Hildebrand M, Davis A, Smith S, Traller J, Abbriano R. The place of diatoms in the biofuels industry. Biofuels. 2012;3:221–40.
Article
CAS
Google Scholar
Round FE, Crawford RM, Mann DG. Diatoms, biology and morphology of the genera. Cambridge: Cambridge University Press; 1990.
Google Scholar
Canter-Lund H, Lund JWG. Freshwater algae: their microscopic world explored. Bristol: Biopress Limited; 1995.
Google Scholar
Dunstan GA, Volkman JK, Barrett SM, Leroi JM, Jeffrey SW. Essential polyunsaturated fatty-acids from 14 species of diatom (Bacillariophyceae). Phytochemistry. 1994;35:155–61.
Article
CAS
Google Scholar
Lee RF, Nevenzel JC. Paffenho.Ga. Importance of wax esters and other lipids in marine food chain–phytoplankton and copepods. Mar Biol. 1971;9:99–100.
Article
CAS
Google Scholar
Dempster TA, Sommerfeld MR. Effects of environmental conditions on growth and lipid accumulation in Nitzschia communis (Bacillariophyceae). J Phycol. 1998;34:712–21.
Article
CAS
Google Scholar
Liang Y, Beardall J, Heraud P. Effects of nitrogen source and UV radiation on the growth, chlorophyll fluorescence and fatty acid composition of Phaeodactylum tricornutum and Chaetoceros muelleri (Bacillarlophyceae). J. Photochem. Photobiol. B Biol. 2006;82:161–72.
Article
CAS
Google Scholar
Parrish CC, Wangersky PJ. Growth and lipid class composition of the marine diatom, Chaetoceros gracilis, in laboratory and mass-culture turbidostats. J Plankton Res. 1990;12:1011–21.
Article
Google Scholar
Roessler PG. Changes in the activities of various lipid and carbohydrate biosynthetic enzymes in the diatom Cyclotella cryptica in response to silicon deficiency. Arch Biochem Biophys. 1988;267:521–8.
Article
CAS
Google Scholar
Syvertsen KE. Optimizing fatty acid production in diatom Chaetoceros spp. by modifying growth environment. In Biosystems Engineering 2001, University of Hawaii at Minoa: Honolulu.
Taguchi S, Hirata JA, Laws EA. Silicate deficiency and lipid-synthesis of marine diatoms. J Phycol. 1987;23:260–7.
Article
CAS
Google Scholar
Rodolfi L, Zittelli G-C, Bassi N, Padovani G, Biondi N, Bonini G. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng. 2008;102:100–12.
Article
Google Scholar
Princen LH. Producing diatoms using an open production system. Econ Bot. 1982;36:302–12.
Article
Google Scholar
Huntley M, Johnson Z, Brown S, Sills D, Gerber L, Archibald I, Machesky S, Granados J, Beal C, Greene C. Demonstrated Large-Scale production of marine microalgae for fuels and feed. Algal Res. 2015;10:249–65.
Article
Google Scholar
Kiran MT, Tiwari A, Bhaskar MV. A new novel solution to grow diatom algae in large natural water bodies. J. Algal Biomass Utln. 2015;6:22–7.
CAS
Google Scholar
Egge JK, Aksnes DL. Silicate as regulating nutrient in phytoplankton competition. Mar Ecol Prog Ser. 1992;83:281–9.
Article
CAS
Google Scholar
Raven JA. The transport and function of silicon in plants. Biol Rev Camb Philos Soc. 1983;58:179–207.
Article
CAS
Google Scholar
Poulsen N, Sumper M, Kröger N. Biosilica formation in diatoms: characterization of native silaffin-2 and its role in silica morphogenesis. PNAS. 2003;100:12075–80.
Article
CAS
Google Scholar
Milligan A, Morel F. A proton buffering role for silica in diatoms. Science. 2002;297:1848–50.
Article
CAS
Google Scholar
Furnas MJ. In situ growth-rates of marine-phytoplankton - approaches to measurement, community and species growth-rates. J Plankton Res. 1990;12:1117–51.
Article
Google Scholar
Hiroyasu N, Yoshihara K-I, Eguchi K, Yokota Y, Matsui R, Hirata K, Miyamoto K. Characteristics of biological NOx removal from flue gas in a Dunaliella tertiolla Q8 culture system. J Ferment Bioeng. 1997;83:461–5.
Article
Google Scholar
Haese RR, Murray EJ, Smith CS, Smith J, Clementson L, Heggie DT. Diatoms control nutrient cycles in a temperate, wave-dominated estuary (southeast Australia). Limnol Oceanogr. 2007;52:2686–700.
Article
CAS
Google Scholar
Wang J-K. An Absorbent and method of application for the treatment of heavy metal waste water. Chinene Patent: 201410072325.0 2015.
Sheehan J, Dunahay T, Benemann J, Roessler P. A look back at the U.S. Department of Energy’s aquatic species program-biodiesel from algae, 1998, National Renewable Energy Laboratory: Golden, CO.
Weyer KM, Bush DR, Darzins A, Willson BD. Theoretical maximum algal oil production. Bioenergy Res. 2010;3:204–13.
Article
Google Scholar
Takahashi PK. Simple solutions for planet earth. Bloomington: Authorhouse; 2007.
Google Scholar
Wilcox HA. Project concept for studying the utilization of solar energy via the marine bio-conversion technique, 1972, U.S. Naval Ocean Systems Center: San Diego, CA.
Ratledge C, Cohen Z. Microbial and algal oils: do they have a future for biodiesel or as commodity oils? Lipid Technol. 2008;20:155–60.
Article
Google Scholar
Wang JK, Hering T. Continuous cultivation of microorganisms in large open tanks in sunlight. U.S. Patent: 6,673,592. 2004.
Wang JK. Photo-bioreactor for open microalgae production. Chinese Patent: 200910106956.9. 2009.
Wang J-K. Method and photo-bioreactor of microalgae production. Chinese Patent: 200910106199.5. 2009.
Wang J-K. Method of diatom production in open system. Chinese Patent: 201010531486.3. 2010.
Wyatt T. Margalef’s mandala and phytoplankton bloom strategies. Deep-Sea Res. 2014;101:32–49.
Google Scholar
Ichimi K, Kawamura T, Yamamoto A, Tada K, Harrison P. Extremelu high groth rates of the small diatom Chaetoceros salsugineum isolated from and estuary in the eastern Sata inland sea, Japan. J Phycol. 2012;48:1284–8.
Article
CAS
Google Scholar
Yuan H. Microalgae concentration by foam fractionation. In Biosystem Engineering 1997, University of Hawaii at Minoa: Honolulu.
Csordas A, Wang JK. An integrated photobioreactor and foam fractionation unit for the growth and harvest of Chaetoceros spp. in open systems. Aquacult Eng. 2004;30:15–30.
Article
Google Scholar
Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 2008;54:621–39.
Article
CAS
Google Scholar
Pohl P, Wagner H, Passig MVT. Inhaltsstoffe von algen-II: Über die unterschiedliche fettsäurezusammensetzung von salz- und süßwasseralgen. Phytochemistry. 1968;7:1565–72.
Article
CAS
Google Scholar
Berge JP, Gouygou JP, Dubacq JP, Durand P. Reassessment of lipid-composition of the diatom Skeletonema-Costatum. Phytochemistry. 1995;39:1017–21.
Article
CAS
Google Scholar
Yoo G, Park MS, Yang J-W, Choi M. Lipid content in microalgae determines the quality of biocrude and Energy Return On Investment of hydrothermal liquefaction. Appl Energy. 2015;156:354–61.
Article
CAS
Google Scholar
Rossignol N, Moan R, Jaouen P, Robert JM, Quemeneur F. Continuous high-pressure disruption of marine diatom Haslea ostrearia. assessment by laser diffraction particle sizer. Biotechnol Tech. 1999;13:909–13.
Article
CAS
Google Scholar
Kelemen MV, Sharpe JEE. Controlled cell disruption–comparison of the forces required to disrupt different microorganisms. J Cell Sci. 1979;35:431–41.
CAS
Google Scholar
Vandanjon L, Jaouen P, Rossignol N, Quéméneur F, Robert J-M. Concentration and desalting by membrane processes of a natural pigment produced by the marine diatom Haslea ostrearia Simonsen. J Biotechnol. 1999;70:393–402.
Article
CAS
Google Scholar
Weaver JC. 2010: MIT Personal Communication.
Smith KC, Weaver JC. Active mechanisms are needed to describe cell responses to submicrosecond, megavolt-per-meter pulses: cell models for ultrashort pulses. Biophys J. 2008;95:1547–63.
Article
CAS
Google Scholar
Esser AT, Smith KC, Gowrishankar TR, Vasilkoski Z, Weaver JC. Mechanisms for the intracellular manipulation of organelles by conventional electroporation. Biophys J. 2010;98:2506–14.
Article
CAS
Google Scholar
Nuccitelli R, Tran K, Sheikh S, Athos B, Kreis M, Nuccitelli P. Optimized nanosecond pulsed electric field therapy can cause murine malignant melanomas to self-destruct with a single treatment. Int J Cancer. 2010;127:1727–36.
Article
CAS
Google Scholar
Nuccitelli P. 2010 BioElectroMed Corp. Personal Communication.
Klass DL. Biomass for renewable energy fuels and chemicals. San Diego: Academic Press; 1998.
Google Scholar
Braun AR. Re-use and fixation of CO2 in chemistry, algal biomass and fuel substitutions in the traffic sector. Energy Convers Manag. 1996;37:1229–34.
Article
CAS
Google Scholar
Agarwal AK. Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog Energy Combust Sci. 2007;33:233–71.
Article
CAS
Google Scholar
Demirbas MF, Balat M. Recent advances on the production and utilization trends of bio-fuels: a global perspective. Energy Convers Manag. 2006;47:2371–81.
Article
CAS
Google Scholar
Savave P. Algae under pressure and in hot water. Science. 2012;338:1039–40.
Article
Google Scholar
Huelsman C, Savage P. Reaction pathways and kinetic modeling for phenol gasification in supercritical water. J Supercrit Fluids. 2013;81:200–9.
Article
CAS
Google Scholar
Li Z, Savage P. Feedstocks for fuels and chemicals from algae: treatment of crude bio-oil over HZSM-5. Algal Res. 2013;2:154–63.
Article
Google Scholar
Rebacz N, Savage P. Anisole hydrolysis in high temperature water. Phys Chem Chem Phys. 2013;15:3562–9.
Article
CAS
Google Scholar
Savage P, Hestekin J. A perspective on algae, the environment, and energy. Environ. Prog. Sustain. Energy. 2013;32:877–83.
Article
CAS
Google Scholar
Valdez P, Savage P. Reaction network for the hydrothermal liquefaction of Nannochloropsis sp. Algal Res. 2013;2:416–25.
Article
Google Scholar
Faeth J, Valdez P, Savage P. Fast hydrothermal liquefaction of Nannochloropsis sp. to produce biocrude. Energy Fuels. 2013;27:1391–8.
Article
CAS
Google Scholar
Levine P, Bollas A, Savage P. Process improvements for in situ supercritical transesterification of carbonized algal biomass. Bioresour Technol. 2013;136:556–64.
Article
CAS
Google Scholar
Guo Y, Wang S, Huelsman C, Savage P. Products, pathways, and kinetics from reactions of indole under supercritical water gasification conditions. J Supercrit Fluids. 2013;73:161–70.
Article
CAS
Google Scholar
Levine R, Sambolin Sierra C, Hockstad R, Obeid W, Hatcher P, Savage P. The use of hydrothermal carbonization to recycle nutrients in algal biofuel production. Environ. Prog. Sustain. Energy. 2013;32:962–75.
Article
CAS
Google Scholar
Yeh T, Franck A, Dickinson J, Linic S, Thompson L, Savage P. Hydrothermal catalytic production of fuels and chemicals from aquatic biomass. J Chem Technol Biotechnol. 2013;88:13–24.
Article
CAS
Google Scholar
Dickinson J, Savage P. Stability and activity of Pt and Ni catalysts for hydrodeoxygenation in supercritical water. J Mol Catal. 2014;388:56–65.
Article
Google Scholar
Mo N, Savage P. Hydrothermal catalytic treatment of fatty acids with HZSM-5. ACS Sustain Chem. Eng. 2014;2:88–94.
Article
CAS
Google Scholar
Yang L, Li Y, Savage P. Hydrolytic cleavage of C-O linkages in lignin model compounds catalyzed by water-tolerant lewis acids. Ind Eng Chem Res. 2014;52:2633–9.
Article
Google Scholar
Guo Y, Wang S, Huelsman C, Savage P. Kinetic model for reactions of indole under supercritical water gasification conditions. Chem Eng J. 2014;241:327–35.
Article
CAS
Google Scholar
Bai X, Duan P, Xu Y, Zhang A, Savage P. Hydrothermal catalytic processing of pretreated algal oil: a catalyst screening study. Fuel. 2014;120:141–9.
Article
CAS
Google Scholar
Orfield N, Fang A, Valdez P, Nelson M, Savage P, Lin X, Keoleian G. Life cycle design of an algal biorefinery featuring hydrothermal liquefaction: effect of reaction conditions and an alternative pathway including microbial regrowth. ACS Sust Chem Eng. 2014;2:867–74.
Article
CAS
Google Scholar
Zhang Y. Hydrothermal liquefaction to convert biomass into crude oil. In: Blaschek HP, Ezeji TC, Scheffran J, editors. Biofuels from agricultural wastes and byproducts. Oxford: Wiley-Blackwell; 2010. p. 201–32.
Chapter
Google Scholar
Zhou Y, Schideman L, Zheng M, Martin-Ryals A, Li P, Tommaso G, Zhang Y. Anaerobic digestion of post-hydrothermal liquefaction wastewater for improved energy efficiency of hydrothermal bioenergy processes. Water Sci Technol. 2015;72:2139–47.
Article
CAS
Google Scholar
Goudriaan F, van de Beld B, Boerefijn FR, Bos GM, Naber JE, van der Wal S, Zeevalkink JE. Thermal efficiency of the HTU® process for biomass liquefaction. In: Progress in thermochemical biomass conversion. 2000. Tyrol: Blackwell Science.
Bohlmann JT, Lorth CM, Drews A, Buchholz R. Microwave high pressure thermochemical conversion of sewage sludge as an alternative to incineration. Chem Eng Technol. 1999;22:404–9.
Article
CAS
Google Scholar
Brown TM, Duan PG, Savage PE. Hydrothermal liquefaction and gasification of Nannochloropsis sp. Energy Fuels. 2010;24:3639–46.
Article
CAS
Google Scholar
Feng W, van der Kooi HJ, Arons JDS. Biomass conversions in subcritical and supercritical water: driving force, phase equilibria, and thermodynamic analysis. Chem Eng Process. 2004;43:1459–67.
Article
CAS
Google Scholar
Minowa T, Yokoyama S, Kishimoto M, Okakura T. Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction. Fuel. 1995;74:1735–8.
Article
CAS
Google Scholar
Aresta M, Dibenedetto A, Barberio G. Utilization of macro-algae for enhanced CO2 fixation and biofuels production: development of a computing software for an LCA study. Fuel Process Technol. 2005;86:1679–93.
Article
CAS
Google Scholar
Aresta M, Dibenedetto A, Carone M, Colonna T, Fragale C. Production of biodiesel from macroalgae by supercritical CO2 extraction and thermochemical liquefaction. Environ Chem Lett. 2005;3:136–9.
Article
CAS
Google Scholar
Zhou D, Zhang L, Zhang S, Fu H, Chen J. Hydrothermal liquefaction of macroalgae Enteromorpha prolifera to bio-oil. Energy Fuels. 2010;24:4054–61.
Article
CAS
Google Scholar
Anastasakis K, Ross AB. Hydrothermal liquefaction of the brown macro-alga Laminaria Saccharina: effect of reaction conditions on product distribution and composition. Bioresour Technol. 2011;102:4876–83.
Article
CAS
Google Scholar
Levine RB, Duan PG, Brown TM, Savage PE. Hydrothermal liquefaction of microalgae with integrated nutrient recovery. University of Michigan Publication. 2011.
Mann DG, Droop SJM. Biodiversity, biogeography and conservation of diatoms. Hydrobiologia. 1996;336:19–32.
Article
Google Scholar
Bellou S, Baeshen M, Elazzazy A, Aggeli D, Sayegh F, Aggelis G. Microalgal lipids biochemistry and biotechnological perspectives. Biotechnol Adv. 2014;32:1476–93.
Article
CAS
Google Scholar
Yadav T, Kostelecky C, Franke E, Miremadi B, Au M. Nanostructured fillers and carriers, 2001, Nanomaterials Research Corporation: USA
Imai Y. Inorganic nano-fillers for polymers. In: Müllen S, editor. Encyclopedia of Polymeric Nanomaterials. Berlin: Springer; 2014. p. 1–7.
Chapter
Google Scholar
Conradi M. Nanosilica-reinforced polymer composites. Mater Technol. 2013;47:285–93.
CAS
Google Scholar
Hamm CE, Merkel R, Springer O, Jurkojc P, Maier C, Prechtel K, Smetacek V. Architecture and material properties of diatom shells provide effective mechanical protection. Nature. 2003;421:841–3.
Article
CAS
Google Scholar
Beal CM, Gerber LN, Sills DL, Huntley ME, Machesky SC, Walsh MJ, Tester JW, Archibald I, Granados J, Greene C. Algal biofuel production for fuels and feed in a 100-ha facility: a comprehensive techno-economic analysis and life cycle assessment. Algal Res. 2015;10:266–79.
Article
Google Scholar
Quinn JC, Davis R. The potentials and challenges of algae based biofuels: a review of the techno-economic, life cycle, and resource assessment modeling. Bioresour Technol. 2015;184:444–52.
Article
CAS
Google Scholar
Laurens LML, Nagle N, Davis R, Sweeney N, Van Wychen S, Lowell A, Pienkos PT. Acid-catalyzed algal biomass pretreatment for integrated lipid and carbohydrate-based biofuels production. Green Chem. 2015;17:1145–58.
Article
CAS
Google Scholar
Davis R, Markham J, Kinchin C, Grundl N, Tan ECD, Humbird D. Process design and economics for the production of algal biomass: algal biomass production in open pond systems and processing through dewatering for downstream conversion, 2016; NREL/TP-5100-64772.
Davis R, Kinchin C, Markham J, Tan ECD, Laurens LML, Sexton D, Knorr D, Schoen P, Lukas J. Process design and economics for the conversion of algal biomass to Biofuels: algal biomass fractionation to lipid-and carbohydrate-derived fuel products. 2014; NREL/TP-5100-62368.
Voosen P. As algae bloom fades, photosynthesis hopes still shine. E&E Publishing, LLC. 2011.
Chisti Y. Biodiesel from microalgae. Biotechnol Adv. 2007;25:294–306.
Article
CAS
Google Scholar
Lundquist TJ, Woertz IC, Quinn NWT, Benemann JR. A realistic technology and engineering assessment of algae biofuel production., 2010, Energy Biosciences Institute, University of California, Berkeley: Berkeley, CA. p. 153.