M, Anthonsen A, Tryfona T, Walter CP, Dupree P, Xu F, Davies GJ, Walton PH: Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc Natl Acad Sci U S A 2011, 108: 15079-15084. 10.1073/pnas.1105776108
Article
CAS
Google Scholar
Beeson WT, Phillips CM, Cate JH, Marletta MA: Oxidative cleavage of cellulose by fungal copper-dependent polysaccharide monooxygenases. J Am Chem Soc 2012, 134: 890-892. 10.1021/ja210657t
Article
CAS
Google Scholar
Li X, Beeson WT, Phillips CM, Marletta MA, Cate JHD: Structural basis for substrate targeting and catalysis by fungal polysaccharide monooxygenases. Structure 2012, 20: 1051-1061. 10.1016/j.str.2012.04.002
Article
Google Scholar
Bey M, Zhou S, Poidevin L, Henrissat B, Coutinho PM, Berrin JG, Sigoillot JC: Cello-oligosaccharide oxidation reveals differences between two lytic polysaccharide monooxygenases (family GH61) from Podospora anserina . Appl Environ Microbiol 2013, 79: 488-496. 10.1128/AEM.02942-12
Article
CAS
Google Scholar
Westereng B, Ishida T, Vaaje-Kolstad G, Wu M, Eijsink VGH, Igarashi K, Samejima M, Ståhlberg J, Horn SJ, Sandgren M: The putative endoglucanase PcGH61D from Phanerochaete chrysosporium is a metal-dependent oxidative enzyme that cleaves cellulose. PLoS One 2011, 16: e27807.
Article
Google Scholar
Langston JA, Brown K, Xu F, Borch K, Garner A, Sweeney MD: Cloning, expression, and characterization of a cellobiose dehydrogenase from Thielavia terrestris induced under cellulose growth conditions. Biochim Biophys Acta 1824, 2012: 802-812.
Google Scholar
Phillips CM, Beeson WT, Cate JH, Marletta MA: Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa . ACS Chem Biol 2011, 6: 1399-1406. 10.1021/cb200351y
Article
CAS
Google Scholar
Vaaje-Kolstad G, Horn SJ, van Aalten DMF, Synstad B, Eijsink VGH: The non-catalytic chitin-binding protein CBP21 from Serratia marcescens is essential for chitin degradation. J Biol Chem 2005, 280: 28492-28497. 10.1074/jbc.M504468200
Article
CAS
Google Scholar
Vaaje-Kolstad G, Westereng B, Horn SJ, Liu ZL, Zhai H, Sørlie M, Eijsink VGH: An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 2010, 330: 219-222. 10.1126/science.1192231
Article
CAS
Google Scholar
Forsberg Z, Vaaje-Kolstad G, Westereng B, Bunæs AC, Stenstrøm Y, MacKenzie A, Sørlie M, Horn SJ, Eijsink VG: Cleavage of cellulose by a CBM33 protein. Protein Sci 2011, 20: 1479-1483. 10.1002/pro.689
Article
CAS
Google Scholar
Vaaje-Kolstad G, Bøhle LA, Gåseidnes S, Dalhus B, Bjørås M, Mathiesen G, Eijsink VG: Characterization of the chitinolytic machinery of Enterococcus faecalis V583 and high-resolution structure of its oxidative CBM33 enzyme. J Mol Biol 2012, 416: 239-254. 10.1016/j.jmb.2011.12.033
Article
CAS
Google Scholar
Aachmann FL, Sørlie M, Skjåk-Bræk G, Eijsink VG, Vaaje-Kolstad G: NMR structure of a lytic polysaccharide monooxygenase provides insight into copper binding, protein dynamics, and substrate interactions. Proc Natl Acad Sci U S A 2012, 109: 18779-18784. 10.1073/pnas.1208822109
Article
CAS
Google Scholar
Mba Medie F, Davies GJ, Drancourt M, Henrissat B: Genome analyses highlight the different biological roles of cellulases. Nat Rev Microbiol 2012, 10: 227-234. 10.1038/nrmicro2729
Article
Google Scholar
Henriksson G, Johansson G, Pettersson G: A critical review of cellobiose dehydrogenases. J Biotechnol 2000, 78: 93-113. 10.1016/S0168-1656(00)00206-6
Article
CAS
Google Scholar
Levasseur A, Piumi F, Coutinho PM, Rancurel C, Asther M, Delattre M, Henrissat B, Pontarotti P, Asther M, Record E: FOLy: an integrated database for the classification and functional annotation of fungal oxidoreductases potentially involved in the degradation of lignin and related aromatic compounds. Fungal Genet Biol 2008, 45: 638-645. 10.1016/j.fgb.2008.01.004
Article
CAS
Google Scholar
Baldrian P: Fungal laccases - occurrence and properties. FEMS Microbiol Rev 2006, 30: 215-242. 10.1111/j.1574-4976.2005.00010.x
Article
CAS
Google Scholar
Cañas AI, Camarero S: Laccases and their natural mediators: biotechnological tools for sustainable eco-friendly processes. Biotechnol Adv 2010, 28: 694-705. 10.1016/j.biotechadv.2010.05.002
Article
Google Scholar
Askwith C, Eide D, Van Ho A, Bernard PS, Li L, Davis-Kaplan S, Sipe DM, Kaplan J: The FET3 gene ofS. cerevisiaeencodes a multicopper oxidase required for ferrous iron uptake. Cell 1994, 76: 403-410. 10.1016/0092-8674(94)90346-8
Article
CAS
Google Scholar
Kosman DJ: Molecular mechanisms of iron uptake in fungi. Mol Microbiol 2003, 47: 1185-1197. 10.1046/j.1365-2958.2003.03368.x
Article
CAS
Google Scholar
Kersten P, Cullen D: Extracellular oxidative systems of the lignin-degrading Basidiomycete Phanerochaete chrysosporium . Fungal Genet Biol 2007, 44: 77-87. 10.1016/j.fgb.2006.07.007
Article
CAS
Google Scholar
Levasseur A, Saloheimo M, Navarro D, Andberg M, Pontarotti P, Kruus K, Record E: Exploring laccase-like multicopper oxidase genes from the ascomycete Trichoderma reesei : a functional, phylogenetic and evolutionary study. BMC Biochem 2010, 11: 32. 10.1186/1471-2091-11-32
Article
Google Scholar
Hölker U, Dohse J, Höfer M: Extracellular laccases in ascomycetes Trichoderma atroviride and Trichoderma harzianum . Folia Microbiol 2002, 47: 423-427. 10.1007/BF02818702
Article
Google Scholar
Koua D, Cerutti L, Falquet L, Sigrist CJ, Theiler G, Hulo N, Dunand C: PeroxiBase: a database with new tools for peroxidase family classification. Nucleic Acids Res 2009, 37: D261-D266. 10.1093/nar/gkn680
Article
CAS
Google Scholar
Lundell TK, Mäkelä MR, Hildén K: Lignin-modifying enzymes in filamentous basidiomycetes–ecological, functional and phylogenetic review. J Basic Microbiol 2010, 50: 5-20. 10.1002/jobm.200900338
Article
CAS
Google Scholar
Hofrichter M, Ullrich R, Pecyna MJ, Liers C, Lundell T: New and classic families of secreted fungal heme peroxidases. Appl Microbiol Biotechnol 2010, 87: 871-897. 10.1007/s00253-010-2633-0
Article
CAS
Google Scholar
Cavener DR: GMC oxidoreductases—a newly defined family of homologous proteins with diverse catalytic activities. J Mol Biol 1992, 223: 811-814. 10.1016/0022-2836(92)90992-S
Article
CAS
Google Scholar
Zámocký M, Ludwig R, Peterbauer C, Hallberg BM, Divne C, Nicholls P, Haltrich D: Cellobiose dehydrogenase- a flavocytochrome from wood-degrading, phytopathogenic and saprotropic fungi. Curr Protein Pept Sci 2006, 7: 255-280. 10.2174/138920306777452367
Article
Google Scholar
Kremer SM, Wood PM: Cellobiose oxidase from Phanerochaete chrysosporium as a source of Fenton’s reagent. Biochem Soc Trans 1992, 20: 110S.
Article
CAS
Google Scholar
Turbe-Doan A, Arfi Y, Record E, Estrada-Alvarado I, Levasseur A: Heterologous production of cellobiose dehydrogenases from the basidiomycete Coprinopsis cinerea and the ascomycete Podospora anserina and their effect on saccharification of wheat straw . Appl Microbiol Biotechnol 2012. In press
Google Scholar
Zámocký M, Hallberg M, Ludwig R, Divne C, Haltrich D: Ancestral gene fusion in cellobiose dehydrogenases reflects a specific evolution of GMC oxidoreductases in fungi. Gene 2004, 338: 1-14. 10.1016/j.gene.2004.04.025
Article
Google Scholar
Hernández-Ortega A, Ferreira P, Martínez AT: Fungal aryl-alcohol oxidase: a peroxide-producing flavoenzyme involved in lignin degradation. Appl Microbiol Biotechnol 2012, 93: 1395-1410. 10.1007/s00253-011-3836-8
Article
Google Scholar
Martínez AT, Speranza M, Ruiz-Dueñas FJ, Ferreira P, Camarero S, Guillén F, Martínez MJ, Gutiérrez A, del Río JC: Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int Microbiol 2005, 8: 195-204.
Google Scholar
Eriksson KE, Pettersson B, Volc J, Musílek V: Formation and partial characterization of glucose-2-oxidase, a H
2
O
2
producing enzyme in Phanerochaete chrysosporium . Appl Microbiol Biotechnol 1986, 23: 257-262.
Article
CAS
Google Scholar
Daniel G, Volc J, Filonova L, Plihal O, Kubátová E, Halada P: Characteristics of Gloeophyllum trabeum alcohol oxidase, an extracellular source of H
2
O
2
in brown rot decay of wood. Appl Environ Microbiol 2007, 73: 6241-6253. 10.1128/AEM.00977-07
Article
CAS
Google Scholar
Giffhorn F: Fungal pyranose oxidases: occurrence, properties and biotechnical applications in carbohydrate chemistry. Appl Microbiol Biotechnol 2000, 54: 727-740. 10.1007/s002530000446
Article
CAS
Google Scholar
de Jong E, van Berkel WJ, van der Zwan RP, de Bont JA: Purification and characterization of vanillyl-alcohol oxidase from Penicillium simplicissimum . A novel aromatic alcohol oxidase containing covalently bound FAD. Eur J Biochem 1992, 208: 651-657. 10.1111/j.1432-1033.1992.tb17231.x
Article
CAS
Google Scholar
Whittaker MM, Kersten PJ, Nakamura N, Sanders-Loehr J, Schweizer ES, Whittaker JW: Glyoxal oxidase from Phanerochaete chrysosporium is a new radical-copper oxidase. J Biol Chem 1996, 271: 681-687. 10.1074/jbc.271.2.681
Article
CAS
Google Scholar
Vanden Wymelenberg A, Sabat G, Mozuch M, Kersten PJ, Cullen D, Blanchette RA: Structure, organization, and transcriptional regulation of a family of copper radical oxidase genes in the lignin-degrading basidiomycete Phanerochaete chrysosporium . Appl Environ Microbiol 2006, 72: 4871-4877. 10.1128/AEM.00375-06
Article
CAS
Google Scholar
Whittaker JW: Free radical catalysis by galactose oxidase. Chem Rev 2003, 103: 2347-2363. 10.1021/cr020425z
Article
CAS
Google Scholar
Brock BJ, Rieble S, Gold MH: Purification and characterization of a 1,4-Benzoquinone reductase from the basidiomycete Phanerochaete chrysosporium . Appl Environ Microbiol 1995, 61: 3076-3081.
CAS
Google Scholar
Lee SS, Moon DS, Choi HT, Song HG: Purification and characterization of an intracellular NADH:quinone reductase from Trametes versicolor . J Microbiol 2007, 45: 333-338.
CAS
Google Scholar
Jensen K Jr, Ryan Z, Wymelenberg A, Cullen D, Hammel K: An NADH:quinone oxidoreductase active during biodegradation by the brown-rot basidiomycete Gloeophyllum trabeum . Appl Environ Microbiol 2002, 68: 2699-2703. 10.1128/AEM.68.6.2699-2703.2002
Article
CAS
Google Scholar
Fan Z, Oguntimein GB, Reilly PJ: Characterization of kinetics and thermostability of Acremonium strictum glucooligosaccharide oxidase. Biotechnol Bioeng 2000, 68: 231-237. 10.1002/(SICI)1097-0290(20000420)68:2<231::AID-BIT12>3.0.CO;2-D
Article
CAS
Google Scholar
Henriksson G, Johansson G, Pettersson G: Is cellobiose oxidase from Phanerochaete chrysosporium a one-electron reductase? Biochim Biophys Acta 1993, 1144: 184-190. 10.1016/0005-2728(93)90171-B
Article
CAS
Google Scholar
Eastwood DC, Floudas D, Binder M, Majcherczyk A, Schneider P, Aerts A, Asiegbu FO, Baker SE, Barry K, Bendiksby M, Blumentritt M, Coutinho PM, Cullen D, de Vries RP, Gathman A, Goodell B, Henrissat B, Ihrmark K, Kauserud H, Kohler A, LaButti K, Lapidus A, Lavin JL, Lee YH, Lindquist E, Lilly W, Lucas S, Morin E, Murat C, Oguiza JA: The plant cell wall-decomposing machinery underlies the functional diversity of forest fungi. Science 2011, 333: 762-765. 10.1126/science.1205411
Article
CAS
Google Scholar
Harris PV, Welner D, McFarland KC, Re E, Navarro Poulsen JC, Brown K, Salbo R, Ding H, Vlasenko E, Merino S, Xu F, Cherry J, Larsen S, Lo LL: Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: Structure and function of a large, enigmatic family. Biochemistry 2010, 49: 3305-3316. 10.1021/bi100009p
Article
CAS
Google Scholar
Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink VG: Novel enzymes for the degradation of cellulose. Biotechnol Biofuels 2012, 5: 45. 10.1186/1754-6834-5-45
Article
CAS
Google Scholar
Kimura M: The neutral theory of molecular evolution. Cambridge UK: Cambridge University Press; 1983.
Book
Google Scholar
Ganfornina MD, Sanchez D: Generation of evolutionary novelty by functional shift. Bioessays 1999, 21: 432-439. 10.1002/(SICI)1521-1878(199905)21:5<432::AID-BIES10>3.0.CO;2-T
Article
CAS
Google Scholar
Lynch M, Conery JS: The origins of genome complexity. Science 2003, 302: 1401-1404. 10.1126/science.1089370
Article
CAS
Google Scholar
Levasseur A, Pontarotti P: The role of duplications in the evolution of genomes highlights the need for evolutionary-based approaches in comparative genomics. Biol Direct 2011, 6: 11. 10.1186/1745-6150-6-11
Article
CAS
Google Scholar
Levasseur A, Orlando L, Bailly X, Milinkovitch MC, Danchin EG, Pontarotti P: Conceptual bases for quantifying the role of the environment on gene evolution: the participation of positive selection and neutral evolution. Biol Rev Camb Philos Soc 2007, 82: 551-572. 10.1111/j.1469-185X.2007.00024.x
Article
Google Scholar
Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D, Danchin EG, Grigoriev IV, Harris P, Jackson M, Kubicek CP, Han CS, Ho I, Larrondo LF, de Leon AL, Magnuson JK, Merino S, Misra M, Nelson B, Putnam N, Robbertse B, Salamov AA, Schmoll M, Terry A, Thayer N, Westerholm-Parvinen A: Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina ). Nat Biotechnol 2008, 26: 553-560. 10.1038/nbt1403
Article
CAS
Google Scholar
Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B, Martínez AT, Otillar R, Spatafora JW, Yadav JS, Aerts A, Benoit I, Boyd A, Carlson A, Copeland A, Coutinho PM, de Vries RP, Ferreira P, Findley K, Foster B, Gaskell J, Glotzer D, Górecki P, Heitman J, Hesse C, Hori C, Igarashi K, Jurgens JA, Kallen N, Kersten P: The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 2012, 336: 1715-1719. 10.1126/science.1221748
Article
CAS
Google Scholar
Rosewich UL, Kistler HC: Role of horizontal gene transfer in the evolution of fungi. Annu Rev Phytopathol 2000, 38: 325-363. 10.1146/annurev.phyto.38.1.325
Article
CAS
Google Scholar
Harreither W, Sygmund C, Augustin M, Narciso M, Rabinovich ML, Gorton L, Haltrich D, Ludwig R: Catalytic properties and classification of cellobiose dehydrogenases from ascomycetes. Appl Environ Microbiol 2011, 77: 1804-1815. 10.1128/AEM.02052-10
Article
CAS
Google Scholar
Martinez AT: Molecular biology and structure-function of lignin-degrading heme peroxidases. Enzym Microb Technol 2002, 30: 425-444. 10.1016/S0141-0229(01)00521-X
Article
CAS
Google Scholar
Ohm RA, de Jong JF, Lugones LG, Aerts A, Kothe E, Stajich JE, de Vries RP, Record E, Levasseur A, Baker SE, Bartholomew KA, Coutinho PM, Erdmann S, Fowler TJ, Gathman AC, Lombard V, Henrissat B, Knabe N, Kües U, Lilly WW, Lindquist E, Lucas S, Magnuson JK, Piumi F, Raudaskoski M, Salamov A, Schmutz J, Schwarze FW, van Kuyk PA, Horton JS: Genome sequence of the model mushroomSchizophyllum commune. Nat Biotechnol 2010, 28: 957-963. 10.1038/nbt.1643
Article
CAS
Google Scholar
Cameron MD, Aust SD: Cellobiose dehydrogenase-an extracellular fungal flavocytochrome. Enzyme Microb Technol 2001, 28: 129-138. 10.1016/S0141-0229(00)00307-0
Article
CAS
Google Scholar
Gutiérrez A, Rencoret J, Cadena EM, Rico A, Barth D, del Río JC, Martínez AT: Demonstration of laccase-based removal of lignin from wood and non-wood plant feedstocks. Bioresour Technol 2012, 119: 114-122.
Article
Google Scholar
Guillén F, Gómez-Toribio V, Martínez MJ, Martínez AT: Production of hydroxyl radical by the synergistic action of fungal laccase and aryl alcohol oxidase. Arch Biochem Biophys 2000, 383: 142-147. 10.1006/abbi.2000.2053
Article
Google Scholar
Ciullini I, Tilli S, Scozzafava A, Briganti F: Fungal laccase, cellobiose dehydrogenase, and chemical mediators: combined actions for the decolorization of different classes of textile dyes. Bioresour Technol 2008, 99: 7003-7010. 10.1016/j.biortech.2008.01.019
Article
CAS
Google Scholar
Enayatzamir K, Tabandeh F, Yakhchali B, Alikhani HA, Rodríguez Couto S: Assessment of the joint effect of laccase and cellobiose dehydrogenase on the decolouration of different synthetic dyes. J Hazard Mater 2009, 169: 176-181. 10.1016/j.jhazmat.2009.03.088
Article
CAS
Google Scholar
Tilli S, Ciullini I, Scozzafava A, Briganti F: Differential decolorization of textile dyes in mixtures and the joint effect of laccase and cellobiose dehydrogenase activities present in extracellular extracts from Funalia trogii . Enzyme Microb Technol 2011, 49: 465-471. 10.1016/j.enzmictec.2011.08.002
Article
CAS
Google Scholar
Ohno S: Evolution by gene duplication. New York: Springer; 1970.
Book
Google Scholar
Zimmermann W: Degradation of lignin by bacteria. J Biotechnol 1990, 13: 119-130. 10.1016/0168-1656(90)90098-V
Article
CAS
Google Scholar
Bugg TD, Ahmad M, Hardiman EM, Singh R: The emerging role for bacteria in lignin degradation and bio-product formation. Curr Opin Biotechnol 2011, 22: 394-400. 10.1016/j.copbio.2010.10.009
Article
CAS
Google Scholar
Masai E, Katayama Y, Fukuda M: Genetic and biochemical investigations on bacterial catabolic pathways for lignin-derived aromatic compounds. Biosci Biotechnol Biochem 2007, 71: 1-15. 10.1271/bbb.60437
Article
CAS
Google Scholar
Bugg TD, Ahmad M, Hardiman EM, Rahmanpour R: Pathways for degradation of lignin in bacteria and fungi. Nat Prod Rep 2011, 28: 1883-1896. 10.1039/c1np00042j
Article
CAS
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215: 403-410.
Article
CAS
Google Scholar
Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL: GenBank. Nucleic Acids Res 2005, 33: D34-D38. 10.1093/nar/gni032
Article
CAS
Google Scholar
Stam MR, Danchin EG, Rancurel C, Coutinho PM, Henrissat B: Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of alpha-amylase-related proteins. Protein Eng Des Sel 2006, 19: 555-562. 10.1093/protein/gzl044
Article
CAS
Google Scholar
Lombard V, Bernard T, Rancurel C, Brumer H, Coutinho PM, Henrissat B: A hierarchical classification of polysaccharide lyases for glycogenomics. Biochem J 2010, 432: 437-444. 10.1042/BJ20101185
Article
CAS
Google Scholar
Aspeborg H, Coutinho PM, Wang Y, Brumer H 3rd, Henrissat B: Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5). BMC Evol Biol 2012, 12: 186. 10.1186/1471-2148-12-186
Article
CAS
Google Scholar
Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V, Quackenbush J: TM4: a free, open-source system for microarray data management and analysis. Biotechniques 2003, 34: 374-378.
CAS
Google Scholar