Melillo JM, Richmond T, Yohe GW, editors. Climate change impacts in the United States: The Third National Climate Assessment. US Global Research Program; 2014.
British Petroleum. BP statistical review of world energy 2016. In: Statistical review of world energy, vol. 2016. 65 ed. London: BP P.L.C.; 2016.
Shafiee S, Topal E. When will fossil fuel reserves be diminished? Energy Policy. 2009;37(1):181–9.
Article
Google Scholar
Hubbert MK. Nuclear energy and fossil fuels. In: Presented before the spring meeting of the Southern District: March 7–9; American Petroleum Institute, Plaza Hotel, San Antonio, Texas, March 7–9; 1956.
Schmer MR, Vogel KP, Varvel GE, Follett RF, Mitchell RB, Jin VL. Energy potential and greenhouse gas emissions from bioenergy cropping systems on marginally productive cropland. PLoS ONE. 2014;9(3):1–8.
Article
CAS
Google Scholar
Searchinger T, Heimlich R. Avoiding bioenergy competition for food crops and land. In: Installment 9 creating a sustainable food future. Washington, DC: World Resources Institute; 2015.
Houghton J, Weatherwax S, Ferell J. Breaking the biological barriers to cellulosic ethanol: A joint research agenda. In: A research roadmap resulting from the biomass to biofuels workshop sponsored by the U.S. Department of Energy, Rockville, Maryland, U.S.: DOE/SC-0095. U.S. Department of Energy; 2005.
Sharma MK, Sharma R, Cao P, Jenkins J, Bartley L, Grimwood J, Schmutz J, Rokhsar D, Ronald PC. A genome-wide survey of switchgrass genome structure and organization. PLoS ONE. 2012;7(4):1–13.
CAS
Google Scholar
Sharma MK, Sharma R, Cao P, Harkenrider M, Jenkins J, Grimwood J, Zhang J, Udvardi MK, Schmutz J, Ronald PC. Targeted switchgrass BAC library screening and sequence analysis identified predicted biomass and stress response-related genes. BioEnergy Res. 2016;9:109–22.
Article
CAS
Google Scholar
Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli AC, Estep M, Feng L, Vaughn JN, Grimwood J, et al. Reference genome sequence of the model plant Setaria. Nat Biotechnol. 2012;30:555–61.
Article
CAS
Google Scholar
Lao J, Sharma MK, Sharma R, Gonzalez Fernandez-Nino SM, Schmutz J, Ronald PC, Heazlewood JL, Schwessinger B. Proteome profile of the endomembrane of developing coleoptiles from switchgrass (Panicum virgatum). Proteomics. 2015;13:2286–90.
Article
CAS
Google Scholar
Feltus FA, Vandenbrink JP. Bioenergy grass feedstock: current options and prospects for trait improvement using emerging genetic, genomic, and systems biology toolkits. Biotechnol Biofuels. 2012;5(80):1–20.
Google Scholar
Heaton EA, Dohleman FG, Long SP. Meeting US biofuel goals with less land: the potential of Miscanthus. Glob Change Biol. 2008;14(9):2000–14.
Article
Google Scholar
Bush DR, Leach JE. Translational genomics for bioenergy production: there’s room for more than one model. Plant Cell. 2007;19:2971–3.
Article
CAS
Google Scholar
International Brachypodium Initiative. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature. 2010;463(7282):763–8.
Article
CAS
Google Scholar
Sharma R, Wungrampha S, Singh V, Pareek A, Sharma MK. Halophytes as bioenergy crops. Front Plant Sci. 2016;7:1372.
Google Scholar
Kundu S, Sharma R. In silico identification and taxonomic distribution of plant class C GH9 endoglucanases. Front Plant Sci. 2016;7:1–21.
Article
Google Scholar
Sharma R, Cao P, Jung KH, Sharma MK, Ronald PC. Construction of a rice glycoside hydrolase phylogenomic database and identification of targets for biofuel research. Front Plant Sci. 2013;4:1–15.
Google Scholar
Sharma R, Tan F, Jung KH, Sharma MK, Peng Z, Ronald PC. Transcriptional dynamics during cell wall removal and regeneration reveals key genes involved in cell wall development in rice. Plant Mol Biol. 2011;77:391–406.
Article
CAS
Google Scholar
Brown DM, Zeef LA, Ellis J, Goodacre R, Turner SR. Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. Plant Cell. 2005;17(8):2281–95.
Article
CAS
Google Scholar
Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, Osborne E, Paredez A, Persson S, Raab T, et al. Toward a systems approach to understanding plant cell walls. Science. 2004;306:2206–11.
Article
CAS
Google Scholar
Loque D, Scheller HV, Pauly M. Engineering of plant cell walls for enhanced biofuel production. Curr Opin Plant Biol. 2015;25:151–61.
Article
CAS
Google Scholar
Shoemaker CE, Bransby DI. The role of sorghum as a bioenergy feedstock. In: Braun R, Karlen D, Johnson D, editors. Sustainable alternative fuel feedstock opportunities, challenges and roadmaps for six US regions. Atlanta: Soil and Water Conservation Society; 2010. p. 149–59.
Google Scholar
Codesido V, Vacas R, Macarulla B, Gracia MP, Igartua E. Agronomic and digital phenotyping evaluation of sweet sorghum public varieties and F1 hybrids with potential for ethanol production in Spain. Maydica. 2013;58:42–53.
Google Scholar
Whitfield MB, Chinn MS, Veal MW. Processing of materials derived from sweet sorghum for biobased products. Ind Crops Prod. 2012;37(1):362–75.
Article
CAS
Google Scholar
Qazi HA, Paranjpe S, Bhargava S. Stem sugar accumulation in sweet sorghum—activity and expression of sucrose metabolizing enzymes and sucrose transporters. J Plant Physiol. 2012;169(6):605–13.
Article
CAS
Google Scholar
Almodares A, Sepahi A. Comparison among sweet sorghum cultivars, lines and hybrids for sugar production. Ann Plant Physiol. 1996;10:50–5.
Google Scholar
Vinutha KS, Rayaprolu L, Yadagiri K, Umakanth AV, Patil JV, Srinivasa Rao P. Sweet sorghum research and development in India: status and prospects. Sugar Tech. 2014;16(2):133–43.
Article
Google Scholar
Kawahigashi H, Kasuga S, Okuizumi H, Hiradate S, Yonemaru JI. Evaluation of brix and sugar content in stem juice from sorghum varieties. Grassl Sci. 2013;59(1):11–9.
Article
CAS
Google Scholar
Regassa TH, Wortmann CS. Sweet sorghum as a bioenergy crop: literature review. Biomass Bioenergy. 2014;64:348–55.
Article
CAS
Google Scholar
Almodares A, Hadi MR, Kholdebarin B, Samedani B, Kharazian ZA. The response of sweet sorghum cultivars to salt stress and accumulation of Na+, Cl− and K+ ions in relation to salinity. J Environ Biol. 2014;35(4):733–9.
CAS
Google Scholar
Sayyad-Amin P, Jahansooz MR, Borzouei A, Ajili F. Changes in photosynthetic pigments and chlorophyll-a fluorescence attributes of sweet-forage and grain sorghum cultivars under salt stress. J Biol Phys. 2016;42(4):601–20.
Article
CAS
Google Scholar
Wang WF, Zong YZ, Zhang SQ. Water and nitrogen use efficiencies of sweet sorghum seedlings are improved under water stress. Int J Agric Biol. 2014;16(2):285–92.
Google Scholar
Edwards EJ, Osborne CP, Stromberg CA, Smith SA, Bond WJ, Christin PA, Cousins AB, Duvall, Fox DL, Consortium CG, et al. The origins of C4 grasslands: integrating evolutionary and ecosystem science. Science. 2010;328(5978):587–91.
Article
CAS
Google Scholar
Billings M. Biomass sorghum and sweet sorghum data gathering report In: W&A Crop Insurance. USDA-RMA, CTOR: Jaime Padget, Missouri Watts and Associates, Inc.; 2015.
Reddy BVS, Kumar AA, Ramesh S. Sweet sorghum: a water saving bioenergy crop. In: ICRISAT, Patancheru, Andhra Pradesh, India; 2006. p. 1–12. http://www.iwmi.cgiar.org/EWMA/files/papers/PaperforBioenergyandwater-BelumReddy.pdf. Accessed 13 Apr 2017.
Rutto LK, Xu Y, Brandt M, Ren S, Kering MK. Juice, ethanol and grain yield potential of five sweet sorghum (Sorghum bicolor [L.] Moench) cultivars. J Sustain Bioenergy Syst. 2013;3(2):113–8.
Article
CAS
Google Scholar
Reddy BVS, Ramesh S, Reddy PS, Kumar AA, Sharma KK, Chetty SMK, Palaniswamy AR. Sweet sorghum food, feed, fodder and fuel crop. In: International Crops Research Institute for the Semi-Arid Tropics, http://oar.icrisat.org/2598/, Patancheru, India: ICRISAT; 2006. p. 1–24.
Go for ethanol. Times of India, June 9. http://timesofindia.indiatimes.com/edit-page/go-for-ethanol/articleshow/1632285.cms.
Rao PS, Kumar CG, Reddy BVS. Sweet sorghum: from theory to practice. In: Rao PS, Kumar CG, editors. Characterization of improved sweet sorghum cultivars. Berlin: Springer; 2012. p. 1–15.
Google Scholar
Sweet Sorghum Bagasse: excellent nonwood source for handmade papermaking. Agribusiness. http://www.pinoybisnes.com/agri-business/sweet-sorghum-bagasse-excellent-nonwood-source-for-handmade-papermaking/.
Disasa T, Feyissa T, Admassu B. Characterization of Ethiopian sweet sorghum accessions for brix, morphological and grain yield traits. Sugar Tech. 2016;19:1–11.
Google Scholar
Vermerris W, Erickson J, Wright D, Newman Y, Rainbolt C. Production of biofuel crops in Florida: Sweet sorghum. In: Publication of Agronomy Department, No. SS-AGR-293. Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida, Florida, USA; 2008.
Rao PS, Kumar CG, Prakasham RS, Rao AU, Reddy BVS. Sweet sorghum: breeding and bioproducts. In: Cruz VMV, Dierig DA, editors. Industrial crops: breeding for bioenergy and bioproducts. New York: Springer; 2009.
Google Scholar
Rao SS, Patil JV, Prasad PVV, Reddy DCS, Mishra JS, Umakanth AV, Reddy BVS, Kumar AA. Sweet sorghum planting effects on stalk yield and sugar quality in semi-arid tropical environment. Agron J. 2013;105(5):1458–65.
Article
Google Scholar
Mask PL, Morris WC. Sweet sorghum culture and syrup production. In: Auburn University, Alabama, US: The Alabama Cooperative Extension Service, UPS, 7M40, 11:91, ANR-625; 1991.
Han KJ, Pitman WD, Alison MW, Harrell DL, Viator HP, McCormick ME, Gravois KA, Kim M, Day DF. Agronomic considerations for sweet sorghum biofuel production in the south-central USA. BioEnergy Res. 2012;5(3):748–58.
Article
Google Scholar
Snider JL, Raper RL, Schwab EB. The effect of row spacing and seeding rate on biomass production and plant stand characteristics of non-irrigated photoperiod-sensitive sorghum (Sorghum bicolor (L.) Moench). Ind Crops Prod. 2012;37(1):527–35.
Article
Google Scholar
Pittelkow CM, Linquist BA, Lundy ME, Liang X, van Groenigen KJ, Lee J, van Gestel N, Six J, Venterea RT, van Kessel C. When does no-till yield more? A global meta-analysis. Field Crops Res. 2015;183:156–68.
Article
Google Scholar
Stevens G, Dunn D, Wrather A. Switchgrass and sweet sorghum fertilization for bioenergy feedstocks. In: Missouri Soil Fertility and Fertilizers Research Update 2008. Agronomy Department, College of Agriculture, Food and Natural Resources, University of Missouri; 2009. p. 111–116.
Geng S, Hills FJ, Johnson SS, Sah RN. Potential yields and on-farm ethanol production cost of corn, sweet sorghum, fodderbeet, and sugarbeet. J Agron Crop Sci. 1989;162(1):21–9.
Article
Google Scholar
Olugbemi O, Abiola Ababyomi Y. Effects of nitrogen application on growth and ethanol yield of sweet sorghum [Sorghum bicolor(L.) Moench] varieties. Adv Agric. 2016;2016:1–7.
Article
Google Scholar
Rao PS, kumar CG, Fatima A, Jayalakshmi M, Ahmed K, Reddy BVS. Sweet sorghum-dynamics of sugar yield in relation to phenological stages. In: Bioenergy and biorefinery conference-Southeast Asia 23–25 March 2011; Singapore. ICRISAT 2011.
Marta AD, Mancini M, Orlando F, Natali F, Capecchi L, Orlandini S. Sweet sorghum for bioethanol production: crop responses to different water stress levels. Biomass Bioenergy. 2014;64:211–9.
Article
Google Scholar
Olukoya IA, Bellmer D, Whiteley JR, Aichele CP. Evaluation of the environmental impacts of ethanol production from sweet sorghum. Energy Sustain Dev. 2015;24:1–8.
Article
CAS
Google Scholar
Zhang F, Wang Y, Yu H, Zhu K, Zhang Z, Zou FL. Effect of excessive soil moisture stress on sweet sorghum: physiological changes and productivity. Pak J Bot. 2016;48(1):1–9.
Google Scholar
Vanderlip RL, Reeves HE. Growth stages of sorghum [Sorghum bicolor (L.) Moench]. Crop Sci. 1972;64:13–6.
Google Scholar
Mocoeur A, Zhang YM, Liu ZQ, Shen X, Zhang LM, Rasmussen SK, Jing HC. Stability and genetic control of morphological, biomass and biofuel traits under temperate maritime and continental conditions in sweet sorghum (Sorghum bicolour). Theor Appl Genet. 2015;128(9):1685–701.
Article
CAS
Google Scholar
Hoffmann-Thoma G, Hinkel K, Nicolay P, Willenbrink J. Sucrose accumulation in sweet sorghum stem internodes in relation to growth. Physiol Plant. 1996;97(2):277–84.
Article
CAS
Google Scholar
Kumar CG, Fatima A, Rao PS, Reddy BVS, Rathore A, Rao RN, Khalid S, Kumar AA, Kamal A. Characterization of improved sweet sorghum genotypes for biochemical parameters, sugar yield and its attributes at different phenological stages. Sugar Tech. 2011;12:322–8.
Article
CAS
Google Scholar
Oyier MO, Owuoche JO, Oyoo ME, Cheruiyot E, Mulianga B, Rono J. Effect of harvesting stage on sweet sorghum (Sorghum bicolor L.) genotypes in western Kenya. Sci World J. 2017;2017:8249532.
Article
Google Scholar
Kellogg EA. Phylogenetic relationships of saccharinae and sorghinae. In: Paterson HA, editor. Genomics of the Saccharinae. New York: Springer; 2013. p. 3–21.
Chapter
Google Scholar
de Wet JMJ. Systematics and evolution of Sorghum sect. sorghum (Gramineae). Am J Bot. 1978;65(4):477–84.
Article
Google Scholar
Wiersema JH, Dahlberg J. The nomenclature of Sorghum bicolor (L.) Moench (Gramineae). Taxon. 2007;56:941–6.
Article
Google Scholar
Harlan JR, de Wet JMJ. A simplified classification of cultivated sorghum. Crop Sci. 1972;12(2):172–6.
Article
Google Scholar
Ritter KB, McIntyre CL, Godwin ID, Jordan DR, Chapman SC. An assessment of the genetic relationship between sweet and grain sorghums, within Sorghum bicolor ssp. bicolor (L.) Moench, using AFLP markers. Euphytica. 2007;157(1–2):161–76.
Article
CAS
Google Scholar
Mekbib F. Farmers’ breeding of sorghum in the centre of diversity, Ethiopia: I. Socio-ecotype differentiation, varietal mixture and selection efficiency. Maydica. 2009;54:25–37.
Google Scholar
Doggett H. Sorghum (Tropical Agriculture Series). London: Longrnans, Green & Co., Ltd.; 1970.
Google Scholar
Ordonia R, Ito Y, Morinaka Y, Sazuka T, Matsuaka M. Molecular breeding of Sorghum bicolor, a novel energy crop. In: Jeon KW, editor. International review of cell and molecular biology, vol. 321. New York: Elsevier Inc.; 2016. p. 221–57.
Google Scholar
Sinha S, Kumaravadivel N. Understanding genetic diversity of sorghum using quantitative traits. Scientifica (Cairo). 2016;2016:3075023.
Google Scholar
Murray SC, Rooney WL, Hamblin MT, Mitchell SE, Kresovich S. Sweet sorghum genetic diversity and association mapping for brix and height. Plant Genome. 2009;2(1):48–62.
Article
CAS
Google Scholar
Taxon: Sorghum bicolor (L.) Moench subsp. bicolor. https://npgsweb.ars-grin.gov/gringlobal/taxonomydetail.aspx?id=454806.
Cuevas HE, Prom LK, Erpelding JE. Tapping the US sweet sorghum collection to identify biofuel germplasm. Sugar Tech. 2014;17(4):428–38.
Article
CAS
Google Scholar
Sweet sorghum for biofuel production. http://articles.extension.org/pages/26634/sweet-sorghum-for-biofuel-production.
Leite PS, Fagundes TG, Nunes JA, Parrella RA, Duraes NN, Bruzi AT. Association among agro-industrial traits and simultaneous selection in sweet sorghum. Genet Mol Res. 2017;. doi:10.4238/gmr16019318.
Google Scholar
Rooney WL, Smith CW. Techniques for developing new cultivars. In: Smith CW, Frederiksen RA, editors. Sorghum: origin, history, technology and production. New York: Wiley; 2000. p. 309–28.
Google Scholar
Olweny C, Abayo G, Dida MM, Okori P. Combining ability of parents and hybrids for sugar yield and its attributing traits in sweet sorghum [Sorghum bicolor (L.) Moench]. Sugar Tech. 2016;19(1):57–63.
Article
CAS
Google Scholar
Rao SS, Umakanth AV, Patil JV, Reddy BVS, Kumar AA, Reddy CR, Rao PS. Sweet sorghum cultivar options. In: Reddy BVS, Kumar AA, Reddy CR, Rao PP, Patil JV, editors. Developing a sweet sorghum ethanol value chain. Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics; 2013. p. 23–37.
Upadhyaya HD, Dwivedi SL, Wang Y-H, Vetriventhan M, Ciampitti I, Prasad V. Sorghum genetic resources. In: Ciampitti I, Prasad VE, editors. Sorghum: state of the art and future perspectives, agronomy monographs 58. Washington, DC: American Society of Agronomy and Crop Science Society of America, Inc; 2016. p. 1–27.
Google Scholar
Reddy VG, Upadhyaya HD, Gowda CLL. Current status of sorghum genetic resources at ICRISAT: their sharing and impacts. SAT eJ. 2006;2(1):1–5.
Google Scholar
Cruz VMV, Dierig DA. Industrial crops: breeding for bioenergy and bioproducts. New York: Springer; 2015.
Book
Google Scholar
ICAR-Indian Institute of Millets Research: Annual Report 2015-2016. In: Madhusudhana R, Rajendrakumar P, Raghavendra Rao KV, Tonapi VA, Rajendranagar P, editors. AICRP annual report. Hyderabad, India: ICAR- IIMR; 2016. p. 108.
Burow G, Franks C, Zhanguo X, Burke J. Genetic diversity in a collection of Chinese sorghum landraces assessed by microsatellites. Am J Plant Sci. 2012;03(12):1722–9.
Article
Google Scholar
Gao S, Wang Y, Li G. Sorghum breeding and production in China. In: He Z, Bonjean APA, editors. Cereals in China. Mexico City: CIMMYT; 2010. p. 97–108.
Google Scholar
Nan L, Hongtu M, Xiuying H, Huaibi L, Xide X, Xiuying H, Ruidong H, Hongfei Z, Wanxuan Z, Shoujiang Z, et al. An integrated energy system for the cold northeastern region of China. In: Nan L, Best G, Neto CC, editors. Integrated energy systems in china—the Cold Northeastern Region Experience. Rome: FAO; 1994.
Google Scholar
Sweet sorghum genetics, breeding and plantation studies in China. https://www.ars.usda.gov/meetings/Sorghum/presentations/DuRuiheng.pdf.
Wang JS, Wang ML, Spiertz JHJ, Zuxin L, Han L, Xie GH. Genetic variation in yield and chemical composition of wide range of sorghum accessions, grown in north-west china. Res Crops. 2013;14(1):95–105.
Google Scholar
Schaffert R, Parella R, Borges-Damascenao C, Rao PS, P. R, Basavaraj G, Reddy B, Zacharias A, Reinhardt G, Rettenmaier N et al. Summary report of the SWEETFUEL project. In: Braconnier S, editor. Sweetfuel. Cirad; 2014: FP7-CP-SICA. http://www.sweetfuel-project.eu/.
Zegada-Lizarazu W, Fernando Luna D, Monti A. Differential characteristics of photochemical acclimation to cold in two contrasting sweet sorghum hybrids. Physiol Plant. 2016;157(4):479–89.
Article
CAS
Google Scholar
Madhusudhana R. Linkage mapping. In: Madhusudhana R, Rajendrakumar P, Patil JV, editors. Sorghum molecular breeding. New Delhi: Springer; 2015. p. 47–70.
Chapter
Google Scholar
Bowers JE, Abbey C, Anderson S, Chang C, Draye X, Hoppe AH, Jessup R, Lemke C, Lennington J, Li Z, et al. A high-density genetic recombination map of sequence-tagged sites for sorghum, as a framework for comparative structural and evolutionary genomics of tropical grains and. Genetics. 2003;165:367–86.
CAS
Google Scholar
Haussmann G, Hess E, Seetharama N, Welz G, Geiger H. Construction of a combined sorghum linkage map from two recombinant inbred populations using AFLP, SSR, RFLP, and RAPD markers, and comparison with other sorghum maps. Theor Appl Genet. 2002;105(4):629–37.
Article
CAS
Google Scholar
Kong W, Jin H, Franks CD, Kim C, Bandopadhyay R, Rana MK, Auckland SA, Goff VH, Rainville LK, Burow GB, et al. Genetic analysis of recombinant inbred lines for Sorghum bicolor × Sorghum propinquum. G3 Genes Genomes Genet. 2013;3(1):101–8.
CAS
Google Scholar
Mace ES, Xia L, Jordan DR, Halloran K, Parh DK, Huttner E, Wenzl P, Kilian A. DArT markers: diversity analyses and mapping in Sorghum bicolor. BMC Genom. 2008;9(1):1–11.
Article
CAS
Google Scholar
Li M, Yuyama N, Luo L, Hirata M, Cai H. In silico mapping of 1758 new SSR markers developed from public genomic sequences for sorghum. Mol Breed. 2009;24(1):41–7.
Article
CAS
Google Scholar
Shen X, Liu ZQ, Mocoeur A, Xia Y, Jing HC. PAV markers in Sorghum bicolor: genome pattern, affected genes and pathways, and genetic linkage map construction. Theor Appl Genet. 2015;128:623–37.
Article
CAS
Google Scholar
Mace ES, Rami JF, Bouchet S, Klein PE, Klein RR, Kilian A, Wenzl P, Xia L, Halloran K, Jordan DR. A consensus genetic map of sorghum that integrates multiple component maps and high-throughput Diversity Array Technology (DArT) markers. BMC Plant Biol. 2009;9:1–14.
Article
CAS
Google Scholar
Ji G, Zhang Q, Du R, Lv P, Ma X, Fan S, Li S, Hou S, Han Y, Liu G. Construction of a high-density genetic map using specific-locus amplified fragments in sorghum. BMC Genom. 2017;18(1):51.
Article
Google Scholar
Ahmed LAH. Molecular genetic identification of some sweet sorghum [Sorghum bicolor (L.) Moench.] accessions in Sudan. PhD thesis (10227) submitted to Department of Biology, University of Khartoum, Sudan; 2015.
Ali ML, Rajewski JF, Baenziger PS, Gill KS, Eskridge KM, Dweikat I. Assessment of genetic diversity and relationship among a collection of US sweet sorghum germplasm by SSR markers. Mol Breed. 2008;21(4):497–509.
Article
CAS
Google Scholar
Pecina-Quintero V, Anaya-López JL, Zamarripa-Colmenero A, Montes-García N, Nuñez-Colín C, Solis-Bonilla JL, Aguilar-Rangel MR, Prom L. Genetic diversity of sweet sorghum germplasm in Mexico using AFLP and SSR markers. Pesq Agropec Bras. 2012;47(8):1095–102.
Article
Google Scholar
Wang L, Jiao S, Jiang Y, Yan H, Su D, Sun G, Yan X, Sun L. Genetic diversity in parent lines of sweet sorghum based on agronomical traits and SSR markers. Field Crops Res. 2013;149:11–9.
Article
Google Scholar
Billot C, Ramu P, Bouchet S, Chantereau J, Deu M, Gardes L, Noyer JL, Rami JF, Rivallan R, Li Y, et al. Massive sorghum collection genotyped with SSR markers to enhance use of global genetic resources. PLoS ONE. 2013;8(4):1–16.
Article
CAS
Google Scholar
Paterson AH. Genomics of sorghum. Int J Plant Genom. 2008;2008:1–7.
Article
CAS
Google Scholar
Sorghum genome v3.1. https://phytozome.jgi.doe.gov/pz/portal.html-!info?alias=Org_Sbicolor).
Spannagl M, Nussbaumer T, Bader KC, Martis MM, Seidel M, Kugler KG, Gundlach H, Mayer KFX. PGSB PlantsDB: updates to the database framework for comparative plant genome research. Nucleic Acids Res 2016; 44:1–7. http://pgsb.helmholtz-muenchen.de/plant/sorghum/. Accessed 23 Nov 2016.
Sorghum bicolor (Sorbi1). Taxonomy ID 4558. http://plants.ensembl.org/Sorghum_bicolor/Info/Index.
Sorghum transcription factor database. http://planttfdb.cbi.pku.edu.cn/index.php?sp=Sbi.
Chandran AK, Yoo YH, Cao P, Sharma R, Sharma M, Dardick C, Ronald PC, Jung KH. Updated Rice Kinase Database RKD 2.0: enabling transcriptome and functional analysis of rice kinase genes. Rice. 2016;9(1):40.
Article
Google Scholar
Ramu P, Billot C, Rami JF, Senthilvel S, Upadhyaya HD, Ananda Reddy L, Hash CT. Assessment of genetic diversity in the sorghum reference set using EST-SSR markers. Theor Appl Genet. 2013;126(8):2051–64.
Article
CAS
Google Scholar
Calviño M, Miclaus M, Bruggmann R, Messing J. Molecular markers for sweet sorghum based on microarray expression data. Rice. 2009;2:129–42.
Article
Google Scholar
Zheng LY, Guo XS, He B, Sun LJ, Peng Y, Dong SS, Liu TF, Jiang S, Ramachandran S, Liu CM, et al. Genome-wide patterns of genetic variation in sweet and grain sorghum (Sorghum bicolor). Genome Biol. 2011;12(11):1–14.
Google Scholar
Mace ES, Tai S, Gilding EK, Li Y, Prentis PJ, Bian L, Campbell BC, Hu W, Innes DJ, Han X, et al. Whole-genome sequencing reveals untapped genetic potential in Africa’s indigenous cereal crop sorghum. Nat Commun. 2013;4:1–9.
Google Scholar
Luo H, Zhao W, Wang Y, Xia Y, Wu X, Zhang L, Tang B, Zhu J, Fang L, Du Z, et al. SorGSD: a sorghum genome SNP database. Biotechnol Biofuels. 2016;9:1–9.
Article
CAS
Google Scholar
Shakoor N, Nair R, Crasta O, Morris G, Feltus A, Kresovich S. A Sorghum bicolor expression atlas reveals dynamic genotype-specific expression profiles for vegetative tissues of grain, sweet and bioenergy sorghums. BMC Plant Biol. 2014;14(35):1–14.
Google Scholar
Johnson SM, Lim F-L, Finkler A, Fromm H, Slabas AR, Knight MR. Transcriptomic analysis of Sorghum bicolor responding to combined heat and drought stress. BMC Genom. 2014;15(1):1–19.
Article
CAS
Google Scholar
Jiang SY, Ma Z, Vanitha J, Ramachandran S. Genetic variation and expression diversity between grain and sweet sorghum lines. BMC Genom. 2013;14(18):1–18.
Google Scholar
Dugas DV, Monaco MK, Olsen A, Klein RR, Kumari S, Ware D, Klein PE. Functional annotation of the transcriptome of Sorghum bicolor in response to osmotic stress and abscisic acid. BMC Genom. 2011;12(514):1–21.
Google Scholar
Chopra R, Burow G, Hayes C, Emendack Y, Xin Z, Burke J. Transcriptome profiling and validation of gene based single nucleotide polymorphisms (SNPs) in sorghum genotypes with contrasting responses to cold stress. BMC Genom. 1040;2015(16):1–11.
Google Scholar
Sui N, Yang Z, Liu M, Wang B. Identification and transcriptomic profiling of genes involved in increasing sugar content during salt stress in sweet sorghum leaves. BMC Genom. 2015;16(534):1–18.
CAS
Google Scholar
Fracasso A, Trindade LM, Amaducci S. Drought stress tolerance strategies revealed by RNA-Seq in two sorghum genotypes with contrasting WUE. BMC Plant Biol. 2016;16(115):1–18.
Google Scholar
Makita Y, Shimada S, Kawashima M, Kondou-Kuriyama T, Toyoda T, Matsui M. MOROKOSHI: transcriptome database in Sorghum bicolor. Plant Cell Physiol. 2015; 56(1):1–8. http://sorghum.riken.jp/morokoshi/Home.html. Accessed 24 Nov 2016.
Nakamura Y, Kudo T, Terashima S, Saito M, Nambara E, Yano K. CATchUP: a web database for spatiotemporally regulated genes. Plant Cell Physiol. 2016.
Calvino M, Bruggmann R, Messing J. Characterization of the small RNA component of the transcriptome from grain and sweet sorghum stems. BMC Genom. 2011;12(356):1–12.
Google Scholar
Yu H, Cong L, Zhu Z, Wang C, Zou J, Tao C, Shi Z, Lu X. Identification of differentially expressed microRNA in the stems and leaves during sugar accumulation in sweet sorghum. Gene. 2015;571(2):221–30.
Article
CAS
Google Scholar
Tian T, You Q, Zhang L, Yi X, Yan H, Xu W, Su Z. SorghumFDB: Sorghum Functional Genomics Database with multidimensional network analysis. Database.2016; 2016.
Mizuno H, Kasuga S, Kawahigashi H. The sorghum SWEET gene family: stem sucrose accumulation as revealed through transcriptome profiling. Biotechnol Biofuels. 2016;9(127):1–12.
Google Scholar
Reddy PS, Rao TSRB, Sharma KK, Vadez V. Genome-wide identification and characterization of the aquaporin gene family in Sorghum bicolor (L.). Plant Gene. 2015;1:18–28.
Article
CAS
Google Scholar
Milne RJ, Byrt CS, Patrick JW, Grof CP. Are sucrose transporter expression profiles linked with patterns of biomass partitioning in Sorghum phenotypes? Front Plant Sci. 2013;4:1–12.
Article
Google Scholar
Braun DM, Slewinski TL. Genetic control of carbon partitioning in grasses: roles of sucrose transporters and tie-dyed loci in phloem loading. Plant Physiol. 2009;149(1):71–81.
Article
CAS
Google Scholar
Murray SC, Sharma A, Rooney WL, Klein PE, Mullet JE, Mitchell SE, Kresovich S. Genetic improvement of sorghum as a biofuel feedstock: I. QTL for stem sugar and grain nonstructural carbohydrates. Crop Sci. 2008;48(6):2165–79.
Article
Google Scholar
Shiringani AL, Frisch M, Friedt W. Genetic mapping of QTLs for sugar-related traits in a RIL population of Sorghum bicolor L. Moench. Theor Appl Genet. 2010;121(2):323–36.
Article
CAS
Google Scholar
Pola S, Saradamani N, Ramana T. Mature embryo as a source material for efficient regeneration response in sorghum (Sorghum bicolor L. Monech). Sjemenarstvo. 2009;26:93–104.
Google Scholar
Nguyen T-V, Thu TT, Claeys M, Angenon G. Agrobacterium-mediated transformation of sorghum (Sorghum bicolor (L.) Moench) using an improved in vitro regeneration system. Plant Cell Tissue Organ Cult. 2007;91(2):155–64.
Article
CAS
Google Scholar
Pola S, Mani NS, Ramana T. Plant tissue culture studies in Sorghum bicolor: immature embryo explants as the source material. Int J Plant Prod. 2008;2:1–14.
Google Scholar
Wu E, Lenderts B, Glassman K, Berezowska-Kaniewska M, Christensen H, Asmus T, Zhen S, Chu U, Cho M-J, Zhao Z-Y. Optimized Agrobacterium-mediated sorghum transformation protocol and molecular data of transgenic sorghum plants. Vitro Cell Dev Biol Plant. 2014;50(1):9–18.
Article
CAS
Google Scholar
Liu G, Campbell BC, Godwin ID. Sorghum genetic transformation by particle bombardment. In: Henry RJ, Furtado A, editors. Cereal genomics, vol. 1099. New York: Humana Press; 2014. p. 219–34.
Chapter
Google Scholar
Visarada KBRS, Prasad GS, Royer M. Genetic transformation and evaluation of two sweet sorghum genotypes for resistance to spotted stemborer, Chilo partellus (Swinhoe). Plant Biotechnol Rep. 2016;10(5):277–89.
Article
Google Scholar
Zhao L, Liu S, Song S. Optimization of callus induction and plant regeneration from germinating seeds of sweet sorghum (Sorghum bicolor Moench). Afr J Biotechnol. 2010;9(16):2367–74.
CAS
Google Scholar
Chen X, Li O, Shi L, Wu X, Xia B, Pei Z. To establish the regeneration system of sweet sorghum immature embryos. In: Zhang TC, Nakajima M, editors. Advances in applied biotechnology, vol. 333. Berlin: Springer; 2015. p. 83–91.
Google Scholar
Seetharama N, Sairam RV, Rani TS. Regeneration of sorghum from shoot tip cultures and field performance of the progeny. Plant Cell Tiss Organ Cult. 2000;61:169–73.
Article
Google Scholar
Maheswari M, Lakshmi NJ, Yadav SK, Varalaxmi Y, Lakshmi AV, Vanaja M, Venkateswarlu B. Efficient plant regeneration from shoot apices of sorghum. Biol Plant. 2006;50(4):741–4.
Article
CAS
Google Scholar
Sharma MK, Solanke AU, Jani D, Singh Y, Sharma AK. A simple and efficient Agrobacterium mediated procedure for transformation of tomato. J Biosci. 2009;34:423–33.
Article
CAS
Google Scholar
Raghuwanshi A, Birch RG. Genetic transformation of sweet sorghum. Plant Cell Rep. 2010;29(9):997–1005.
Article
CAS
Google Scholar
Zhao Z, Cai T, Tagliani L, Miller M, Wang N, Pang H, Rudert M, Schroeder S, Hondred D, Seltzer J, et al. Agrobacterium-mediated sorghum transformation. Plant Mol Biol. 2000;44:789–98.
Article
CAS
Google Scholar
Baskaran P, Raja Rajeswari B, Jayabalan N. A simple approach to improve plant regeneration from callus culture of Sorghum bicolor (L.) Moench for crop improvement. J Agric Technol. 2005;1(1):179–92.
Google Scholar
Amali P, Kingsley SJ, Ignacimuthu S. Enhanced plant regeneration involving somatic embryogenesis from shoot tip explants of Sorghum bicolor (L.) Moench. Asian J Plant Sci Res. 2014;4(3):26–34.
Google Scholar
Elkonin LA, Lopushanskaya RF, Pakhomova NV. Initiation and maintenance of friable embyogenic callus of sorghum (Sorghum bicolor (L.) Monech) by animo acids. Maydica. 1995;40:153–7.
Google Scholar
Liu G, Godwin ID. Highly efficient sorghum transformation. Plant Cell Rep. 2012;31(6):999–1007.
Article
CAS
Google Scholar
Kumar T, Howe A, Sato S, Dweikat I, Clemente T. Sorghum transformation: overview and utility. In: Paterson AH, editor. Genomics of Saccharinae. University of Nebraska, Lincoln.: Agronomy & Horticulture, Faculty Publications; 2013. p. 205–221.
Do PT, Zhang ZJ. Sorghum transformation: achievements, challenges, and perspectives. In: Azhakanandam K, Silverstone A, Daniell H, Davey MR, editors. Recent advancements in gene expression and enabling technologies in crop plants. New York: Springer; 2015. p. 291–312.
Google Scholar
Casas AM, Kononowicz AK, Zehr UB, Tomes DT, Axtell JD, Butler LG, Bressan RA, Hasegawa PM. Transgenic sorghum plants via microprojectile bombardment. Proc Natl Acad Sci USA. 1993;90:11212–6.
Article
CAS
Google Scholar
Gurel S, Gurel E, Kaur R, Wong J, Meng L, Tan HQ, Lemaux PG. Efficient, reproducible Agrobacterium-mediated transformation of sorghum using heat treatment of immature embryos. Plant Cell Rep. 2009;28(3):429–44.
Article
CAS
Google Scholar
Basu A, Maiti MK, Kar S, Sen SK, Pandley B. Transgenic sweet sorghum with altered lignin composition and process of preparation thereof. In: US patents US 7985890 B2; 2011.
Li Z, Zhi-hong L, Gui-ying L, Kang-lai H, Tong-qing Y, Jie Z, Da-fang H. Introduction of Btcry1Ah gene into sweet sorghum (Sorghum bicolor L. Moench) by Agrobacterium tumefaciens-mediated transformation. Sci Agric Sin. 2011;44(10):1989–96.
Google Scholar
Rao AM, Sree KP, Kishor PBK. Enhanced plant regeneration in grain and sweet sorghum by asparagine, proline and cefotaxime. Plant Cell Rep. 1995;15(1–2):72–5.
Article
CAS
Google Scholar
Wang W, Wang J, Yang C, Li Y, Liu L, Xu J. Pollen-mediated transformation of Sorghum bicolor plants. Biotechnol Appl Biochem. 2007;48(2):79–83.
Article
CAS
Google Scholar
Girijashankar V, Swathisree V. Genetic transformation of Sorghum bicolor. Physiol Mol Biol Plants. 2009;15(4):287–302.
Article
CAS
Google Scholar
Able JA, Rathus C, Godwin ID. The investigation of optimal bombardment parameters for transient and stable transgene expression in sorghum. Vitro Cell Dev Biol Plant. 2001;37(3):341–8.
Article
CAS
Google Scholar
Mace ES, Jordan DR. Integrating sorghum whole genome sequence information with a compendium of sorghum QTL studies reveals uneven distribution of QTL and of gene-rich regions with significant implications for crop improvement. Theor Appl Genet. 2011;123(1):169–91.
Article
CAS
Google Scholar
Anami SE, Zhang LM, Xia Y, Zhang YM, Liu ZQ, Jing HC. Sweet sorghum ideotypes: genetic improvement of the biofuel syndrome. Food Energy Secur. 2015;4(3):159–77.
Article
Google Scholar
Zhang D, Guo H, Kim C, Lee TH, Li J, Robertson J, Wang X, Wang Z, Paterson AH. CSGRqtl, a comparative quantitative trait locus database for saccharinae grasses. Plant Physiol. 2013; 161(2):594–599. http://helos.pgml.uga.edu/qtl/. Accessed 24 Nov 2016.
Anami SE, Zhang LM, Xia Y, Zhang YM, Liu ZQ, Jing HC. Sweet sorghum ideotypes: genetic improvement of stress tolerance. Food Energy Secur. 2015;4(1):3–24.
Article
Google Scholar
Yun-long B, Seiji Y, Maiko I, Hong-wei C. QTLs for sugar content of stalk in sweet sorghum (Sorghum bicolor L. Moench). Agric Sci China. 2006;5(10):736–44.
Article
Google Scholar
Lekgari AL. Genetic mapping of quantitative trait loci associated with bioenergy traits and the assessment of genetic variability in sweet sorghum (Sorghum bicolor (L.). Moench). Nebraska: University of Nebraska-Lincoln; 2010.
Rono JK, Cheruiyot EK, Othira JO, Njuguna VW, Macharia JK, Owuoche J, Oyier M, Kange AM. Adaptability and stability study of selected sweet sorghum genotypes for ethanol production under different environments using AMMI analysis and GGE biplots. Sci World J. 2016;2016:4060857.
Article
Google Scholar
Ghate T, Deshpande S, Bhargava S. Accumulation of stem sugar and its remobilisation in response to drought stress in a sweet sorghum genotype and its near-isogenic lines carrying different stay-green loci. Plant Biol. 2017;19(3):396–405.
Article
CAS
Google Scholar
Bihmidine S, Baker RF, Hoffner C, Braun DM. Sucrose accumulation in sweet sorghum stems occurs by apoplasmic phloem unloading and does not involve differential sucrose transporter expression. BMC Plant Biol. 2015;15(186):1–22.
CAS
Google Scholar
Li X, Su M, Li X, Cheng L, Qi D, Chen S, Liu G. Molecular characterization and expression patterns of sucrose transport-related genes in sweet sorghum under defoliation. Acta Physiol Plant. 2014;36(5):1251–9.
Article
CAS
Google Scholar
Bihmidine S, Julius BT, Dweikat I, Braun DM. Tonoplast sugar transporters (SbTSTs) putatively control sucrose accumulation in sweet sorghum stems. Plant Signal Behav. 2016;11(1):e1117721.
Article
CAS
Google Scholar
Reddy BVS, Rao PS, Kumar AA, Reddy PS, Rao PP, Sharma KK, Blummel M, Reddy CR. Sweet sorghum as a biofuel crop: where are we now? In: https://ndl.iitkgp.ac.in/document/nBDYrL7TkGwwmJnuxytqly-kK0XFKCaztzjtyoomiS-M5ViRqaYT6poUqyD7zDOdGiz9DeRyC2E40SKMddWohw, Patancheru, Andhra Pradesh, India: OAI: 3613. ICRISAT; 2009.
Maehara T, Takai T, Ishihara H, Yoshida M, Fukuda K, Gau M, Kaneko S. Effect of lime pretreatment of brown midrib sorghums. Biosci Biotechnol Biochem. 2011;75(12):2415–7.
Article
CAS
Google Scholar
Saballos A, Ejeta G, Sanchez E, Kang C, Vermerris W. A genomewide analysis of the cinnamyl alcohol dehydrogenase family in sorghum [Sorghum bicolor (L.) Moench] identifies SbCAD2 as the Brown midrib6 gene. Genetics. 2009;181(2):783–95.
Article
CAS
Google Scholar
Li J, Wang L, Zhan Q, Liu Y. Map-based cloning and expression analysis of BMR-6 in sorghum. J Genet. 2015;94:445–52.
Article
CAS
Google Scholar
Multani DS, Briggs SP, Chamberlin MA, Blakeslee JJ, Murphy AS, Johal GS. Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science. 2003;302:81–4.
Article
CAS
Google Scholar
Ritter KB, Jordan DR, Chapman SC, Godwin ID, Mace ES, McIntyre CL. Identification of QTL for sugar-related traits in a sweet × grain sorghum (Sorghum bicolor L. Moench) recombinant inbred population. Mol Breed. 2008;22(3):367–84.
Article
Google Scholar
Mace ES, Jordan DR. Location of major effect genes in sorghum (Sorghum bicolor (L.) Moench). Theor Appl Genet. 2010;121(7):1339–56.
Article
CAS
Google Scholar
Brown PJ, Rooney WL, Franks C, Kresovich S. Efficient mapping of plant height quantitative trait loci in a sorghum association population with introgressed dwarfing genes. Genetics. 2008;180:629–37.
Article
Google Scholar
Yamaguchi M, Fujimoto H, Hirano K, Araki-Nakamura S, Ohmae-Shinohara K, Fujii A, Tsunashima M, Song XJ, Ito Y, Nagae R, et al. Sorghum Dw1, an agronomically important gene for lodging resistance, encodes a novel protein involved in cell proliferation. Sci Rep. 2016;6:28366.
Article
CAS
Google Scholar
Madhusudhana R, Patil JV. A major QTL for plant height is linked with bloom locus in sorghum [Sorghum bicolor (L.) Moench]. Euphytica. 2012;191(2):259–68.
Article
Google Scholar
Ordonio RL, Ito Y, Hatakeyama A, Ohmae-Shinohara K, Kasuga S, Tokunaga T, Mizuno H, Kitano H, Matsuoka M, Sazuka T. Gibberellin deficiency pleiotropically induces culm bending in sorghum: an insight into sorghum semi-dwarf breeding. Sci Rep. 2014;4:1–10.
Google Scholar
Fernandez MG, Strand K, Hamblin MT, Westgate M, Heaton E, Kresovich S. Genetic analysis and phenotypic characterization of leaf photosynthetic capacity in a sorghum (Sorghum spp.) diversity panel. Genet Resour Crop Evol. 2014;62(6):939–50.
Article
CAS
Google Scholar
Hart GE, Schertz KF, Peng Y, Syed NH. Genetic mapping of Sorghum bicolor L. Monech QTLs that control variation in tillering and other morphological characters. Theor Appl Genet. 2001;103:1232–42.
Article
CAS
Google Scholar
Takai T, Yonemaru J, Kaidai H, Kasuga S. Quantitative trait locus analysis for days-to-heading and morphological traits in an RIL population derived from an extremely late flowering F1 hybrid of sorghum. Euphytica. 2012;187:411–20.
Article
Google Scholar
Zou G, Zhai G, Feng Q, Yan S, Wang A, Zhao Q, Shao J, Zhang Z, Zou J, Han B, et al. Identification of QTLs for eight agronomically important traits using an ultra-high-density map based on SNPs generated from high-throughput sequencing in sorghum under contrasting photoperiods. J Exp Bot. 2012;63(15):5451–62.
Article
CAS
Google Scholar
Lu X-P, Yun J-F, Gao C-P, Acharya S. Quantitative trait loci analysis of economically important traits in Sorghum bicolor × S. sudanense hybrid. Can J Plant Sci. 2011;91(1):81–90.
Article
Google Scholar
Higgins RH, Thurber CS, Assaranurak I, Brown PJ. Multiparental mapping of plant height and flowering time QTL in partially isogenic sorghum families. G3 Genes Genomes Genet. 2014;4(9):1593–602.
CAS
Google Scholar
Natoli A, Gorni C, Chegdani F, Marsan PA, Colombi C, Lorenzoni C, Marocco A. Identification of QTL associated with sweet sorghum quality. Maydica. 2002;47:311–22.
Google Scholar
Kebrom TH, Burson BL, Finlayson SA. Phytochrome B represses Teosinte Branched1 expression and induces sorghum axillary bud outgrowth in response to light signals. Plant Physiol. 2006;140:1109–17.
Article
CAS
Google Scholar
Murphy RL, Morishige DT, Brady JA, Rooney WL, Yang S, Klein PE, Mullet JE. Ghd7 (Ma
6
) represses Sorghum flowering in long days: Ghd7 alleles enhance biomass accumulation and grain production. Plant Genome. 2014;7(2):1–10.
Article
CAS
Google Scholar
Calvino M, Messing J. Discovery of microRNA169 gene copies in genomes of flowering plants through positional information. Genome Biol Evol. 2013;5(2):402–17.
Article
CAS
Google Scholar
Hufnagel B, de Sousa SM, Assis L, Guimaraes CT, Leiser W, Azevedo GC, Negri B, Larson BG, Shaff JE, Pastina MM, et al. Duplicate and conquer: multiple homologs of PHOSPHORUS-STARVATION TOLERANCE1 enhance phosphorus acquisition and sorghum performance on low-phosphorus soils. Plant Physiol. 2014;166(2):659–77.
Article
CAS
Google Scholar
Harris-Shultz KR, Davis RF, Knoll JE, Anderson W, Wang H. Inheritance and identification of a major quantitative trait locus (QTL) that confers resistance to Meloidogyne incognita and a novel QTL for plant height in sweet sorghum. Phytopathology. 2015;105(12):1522–8.
Article
CAS
Google Scholar
Poloni A, Schirawski J. Red card for pathogens: phytoalexins in sorghum and maize. Molecules. 2014;19(7):9114–33.
Article
CAS
Google Scholar
Sharma R, De Vleesschauwer D, Sharma MK, Ronald PC. Recent advances in dissecting stress-regulatory crosstalk in rice. Mol Plant. 2013;6(2):250–60.
Article
CAS
Google Scholar