Chang MCY. Harnessing energy from plant biomass. Curr Opin Chem Biol. 2007;11(6):677–84.
Article
CAS
Google Scholar
Cheng JJ, Timilsina GR. Status and barriers of advanced biofuel technologies: a review. Renew Energ. 2011;36(12):3541–9.
Article
CAS
Google Scholar
van der Pol EC, Bakker RR, Baets P, Eggink G. By-products resulting from lignocellulose pretreatment and their inhibitory effect on fermentations for (bio)chemicals and fuels. Appl Microbiol Biot. 2014;98(23):9579–93.
Article
Google Scholar
Zeng YN, Zhao S, Yang SH, Ding SY. Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels. Curr Opin Biotech. 2014;27:38–45.
Article
CAS
Google Scholar
Sticklen M. Plant genetic engineering to improve biomass characteristics for biofuels. Curr Opin Biotech. 2006;17(3):315–9.
Article
CAS
Google Scholar
Wang CY, Zhang SC, Yu Y, Luo YC, Liu Q, Ju CL, et al. MiR397b regulates both lignin content and seed number in Arabidopsis via modulating a laccase involved in lignin biosynthesis. Plant Biotechnol J. 2014;12(8):1132–42.
Article
CAS
Google Scholar
Zhang YC, Yu Y, Wang CY, Li ZY, Liu Q, Xu J, et al. Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching. Nat Biotechnol. 2013;31(9):848–52.
Article
CAS
Google Scholar
Giardina P, Faraco V, Pezzella C, Piscitelli A, Vanhulle S, Sannia G. Laccases: a never-ending story. Cell Mol Life Sci. 2010;67(3):369–85.
Article
CAS
Google Scholar
Morozova OV, Shumakovich GP, Gorbacheva MA, Shleev SV, Yaropolov AI. “Blue” laccases. Biochemistry (Moscow). 2007;72(10):1136–50.
Article
CAS
Google Scholar
Baldrian P. Fungal laccases—occurrence and properties. FEMS Microbiol Rev. 2006;30(2):215–42.
Article
CAS
Google Scholar
Hakulinen N, Rouvinen J. Three-dimensional structures of laccases. Cell Mol Life Sci. 2015;72(5):857–68.
Article
CAS
Google Scholar
Claus H. Laccases: structure, reactions, distribution. Micron. 2004;35(1–2):93–6.
Article
CAS
Google Scholar
Kumar SVS, Phale PS, Durani S, Wangikar PP. Combined sequence and structure analysis of the fungal laccase family. Biotechnol Bioeng. 2003;83(4):386–94.
Article
CAS
Google Scholar
Mot AC, Silaghi-Dumitrescu R. Laccases: complex architectures for one-electron oxidations. Biochemistry (Moscow). 2012;77(12):1395–407.
Article
CAS
Google Scholar
Wherland S, Farver O, Pecht I. Multicopper oxidases: intramolecular electron transfer and O2 reduction. J Biol Inorg Chem. 2014;19(4–5):541–54.
Article
CAS
Google Scholar
Jones SM, Solomon EI. Electron transfer and reaction mechanism of laccases. Cell Mol Life Sci. 2015;72(5):869–83.
Article
CAS
Google Scholar
Mayer AM, Staples RC. Laccase: new functions for an old enzyme. Phytochemistry. 2002;60(6):551–65.
Article
CAS
Google Scholar
Sharma KK, Kuhad RC. Laccase: enzyme revisited and function redefined. Indian J Microbiol. 2008;48(3):309–16.
Article
CAS
Google Scholar
Munk L, Sitarz AK, Kalyani DC, Mikkelsen JD, Meyer AS. Can laccases catalyze bond cleavage in lignin? Biotechnol Adv. 2015;33(1):13–24.
Article
CAS
Google Scholar
Arora DS, Sharma RK. Ligninolytic fungal laccases and their biotechnological applications. Appl Biochem Biotech. 2010;160(6):1760–88.
Article
CAS
Google Scholar
Kunamneni A, Plou FJ, Ballesteros A, Alcalde M. Laccases and their applications: a patent review. Recent Pat Biotech. 2008;2(1):15.
Article
Google Scholar
Kudanga T, Le Roes-Hill M. Laccase applications in biofuels production: current status and future prospects. Appl Microbiol Biot. 2014;98(15):6525–42.
Article
CAS
Google Scholar
Kudanga T, Nyanhongo GS, Guebitz GM, Burton S. Potential applications of laccase-mediated coupling and grafting reactions: a review. Enzym Microb Tech. 2011;48(3):195–208.
Article
CAS
Google Scholar
Jeon JR, Baldrian P, Murugesan K, Chang YS. Laccase-catalysed oxidations of naturally occurring phenols: from in vivo biosynthetic pathways to green synthetic applications. Microb Biotechnol. 2012;5(3):318–32.
Article
Google Scholar
Viswanath B, Rajesh B, Janardhan A, Kumar AP, Narasimha G. Fungal laccases and their applications in bioremediation. Enzym Res. 2014;2014:21.
Article
Google Scholar
Couto SR, Herrera JLT. Industrial and biotechnological applications of laccases: a review. Biotechnol Adv. 2006;24(5):500–13.
Article
Google Scholar
Mate DM, Alcalde M. Laccase engineering: from rational design to directed evolution. Biotechnol Adv. 2014;33(1):16.
Google Scholar
Rodgers CJ, Blanford CF, Giddens SR, Skamnioti P, Armstrong FA, Gurr SJ. Designer laccases: a vogue for high-potential fungal enzymes? Trends Biotechnol. 2010;28(2):63–72.
Article
CAS
Google Scholar
Pardo I, Camarero S. Laccase engineering by rational and evolutionary design. Cell Mol Life Sci. 2015;72(5):897–910.
Article
CAS
Google Scholar
Dwivedi UN, Singh P, Pandey VP, Kumar A. Structure-function relationship among bacterial, fungal and plant laccases. J Mol Catal B Enzym. 2011;68(2):117–28.
Article
CAS
Google Scholar
Ullrich R, Hofrichter M. Enzymatic hydroxylation of aromatic compounds. Cell Mol Life Sci. 2007;64(3):271–93.
Article
CAS
Google Scholar
Riva S. Laccases: blue enzymes for green chemistry. Trends Biotechnol. 2006;24(5):219–26.
Article
CAS
Google Scholar
Solomon EI, Sundaram UM, Machonkin TE. Multicopper oxidases and oxygenases. Chem Rev. 1996;96(7):2563–605.
Article
CAS
Google Scholar
Turlapati PV, Kim KW, Davin LB, Lewis NG. The laccase multigene family in Arabidopsis thaliana: towards addressing the mystery of their gene function(s). Planta. 2011;233(3):439–70.
Article
CAS
Google Scholar
Yaver DS, Xu F, Golightly EJ, Brown KM, Brown SH, Rey MW, et al. Purification, characterization, molecular cloning, and expression of two laccase genes from the white rot basidiomycete Trametes villosa. Appl Environ Microb. 1996;62(3):834–41.
CAS
Google Scholar
Hattori M, Tsuchihara K, Noda H, Konishi H, Tamura Y, Shinoda T, et al. Molecular characterization and expression of laccase genes in the salivary glands of the green rice leafhopper, Nephotettix cincticeps (Hemiptera: Cicadellidae). Insect Biochem Molec. 2010;40(4):331–8.
Article
CAS
Google Scholar
Sharma P, Goel R, Capalash N. Bacterial laccases. World J Microb Biot. 2007;23(6):823–32.
Article
CAS
Google Scholar
Martins LO, Durao P, Brissos V, Lindley PF. Laccases of prokaryotic origin: enzymes at the interface of protein science and protein technology. Cell Mol Life Sci. 2015;72(5):911–22.
Article
CAS
Google Scholar
Shraddha, Ravi S, Simran S, Mohit K, Ajay K. Laccase: microbial sources, production, purification, and potential biotechnological applications. Enzym Res. 2011;2011:11.
Hullo MF, Moszer I, Danchin A, Martin-Verstraete I. CotA of Bacillus subtilis is a copper-dependent laccase. J Bacteriol. 2001;183(18):5426–30.
Article
CAS
Google Scholar
Uthandi S, Saad B, Humbard MA, Maupin-Furlow JA. LccA, an archaeal laccase secreted as a highly stable glycoprotein into the extracellular medium by Haloferax volcanii. Appl Environ Microb. 2010;76(3):733–43.
Article
CAS
Google Scholar
Niu BL, Shen WF, Liu Y, Weng HB, He LH, Mu JJ, et al. Cloning and RNAi-mediated functional characterization of MaLac2 of the pine sawyer, Monochamus alternatus. Insect Mol Biol. 2008;17(3):303–12.
Article
CAS
Google Scholar
Yatsu J, Asano T. Cuticle laccase of the silkworm, Bombyx mori: purification, gene identification and presence of its inactive precursor in the cuticle. Insect Biochem Molec. 2009;39(4):254–62.
Article
CAS
Google Scholar
Elias-Neto M, Soares MPM, Simoes ZLP, Hartfelder K, Bitondi MMG. Developmental characterization, function and regulation of a Laccase2 encoding gene in the honey bee, Apis mellifera (Hymenoptera, Apinae). Insect Biochem Molec. 2010;40(3):241–51.
Article
CAS
Google Scholar
Bao W, Omalley DM, Whetten R, Sederoff RR. A laccase associated with lignification in loblolly pine xylem. Science. 1993;260(5108):672–4.
Article
CAS
Google Scholar
Gavnholt B, Larsen K, Rasmussen SK. Isolation and characterisation of laccase cDNAs from meristematic and stem tissues of ryegrass (Lolium perenne). Plant Sci. 2002;162(6):873–85.
Article
CAS
Google Scholar
Kiefer-Meyer MC, Gomord V, O’Connell A, Halpin C, Faye L. Cloning and sequence analysis of laccase-encoding cDNA clones from tobacco. Gene. 1996;178(1–2):205–7.
Article
CAS
Google Scholar
Lafayette PR, Eriksson KEL, Dean JFD. Nucleotide sequence of a cDNA clone encoding an acidic laccase from sycamore maple (Acer Pseudoplatanus L). Plant Physiol. 1995;107(2):667–8.
Article
CAS
Google Scholar
LaFayette PR, Eriksson KEL, Dean JFD. Characterization and heterologous expression of laccase cDNAs from xylem tissues of yellow-poplar (Liriodendron tulipifera). Plant Mol Biol. 1999;40(1):23–35.
Article
CAS
Google Scholar
Ranocha P, McDougall G, Hawkins S, Sterjiades R, Borderies G, Stewart D, et al. Biochemical characterization, molecular cloning and expression of laccases—a divergent gene family—in poplar. Eur J Biochem. 1999;259(1–2):485–95.
Article
CAS
Google Scholar
Cesarino I, Araujo P, Mayer JLS, Vicentini R, Berthet S, Demedts B, et al. Expression of SofLAC, a new laccase in sugarcane, restores lignin content but not S:G ratio of Arabidopsis lac17 mutant. J Exp Bot. 2013;64(6):1769–81.
Article
CAS
Google Scholar
Liang MX, Haroldsen V, Cai XN, Wu YJ. Expression of a putative laccase gene, ZmLAC1, in maize primary roots under stress. Plant Cell Environ. 2006;29(5):746–53.
Article
CAS
Google Scholar
McCaig BC, Meagher RB, Dean JFD. Gene structure and molecular analysis of the laccase-like multicopper oxidase (LMCO) gene family in Arabidopsis thaliana. Planta. 2005;221(5):619–36.
Article
CAS
Google Scholar
Zhang K, Lu K, Qu CM, Liang Y, Wang R, Chai YR, et al. Gene silencing of BnTT10 family genes causes retarded pigmentation and lignin reduction in the seed coat of Brassica napus. PLoS One. 2013;8(4):e61247.
Wang Y, Bouchabké-Coussa O, Lebris P, Antelme S, Soulhat C, Gineau E, et al. LACCASE 5 is required for lignification of the Brachypodium distachyon culm. Plant Physiol. 2015;168:13.
Google Scholar
Solomon EI, Heppner DE, Johnston EM, Ginsbach JW, Cirera J, Qayyum M, et al. Copper active sites in biology. Chem Rev. 2014;114(7):3659–853.
Article
CAS
Google Scholar
Madhavi V, Lele SS. Laccase: properties and applications. Bioresources. 2009;4(4):1694–717.
Google Scholar
Awasthi M, Jaiswal N, Singh S, Pandey VP, Dwivedi UN. Molecular docking and dynamics simulation analyses unraveling the differential enzymatic catalysis by plant and fungal laccases with respect to lignin biosynthesis and degradation. J Biomol Struct Dyn. 2015;33(9):1835–49.
Hakulinen N, Kiiskinen LL, Kruus K, Saloheimo M, Paananen A, Koivula A, et al. Crystal structure of a laccase from Melanocarpus albomyces with an intact trinuclear copper site. Nat Struct Biol. 2002;9(8):601–5.
CAS
Google Scholar
Berthet S, Demont-Caulet N, Pollet B, Bidzinski P, Cezard L, Le Bris P, et al. Disruption of LACCASE4 and 17 results in tissue-specific alterations to lignification of Arabidopsis thaliana stems. Plant Cell. 2011;23(3):1124–37.
Article
CAS
Google Scholar
Sato Y, Bao WL, Sederoff R, Whetten R. Molecular cloning and expression of eight laccase cDNAs in loblolly pine (Pinus taeda). J Plant Res. 2001;114(1114):147–55.
Article
CAS
Google Scholar
Zhou JL, Lee CH, Zhong RQ, Ye ZH. MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis. Plant Cell. 2009;21(1):248–66.
Article
CAS
Google Scholar
Abdel-Ghany SE, Pilon M. MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis. J Biol Chem. 2008;283(23):15932–45.
Article
CAS
Google Scholar
Lu SF, Li QZ, Wei HR, Chang MJ, Tunlaya-Anukit S, Kim H, et al. Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in Populus trichocarpa. Proc Natl Acad Sci USA. 2013;110(26):10848–53.
Article
CAS
Google Scholar
Wei JZ, Tirajoh A, Effendy J, Plant AL. Characterization of salt-induced changes in gene expression in tomato (Lycopersicon esculentum) roots and the role played by abscisic acid. Plant Sci. 2000;159(1):135–48.
Article
CAS
Google Scholar
Shen Y, Zhang YZ, Chen J, Lin HJ, Zhao MJ, Peng HW, et al. Genome expression profile analysis reveals important transcripts in maize roots responding to the stress of heavy metal Pb. Physiol Plant. 2013;147(3):270–82.
Article
CAS
Google Scholar
Schuetz M, Benske A, Smith RA, Watanabe Y, Tobimatsu Y, Ralph J, et al. Laccases direct lignification in the discrete secondary cell wall domains of protoxylem. Plant Physiol. 2014;166(2):798–807.
Article
CAS
Google Scholar
Pang YZ, Cheng XF, Huhman DV, Ma JY, Peel GJ, Yonekura-Sakakibara K, et al. Medicago glucosyltransferase UGT72L1: potential roles in proanthocyanidin biosynthesis. Planta. 2013;238(1):139–54.
Article
CAS
Google Scholar
Eggert C, Temp U, Eriksson KEL. Laccase is essential for lignin degradation by the white-rot fungus Pycnoporus cinnabarinus. FEBS Lett. 1997;407(1):89–92.
Article
CAS
Google Scholar
Schuetz M, Smith R, Ellis B. Xylem tissue specification, patterning, and differentiation mechanisms. J Exp Bot. 2013;64(1):11–31.
Article
CAS
Google Scholar
Boerjan W, Ralph J, Baucher M. Lignin biosynthesis. Annu Rev Plant Biol. 2003;54:519–46.
Article
CAS
Google Scholar
Miao YC, Liu CJ. ATP-binding cassette-like transporters are involved in the transport of lignin precursors across plasma and vacuolar membranes. Proc Natl Acad Sci USA. 2010;107(52):22728–33.
Article
CAS
Google Scholar
Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W. Lignin biosynthesis and structure. Plant Physiol. 2010;153(3):895–905.
Article
CAS
Google Scholar
Mechin V, Baumberger S, Pollet B, Lapierre C. Peroxidase activity can dictate the in vitro lignin dehydrogenative polymer structure. Phytochemistry. 2007;68(4):571–9.
Article
CAS
Google Scholar
Morreel K, Ralph J, Kim H, Lu FC, Goeminne G, Ralph S, et al. Profiling of oligolignols reveals monolignol coupling conditions in lignifying poplar xylem. Plant Physiol. 2004;136(3):3537–49.
Article
CAS
Google Scholar
Sterjiades R, Dean JFD, Eriksson KEL. Laccase from sycamore maple (Acer Pseudoplatanus) polymerizes monolignols. Plant Physiol. 1992;99(3):1162–8.
Article
CAS
Google Scholar
Ranocha P, Chabannes M, Chamayou S, Danoun S, Jauneau A, Boudet AM, et al. Laccase down-regulation causes alterations in phenolic metabolism and cell wall structure in poplar. Plant Physiol. 2002;129(1):145–55.
Article
CAS
Google Scholar
Liang MX, Davis E, Gardner D, Cai XN, Wu YJ. Involvement of AtLAC15 in lignin synthesis in seeds and in root elongation of Arabidopsis. Planta. 2006;224(5):1185–96.
Article
CAS
Google Scholar
Zhao Q, Nakashima J, Chen F, Yin YB, Fu CX, Yun JF, et al. LACCASE is necessary and nonredundant with PEROXIDASE for lignin polymerization during vascular development in Arabidopsis. Plant Cell. 2013;25(10):3976–87.
Article
CAS
Google Scholar
Huttermann A, Mai C, Kharazipour A. Modification of lignin for the production of new compounded materials. Appl Microbiol Biot. 2001;55(4):387–94.
Article
CAS
Google Scholar
Hoopes JT, Dean JFD. Ferroxidase activity in a laccase-like multicopper oxidase from Liriodendron tulipifera. Plant Physiol Bioch. 2004;42(1):27–33.
Article
CAS
Google Scholar
Cai XN, Davis EJ, Ballif J, Liang MX, Bushman E, Haroldsen V, et al. Mutant identification and characterization of the laccase gene family in Arabidopsis. J Exp Bot. 2006;57(11):2563–9.
Article
CAS
Google Scholar
Caparros-Ruiz D, Fornale S, Civardi L, Puigdomenech P, Rigau J. Isolation and characterisation of a family of laccases in maize. Plant Sci. 2006;171(2):217–25.
Article
CAS
Google Scholar
Cho HY, Lee C, Hwang SG, Park YC, Lim HL, Jang CS. Overexpression of the OsChI1 gene, encoding a putative laccase precursor, increases tolerance to drought and salinity stress in transgenic Arabidopsis. Gene. 2014;552(1):98–105.
Article
CAS
Google Scholar
Canas AI, Camarero S. Laccases and their natural mediators: biotechnological tools for sustainable eco-friendly processes. Biotechnol Adv. 2010;28(6):694–705.
Article
CAS
Google Scholar
Morozova OV, Shumakovich GP, Shleev SV, Yaropolov YI. Laccase-mediator systems and their applications: a review. Appl Biochem Microbiol. 2007;43(5):523–35.
Article
CAS
Google Scholar
Fernandez-Fernandez M, Sanroman MA, Moldes D. Recent developments and applications of immobilized laccase. Biotechnol Adv. 2013;31(8):1808–25.
Article
CAS
Google Scholar
Champagne PP, Ramsay J. Reactive blue 19 decolouration by laccase immobilized on silica beads. Appl Microbiol Biot. 2007;77(4):819–23.
Article
CAS
Google Scholar
Sheldon RA. Enzyme immobilization: the quest for optimum performance. Adv Synth Catal. 2007;349(8–9):1289–307.
Article
CAS
Google Scholar
Dandikas V, Heuwinkel H, Lichti F, Drewes JE, Koch K. Correlation between biogas yield and chemical composition of energy crops. Bioresour Technol. 2014;174:316–20.
Article
CAS
Google Scholar
Wu ZL, Zhang ML, Wang LQ, Tu YY, Zhang J, Xie GS, et al. Biomass digestibility is predominantly affected by three factors of wall polymer features distinctive in wheat accessions and rice mutants. Biotechnol Biofuels. 2013;6(1):813.
Li M, Feng SQ, Wu LM, Li Y, Fan CF, Zhang R, et al. Sugar-rich sweet sorghum is distinctively affected by wall polymer features for biomass digestibility and ethanol fermentation in bagasse. Bioresour Technol. 2014;167:14–23.
Article
CAS
Google Scholar
Cano-Delgado A, Penfield S, Smith C, Catley M, Bevan M. Reduced cellulose synthesis invokes lignification and defense responses in Arabidopsis thaliana. Plant J. 2003;34(3):351–62.
Article
CAS
Google Scholar
Hu WJ, Harding SA, Lung J, Popko JL, Ralph J, Stokke DD, et al. Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nat Biotechnol. 1999;17(8):808–12.
Article
CAS
Google Scholar
Boudet AM, Kajita S, Grima-Pettenati J, Goffner D. Lignins and lignocellulosics: a better control of synthesis for new and improved uses. Trends Plant Sci. 2003;8(12):576–81.
Article
CAS
Google Scholar
Kant S, Burch D, Badenhorst P, Palanisamy R, Mason J, Spangenberg G. Regulated expression of a cytokinin biosynthesis gene IPT delays leaf senescence and improves yield under rainfed and irrigated conditions in canola (Brassica napus L.). PLoS One. 2015;10(1):18.
Article
Google Scholar
Wang GD, Li QJ, Luo B, Chen XY. Ex planta phytoremediation of trichlorophenol and phenolic allelochemicals via an engineered secretory laccase. Nat Biotechnol. 2004;22(7):893–7.
Article
Google Scholar
SignalP 4.1 Server. 2015. http://www.cbs.dtu.dk/services/SignalP/. Accessed 8 July 2015.
Pfam. 2015. http://pfam.xfam.org/search. Accessed 8 July 2015.
NetNGlyc 1.0 Server. 2015. http://www.cbs.dtu.dk/services/NetNGlyc/. Accessed 8 July 2015.
SWISS-MODEL. 2015. http://swissmodel.expasy.org/. Accessed 8 July 2015.