Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, et al. The next generation of scenarios for climate change research and assessment. Nature. 2010;463(7282):747–56.
Article
CAS
Google Scholar
Chase JM, Leibold MA. Ecological niches: linking classical and contemporary approaches. Chicago: University of Chicago Press; 2003.
Book
Google Scholar
Gough C, Upham P. Biomass energy with carbon capture and storage (BECCS or Bio-CCS). Greenh Gases. 2011;1(4):324–34.
Article
CAS
Google Scholar
Newbold T, Hudson LN, Hill SLL, Contu S, Lysenko I, Senior RA, Borger L, Bennett DJ, Choimes A, Collen B, et al. Global effects of land use on local terrestrial biodiversity. Nature. 2015;520(7545):45–50.
Article
CAS
Google Scholar
Clarens AF, Resurreccion EP, White MA, Colosi LM. Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ Sci Technol. 2010;44(5):1813–9.
Article
CAS
Google Scholar
Benemann JR. Opportunities and challenges in algae biofuels production. Food and agriculture organization of the united nations. 2008. http://www.fao.org/uploads/media/algae_positionpaper.pdf.
Acién F, Fernández J, Magán J, Molina E. Production cost of a real microalgae production plant and strategies to reduce it. Biotechnol Adv. 2012;30(6):1344–53.
Article
Google Scholar
Slade R, Bauen A. Micro-algae cultivation for biofuels: cost, energy balance, environmental impacts and future prospects. Biomass Bioenergy. 2013;53:29–38.
Article
Google Scholar
Canon-Rubio KA, Sharp CE, Bergerson J, Strous M, De la Hoz Siegler H. Use of highly alkaline conditions to improve cost-effectiveness of algal biotechnology. Appl Microbiol Biotechnol. 2016;100(4):1611–22.
Article
CAS
Google Scholar
Chi Z, Elloy F, Xie Y, Hu Y, Chen S. Selection of microalgae and cyanobacteria strains for bicarbonate-based integrated carbon capture and algae production system. Appl Biochem Biotechnol. 2014;172(1):447–57.
Article
CAS
Google Scholar
Daelman MRJ, Sorokin D, Kruse O, van Loosdrecht MCM, Strous M. Haloalkaline bioconversions for methane production from microalgae grown on sunlight. Trends Biotechnol. 2016;34(6):450–7.
Article
CAS
Google Scholar
Kupriyanova EV, Samylina OS. CO2-concentrating mechanism and its traits in haloalkaliphilic cyanobacteria. Microbiology. 2015;84(2):112–24.
Article
CAS
Google Scholar
Raven JA. Inorganic carbon acquisition by eukaryotic algae: four current questions. Photosynth Res. 2010;106(1–2):123–34.
Article
CAS
Google Scholar
Podola B, Li T, Melkonian M. Porous substrate bioreactors. A paradigm shift in microalgal biotechnology? Trends Biotechnol. 2017;35(2):121–32.
Article
CAS
Google Scholar
Olivieri G, Salatino P, Marzocchella A. Advances in photobioreactors for intensive microalgal production: configurations, operating strategies and applications. J Chem Technol Biotechnol. 2014;89(2):178–95.
Article
CAS
Google Scholar
Barros AI, Gonçalves AL, Simões M, Pires JC. Harvesting techniques applied to microalgae: a review. Renew Sustain Energy Rev. 2015;41:1489–500.
Article
Google Scholar
Davis R, Aden A, Pienkos PT. Techno-economic analysis of autotrophic microalgae for fuel production. Appl Energy. 2011;88(10):3524–31.
Article
Google Scholar
Gross M, Henry W, Michael C, Wen Z. Development of a rotating algal biofilm growth system for attached microalgae growth with in situ biomass harvest. Bioresour Technol. 2013;150:195–201.
Article
CAS
Google Scholar
Johnson MB, Wen Z. Development of an attached microalgal growth system for biofuel production. Appl Microbiol Biotechnol. 2010;85(3):525–34.
Article
CAS
Google Scholar
Quinn JC, Yates T, Douglas N, Weyer K, Butler J, Bradley TH, Lammers PJ. Nannochloropsis production metrics in a scalable outdoor photobioreactor for commercial applications. Bioresour Technol. 2012;117:164–71.
Article
CAS
Google Scholar
Oswald WJ. Algal production—problems, achievements and potential. In: Gedaliah S, Soeder C, editors. Algae biomass: production and use. Amsterdam: Elsevier biomedical press; 1980. p. 1–8.
Google Scholar
Cauchie H-M, Hoffmann L, Jaspar-Versali M-F, Salvia M, Thome J-P. Daphnia magna Straus living in an aerated sewage lagoon as a source of chitin: ecological aspects. Belg J Zool. 1995;125(1):67–78.
Google Scholar
Forehead HI, O’Kelly CJ. Small doses, big troubles: modeling growth dynamics of organisms affecting microalgal production cultures in closed photobioreactors. Bioresour Technol. 2013;129:329–34.
Article
CAS
Google Scholar
Newby DT, Mathews TJ, Pate RC, Huesemann MH, Lane TW, Wahlen BD, Mandal S, Engler RK, Feris KP, Shurin JB. Assessing the potential of polyculture to accelerate algal biofuel production. Algal Res. 2016;19:264–77.
Article
Google Scholar
Cardinale BJ, Matulich KL, Hooper DU, Byrnes JE, Duffy E, Gamfeldt L, Balvanera P, O’Connor MI, Gonzalez A. The functional role of producer diversity in ecosystems. Am J Bot. 2011;98(3):572–92.
Article
Google Scholar
Brenner K, You L, Arnold FH. Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol. 2008;26(9):483–9.
Article
CAS
Google Scholar
Verschoor AM, Van Dijk MA, Huisman JEF, Van Donk E. Elevated CO2 concentrations affect the elemental stoichiometry and species composition of an experimental phytoplankton community. Freshw Biol. 2013;58(3):597–611.
Article
CAS
Google Scholar
Moheimani NR. Long-term outdoor growth and lipid productivity of Tetraselmis suecica, Dunaliella tertiolecta and Chlorella sp. (Chlorophyta) in bag photobioreactors. J Appl Phycol. 2013;25(1):167–76.
Article
CAS
Google Scholar
Paerl H, Pinckney J. A mini-review of microbial consortia: their roles in aquatic production and biogeochemical cycling. Microb Ecol. 1996;31(3):225–47.
Article
CAS
Google Scholar
Paerl HW, Pinckney JL, Steppe TF. Cyanobacterial–bacterial mat consortia: examining the functional unit of microbial survival and growth in extreme environments. Environ Microbiol. 2000;2(1):11–26.
Article
CAS
Google Scholar
Shurin JB, Abbott RL, Deal MS, Kwan GT, Litchman E, McBride RC, Mandal S, Smith VH. Industrial-strength ecology: trade-offs and opportunities in algal biofuel production. Ecol Lett. 2013;16(11):1393–404.
Article
Google Scholar
Corcoran AA, Boeing WJ. Biodiversity increases the productivity and stability of phytoplankton communities. PLoS ONE. 2012;7(11):e49397.
Article
CAS
Google Scholar
Stockenreiter M, Graber A-K, Haupt F, Stibor H. The effect of species diversity on lipid production by micro-algal communities. J Appl Phycol. 2012;24(1):45–54.
Article
CAS
Google Scholar
Nascimento IA, Marques SSI, Cabanelas ITD, Pereira SA, Druzian JI, de Souza CO, Vich DV, de Carvalho GC, Nascimento MA. Screening microalgae strains for biodiesel production: lipid productivity and estimation of fuel quality based on fatty acids profiles as selective criteria. Bioenergy Res. 2013;6(1):1–13.
Article
CAS
Google Scholar
Acién Fernández FG, Fernández Sevilla JM, Sánchez Pérez JA, Molina Grima E, Chisti Y. Airlift-driven external-loop tubular photobioreactors for outdoor production of microalgae: assessment of design and performance. Chem Eng Sci. 2001;56(8):2721–32.
Article
Google Scholar
Ugwu C, Ogbonna J, Tanaka H. Improvement of mass transfer characteristics and productivities of inclined tubular photobioreactors by installation of internal static mixers. Appl Microbiol Biotechnol. 2002;58(5):600–7.
Article
CAS
Google Scholar
Converti A, Lodi A, Del Borghi A, Solisio C. Cultivation of Spirulina platensis in a combined airlift-tubular reactor system. Biochem Eng J. 2006;32(1):13–8.
Article
CAS
Google Scholar
Naumann T, Çebi Z, Podola B, Melkonian M. Growing microalgae as aquaculture feeds on twin-layers: a novel solid-state photobioreactor. J Appl Phycol. 2013;25(5):1413–20.
Article
CAS
Google Scholar
Boelee NC, Janssen M, Temmink H, Shrestha R, Buisman CJN, Wijffels RH. Nutrient removal and biomass production in an outdoor pilot-scale phototrophic biofilm reactor for effluent polishing. Appl Biochem Biotechnol. 2014;172(1):405–22.
Article
CAS
Google Scholar
Gross M, Wen Z. Yearlong evaluation of performance and durability of a pilot-scale revolving algal biofilm (RAB) cultivation system. Bioresour Technol. 2014;171:50–8.
Article
CAS
Google Scholar
Gross M, Mascarenhas V, Wen Z. Evaluating algal growth performance and water use efficiency of pilot-scale revolving algal biofilm (RAB) culture systems. Biotechnol Bioeng. 2015;112(10):2040–50.
Article
CAS
Google Scholar
Schnurr PJ, Espie GS, Allen DG. Algae biofilm growth and the potential to stimulate lipid accumulation through nutrient starvation. Bioresour Technol. 2013;136:337–44.
Article
CAS
Google Scholar
Griffiths MJ, Harrison STL. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol. 2009;21(5):493–507.
Article
CAS
Google Scholar
Sharathchandra K, Rajashekhar M. Total lipid and fatty acid composition in some freshwater cyanobacteria. J Algal Biomass Util. 2011;2:83–97.
Google Scholar
Lang I, Hodac L, Friedl T, Feussner I. Fatty acid profiles and their distribution patterns in microalgae: a comprehensive analysis of more than 2000 strains from the SAG culture collection. BMC Plant Biol. 2011;11(1):1–16.
Article
Google Scholar
Canakci M, Sanli H. Biodiesel production from various feedstocks and their effects on the fuel properties. J Ind Microbiol Biotechnol. 2008;35(5):431–41.
Article
CAS
Google Scholar
Brady AL, Druschel G, Leoni L, Lim DSS, Slater GF. Isotopic biosignatures in carbonate-rich, cyanobacteria-dominated microbial mats of the Cariboo Plateau, BC. Geobiology. 2013;11(5):437–56.
Article
CAS
Google Scholar
Renaut RW, Long PR. Sedimentology of the saline lakes of the Cariboo Plateau, Interior British Columbia, Canada. Sediment Geol. 1989;64(4):239–64.
Article
CAS
Google Scholar
Pfennig N, Lippert K. Über das Vitamin B12-Bedürfnis phototropher Schwefelbakterien. Archiv Mikrobiol. 1966;55(3):245–56.
Article
CAS
Google Scholar
Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner FO. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41(1):e1.
Article
CAS
Google Scholar
Hanshew AS, Mason CJ, Raffa KF, Currie CR. Minimization of chloroplast contamination in 16S rRNA gene pyrosequencing of insect herbivore bacterial communities. J Microbiol Methods. 2013;95(2):149–55.
Article
CAS
Google Scholar
Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75(23):7537–41.
Article
CAS
Google Scholar
Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10(10):996–8.
Article
CAS
Google Scholar
Huse SM, Huber JA, Morrison HG, Sogin ML, Welch DM. Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biol. 2007;8(7):R143.
Article
Google Scholar
Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37(8):911–7.
Article
CAS
Google Scholar
Brady AL, Laval B, Lim DSS, Slater GF. Autotrophic and heterotrophic associated biosignatures in modern freshwater microbialites over seasonal and spatial gradients. Org Geochem. 2014;67:8–18.
Article
CAS
Google Scholar
Ichihara KI, Fukubayashi Y. Preparation of fatty acid methyl esters for gas–liquid chromatography. J Lipid Res. 2010;51(3):635–40.
Article
CAS
Google Scholar