Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD: Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science. 2007, 315: 804-807. 10.1126/science.1137016.
Article
CAS
Google Scholar
Raguaskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski TJ: The path forward for biofuels and biomaterials. Science. 2006, 311: 484-489. 10.1126/science.1114736.
Article
Google Scholar
Li X, Weng J-K, Chapple C: Improvement of biomass through lignin modification. Plant J. 2008, 54: 569-581. 10.1111/j.1365-313X.2008.03457.x.
Article
CAS
Google Scholar
Grabber JH, Mertens DR, Kim H, Funk C, Lu F, Ralph J: Cell wall fermentation kinetics are impacted more by lignin content and ferulate cross-linking than by lignin composition. J Sci Food Agric. 2009, 89: 122-129. 10.1002/jsfa.3418.
Article
CAS
Google Scholar
Chen F, Dixon RA: Lignin modification improves fermentable sugar yields for biofuel production. Nature Biotechnol. 2007, 25: 759-761. 10.1038/nbt1316.
Article
CAS
Google Scholar
Hisano H, Nandakumar R, Wang Z-Y: Genetic modification of lignin biosynthesis for improved biofuel production. In Vitro Cell Dev Biol Plant. 2009, 45: 306-307. 10.1007/s11627-009-9219-5.
Article
CAS
Google Scholar
Fu C, Mielenz JR, Xiao X, Ge Y, Hamilton CY, Rodriguez M, Chen F, Foston M, Ragauskas AJ, Bouton J, Dixon RA, Wang Z-Y: Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proc Natl Acad Sci U S A. 2011, 108: 3803-3808. 10.1073/pnas.1100310108.
Article
CAS
Google Scholar
Yee KL, Rodriguez M, Tschaplinski TJ, Engle NL, Martin MZ, Fu C, Wang Z-Y, Hamilton-Brehm SD, Mielenz JR: Evaluation of the bioconversion of genetically modified switchgrass using simultaneous saccharification and fermentation and a consolidated bioprocessing approach. Biotechnol Biofuels. 2012, 5: 81-10.1186/1754-6834-5-81.
Article
CAS
Google Scholar
Shen H, He X, Poovaiah CR, Wuddineh WA, Ma J, Mann DGJ, Wang H, Jackson L, Stewart CN, Chen F, Dixon RA: Functional characterization of the switchgrass (Panicum virgatum) R2R3-MYB transcription factorPvMYB4 for improvement of lignocellulosic feedstocks. New Phytol. 2012, 193: 121-136. 10.1111/j.1469-8137.2011.03922.x.
Article
CAS
Google Scholar
Shen H, Poovaiah CR, Ziebell A, Tschaplinski TJ, Pattathil S, Gjersing E, Engle NL, Katahira R, Pu Y, Sykes R, Chen F, Ragauskas AJ, Mielenz JR, Hahn MG, Davis M, Stewart CN, Dixon RA: Enhanced characteristics of genetically modified switchgrass (Panicum virgatum L.) for high biofuel production. Biotechnol Biofuels. 2013, 6: 71-10.1186/1754-6834-6-71.
Article
CAS
Google Scholar
Simmons BA, Loqué D, Ralph J: Advances in modifying lignin for enhanced biofuel production. Curr Opin Plant Biol. 2010, 13: 312-319. 10.1016/j.pbi.2010.03.001.
Article
Google Scholar
Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS: Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev. 2002, 66: 506-577. 10.1128/MMBR.66.3.506-577.2002.
Article
CAS
Google Scholar
Lynd LR, Van Zyl WH, McBride JE, Laser M: Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotecnol. 2005, 16: 577-583. 10.1016/j.copbio.2005.08.009.
Article
CAS
Google Scholar
Olson DG, McBride JE, Shaw JA, Lynd LR: Recent progress in consolidated bioprocessing. Curr Orin Biotechnol. 2012, 23: 396-405. 10.1016/j.copbio.2011.11.026.
Article
CAS
Google Scholar
Shao X, Jin M, Guseva A, Liu C, Balan V, Hogsett D, Dale BE, Lynd L: Conversion of Avicel and AFEX pretreated corn stover by Clostridium thermocellum and simultaneous saccharification and fermentation: insights into microbial conversion of pretreated cellulosic biomass. Bioresourc Technol. 2011, 102: 8040-8045. 10.1016/j.biortech.2011.05.021.
Article
CAS
Google Scholar
Raman B, Pan C, Hurst GB, Rodriguez M, McKeown CK, Lankford PK, Samatova NF, Mielenz JR: Impact of pretreated switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis. PLoS One. 2009, 4: e5271-10.1371/journal.pone.0005271.
Article
Google Scholar
Blumer-Schuette SE, Kataeva I, Westpheling J, Adams MWW, Kelly RM: Extremely thermophilic microorganisms for biomass conversion: status and prospects. Curr Opin Biotecnol. 2008, 19: 210-217. 10.1016/j.copbio.2008.04.007.
Article
CAS
Google Scholar
Tripathi SA, Olson DG, Argyros DA, Miller BB, Barrett TF, Murphy DM, McCool JD, Warner AK, Rajgarhia VB, Lynd LR, Hogsett DA, Caiazza NC: Development of pyrF-based genetic system for targeted gene deletion in Clostridium thermocellum and creation of a pta mutant. Appl Environ Microbiol. 2010, 76: 6591-6599. 10.1128/AEM.01484-10.
Article
CAS
Google Scholar
Argyros DA, Tripathi SA, Barrett TF, Rogers SR, Feinberg LF, Olson DG, Foden JM, Miller BB, Lynd LR, Hogsett DA, Caiazza NC: High ethanol titers from cellulose by using metabolically engineered thermophilic, anaerobic microbes. Appl Environ Microbiol. 2010, 77: 8288-8294.
Article
Google Scholar
Tschaplinski TJ, Standaert RF, Engle NL, Martin MZ, Sangha AK, Parks JM, Smith JC, Samuel R, Jiang N, Pu Y, Ragauskas AJ, Hamilton CY, Fu C, Wang Z-Y, Davison BH, Dixon RA, Mielenz JR: Down-regulation of the caffeic acid O-methyltransferase gene in switchgrass reveals a novel monolignol analog. Biotechnol Biofuels. 2012, 5: 71-10.1186/1754-6834-5-71.
Article
CAS
Google Scholar
van der Veen D, Lo J, Brown SD, Johnson CM, Tschaplinski TJ, Martin M, Engle NL, van den Berg RA, Argyros DA, Caiazza NC, Guss AM, Lynd LR: Characterization of Clostridium thermocellum strains with disrupted fermentation end-product pathways. J Ind Microbio Biotechnol. 2013, 40: 725-734. 10.1007/s10295-013-1275-5.
Article
Google Scholar
Li HF, Knutson BL, Nokes SE, Lynn BC, Flythe MD: Metabolic control of Clostridium thermocellum via inhibition of hydrogenase activity and the glucose transport rate. Appl Microbiol Biotechnol. 2012, 93: 1777-1784. 10.1007/s00253-011-3812-3.
Article
CAS
Google Scholar
Roberts SB, Gowen CM, Brooks JP, Fong SS: Genome-scale metabolic analysis of Clostridium thermocellum for bioethanol production. BMC Syst Biol. 2010, 4: 31-10.1186/1752-0509-4-31.
Article
Google Scholar
Deng Y, Olson DG, Zhou J, Herring CD, Shaw AJ, Lynd LR: Redirecting carbon flux through exogenous pyruvate kinase to achieve high ethanol yields in Clostridium thermocellum. Metab Eng. 2013, 15: 151-158.
Article
CAS
Google Scholar
Yang B, Wyman CE: Dilute Acid and Autohydrolysis Pretreatment. Biofuels. Edited by: Mielenz JR. 2009, New York: Humana, 103-114.
Chapter
Google Scholar
Kridelbaugh DM, Nelson J, Engle NL, Tschaplinski TJ, Graham DE: Nitrogen and sulfur requirements for Clostridium thermocellum and Caldicellulosiruptor bescii on cellulosic substrates in minimal media. Bioresour Technol. 2013, 130: 125-135.
Article
CAS
Google Scholar
Mielenz JR, Bardsley JS, Wyman CE: Fermentation of soy bean hulls to ethanol while preserving protein value. Bioresource Technol. 2009, 100: 3532-3539. 10.1016/j.biortech.2009.02.044.
Article
CAS
Google Scholar