Eastwood DC. The evolution of fungal wood decay, book series. American Chemical Society, Oxford University Press; 2014.
Cragg SM, Beckham GT, Bruce NC, Bugg TDH, Distel DL, Dupree P, Etxabe AG, Goodell BS, Jellison J, McGeehan JE, et al. Lignocellulose degradation mechanisms across the tree of life. Curr Opin Chem Biol. 2015;29:108–19.
Article
CAS
Google Scholar
Xu G, Goodell B. Mechanisms of wood degradation by brown-rot fungi: chelator-mediated cellulose degradation and binding of iron by cellulose. J Biotechnol. 2001;87:43–57.
Article
CAS
Google Scholar
Zhu Y, Zhuang L, Goodell B, Cao J, Mahaney J. Iron sequestration in brown-rot fungi by oxalate and the production of reactive oxygen species (ROS). Int Biodeterior Biodegrad. 2016;109:185–90.
Article
CAS
Google Scholar
Arantes V, Goodell B. Current understanding of brown-rot fungal biodegradation mechanisms: a review. In: Deterioration and protection of sustainable biomaterials, vol. 1158. American Chemical Society; 2014. p. 3–21.
Cotrufo MF, Wallenstein MD, Boot CM, Denef K, Paul E. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob Change Biol. 2013;19(4):988–95.
Article
Google Scholar
Hibbett DS, Donoghue MJ. Analysis of character correlations among wood decay mechanisms, mating systems, and substrate ranges in homobasidiomycetes. Syst Biol. 2001;50(2):215–42.
Article
CAS
Google Scholar
Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B, Martínez AT, Otillar R, Spatafora JW, Yadav JS, et al. The paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science. 2012;336(6089):1715–9.
Article
CAS
Google Scholar
Hiscox J, Savoury M, Johnston SR, Parfitt D, Müller CT, Rogers HJ, Boddy L. Location, location, location: priority effects in wood decay communities may vary between sites. Environ Microbiol. 2016;18(6):1954–69.
Article
CAS
Google Scholar
Arantes V, Qian Y, Kelley SS, Milagres A, Filley T, Jellison J, Goodell B. Biomimetic oxidative treatment of spruce wood studied by pyrolysis–molecular beam mass spectrometry coupled with multivariate analysis and 13C-labeled tetramethylammonium hydroxide thermochemolysis: implications for fungal degradation of wood. J Biol Inorg Chem. 2009;14(8):1253–63.
Article
CAS
Google Scholar
Arantes V, Milagres AMF, Filley T, Goodell B. Lignocellulosic polysaccharides and lignin degradation by wood decay fungi: the relevance of nonenzymatic Fenton-based reactions. J Ind Microbiol Biotechnol. 2011;38(4):541–55. doi:10.1007/s10295-10010-10798-10292.
Article
CAS
Google Scholar
Arantes V, Jellison J, Goodell B. Peculiarities of brown-rot fungi and biochemical Fenton reaction with regard to their potential as a model for bioprocessing biomass. Appl Microbiol Biotechnol. 2012;94(2):323–38.
Article
CAS
Google Scholar
Yelle DJ, Wei D, Ralph J, Hammel KE. Multidimensional NMR analysis reveals truncated lignin structures in wood decayed by the brown rot basidiomycete Postia placenta. Environ Microbiol. 2011;13(4):1091–100.
Article
CAS
Google Scholar
Qian Y, Goodell B, Felix C. The effect of low molecular weight chelators on iron chelation and free radical generation as studied by ESR measurement. Chemosphere. 2002;48:21–8.
Article
CAS
Google Scholar
Barr DP, Aust SD. Mechanisms white rot fungi use to degrade pollutants. Environ Sci Technol. 1994;28:78A–87A.
Article
CAS
Google Scholar
Goodell B, Jellison J, Liu J, Daniel G, Paszczynski A, Fekete F, Krishnamurthy S, Jun L, Xu G. Low molecular weight chelators and phenolic compounds isolated from wood decay fungi and their role in the fungal biodegradation of wood. J Biotechnol. 1997;53(2):133–62.
Article
CAS
Google Scholar
Paszczynski A, Crawford R, Funk D, Goodell B. De novo synthesis of 4,5-dimethoxycatechol and 2,5-dimethoxyhydroquinone by the brown rot fungus Gloeophyllum trabeum. Appl Environ Microbiol. 1999;65(2):674–9.
CAS
Google Scholar
Suzuki MR, Hunt CG, Houtman CJ, Dalebroux ZD, Hammel KE. Fungal hydroquinones contribute to brown rot of wood. Environ Microbiol. 2006;8(12):2214–23.
Article
CAS
Google Scholar
Kerem Z, Jensen KA, Hammel KE. Biodegradative mechanism of the brown rot basidiomycete Gloeophyllum trabeum: evidence for an extracellular hydroquinone-driven Fenton reaction. Fed Eur Biochem Soc. 1999;446(1):49–54.
Article
CAS
Google Scholar
Song Z, Vail A, Sadowsky J, Schilling J. Competition between two wood-degrading fungi with distinct influences on residues. FEMS Microbiol Ecol. 2012;79:109–17.
Article
CAS
Google Scholar
Highley TL. Influence of carbon source on cellulase activity of white-and brown- rot fungi. Wood Fiber. 1973;5:50–8.
CAS
Google Scholar
Urban VS. Small-angle neutron scattering. In: Characterization of materials. Wiley, Inc.; 2012.
Pingali SV, Urban VS, Heller WT, McGaughey J, O’Neill H, Foston M, Myles DA, Ragauskas A, Evans BR. Breakdown of cell wall nanostructure in dilute acid pretreated biomass. Biomacromol. 2010;11(9):2329–35.
Article
CAS
Google Scholar
Kent MS, Cheng G, Murton JK, Carles EL, Dibble DC, Zendejas F, Rodriquez MA, Tran H, Holmes B, Simmons BA, et al. Study of enzymatic digestion of cellulose by small angle neutron scattering. Biomacromol. 2010;11(2):357–68.
Article
CAS
Google Scholar
Petridis L, Pingali SV, Urban V, Heller WT, O’Neill HM, Foston M, Ragauskas A, Smith JC. Self-similar multiscale structure of lignin revealed by neutron scattering and molecular dynamics simulation. Phys Rev E. 2011;83(6):061911.
Article
Google Scholar
Pingali SV, O’Neill HM, McGaughey J, Urban VS, Rempe CS, Petridis L, Smith JC, Evans BR, Heller WT. Small angle neutron scattering reveals pH-dependent conformational changes in Trichoderma reesei cellobiohydrolase I: implications for enzymatic activity. J Biol Chem. 2011;286(37):32801–9.
Article
CAS
Google Scholar
Lumsden MD, Robertson JL, Yethiraj M. SPICE—spectrometer and instrument control environment. Phys B Condens Matter. 2006;385–386:1336–9.
Article
Google Scholar
Pingali SV, Urban VS, Heller WT, Mcgaughey J, Oneill H, Foston M, Myles DA, Ragauskas AJ, Evans BR. SANS study of cellulose extracted from switchgrass. Acta Crystallogr Sect D Biol Crystallogr. 2010;66(11):1189–93.
Article
CAS
Google Scholar
Ilavsky J, Jemian PR. Irena: tool suite for modeling and analysis of small-angle scattering. J Appl Crystallogr. 2009;42(2):347–53.
Article
CAS
Google Scholar
Beaucage G. Approximations leading to a unified exponential/power law approach to small-angle scattering. J Appl Crystallogr. 1995;28(6):717–28.
Article
CAS
Google Scholar
Beaucage G. Small angle scattering from polymeric mass fractals of arbitrary mass fractal dimension. J Appl Crystallogr. 1996;29(2):134–46.
Article
CAS
Google Scholar
Anon. AWPA E10, standard method of testing wood preservatives by laboratory soil-block cultures. AWPA book of standards 2015, E10-15; 2015. p. 21.
Connolly JH, Arnott HJ, Jellison J. Patterns of calcium oxalate crystal production by three species of wood decay fungi. Scanning Microsc. 1996;10(2):385–400.
CAS
Google Scholar
Connolly JH, Jellison J. Oxlate production and calcium oxalate accumulation by Gloeophyllum trabeum in buffered cultures. Int Res Group Wood Preserv. 1994;94–10075:1–11.
Google Scholar
Connolly JH, Jelllison J. Calcium translocation, calcium oxalate accumulation, and hyphal sheath morphology in the white-rot fungus Resinicium bicolor. Can J Bot. 1995;73:927–63.
Article
CAS
Google Scholar
Lee CM, Kafle K, Huang S, Kim SH. Multimodal broadband vibrational sum frequency generation (MM-BB-V-SFG) spectrometer and microscope. J Phys Chem B. 2016;120(1):102–16.
Article
CAS
Google Scholar
Ding S-Y, Himmel ME. The maize primary cell wall microfibril: a new model derived from direct visualization. J Agric Food Chem. 2006;54(3):597–606.
Article
CAS
Google Scholar
Winandy J, Morrell J. Relationship between incipient decay, strength, and chemical composition of Douglas-fir heartwood. Wood Fiber Sci. 1993;25(3):278–88.
CAS
Google Scholar
Goodell B. Brown rot degradation of wood: our evolving view. In: Goodell B, Nicholas D, Schultz TP, editors. Wood deterioration and preservation: advances in our changing world. Oxford: American Chemical Society Series, Oxford University Press; 2003. p. 97–118.
Chapter
Google Scholar
Pingali SV, O’Neill HM, Nishiyama Y, He L, Melnichenko YB, Urban V, Petridis L, Davison B, Langan P. Morphological changes in the cellulose and lignin components of biomass occur at different stages during steam pretreatment. Cellulose. 2014;21(2):873–8.
Article
CAS
Google Scholar
Barnette AL, Bradley LC, Veres BD, Schreiner EP, Park YB, Park J, Park S, Kim SH. Selective detection of crystalline cellulose in plant cell walls with sum-frequency-generation (SFG) vibration spectroscopy. Biomacromol. 2011;12(7):2434–9.
Article
CAS
Google Scholar
Lee CM, Kubicki JD, Fan B, Zhong L, Jarvis MC, Kim SH. Hydrogen-bonding network and OH stretch vibration of cellulose: comparison of computational modeling with polarized IR and SFG spectra. J Phys Chem B. 2015;119(49):15138–49.
Article
CAS
Google Scholar
Lee CM, Mohamed NMA, Watts HD, Kubicki JD, Kim SH. Sum-frequency-generation vibration spectroscopy and density functional theory calculations with dispersion corrections (DFT-D2) for cellulose Iα and Iβ. J Phys Chem B. 2013;117(22):6681–92.
Article
CAS
Google Scholar
Barnette AL, Lee C, Bradley LC, Schreiner EP, Park YB, Shin H, Cosgrove DJ, Park S, Kim SH. Quantification of crystalline cellulose in lignocellulosic biomass using sum frequency generation (SFG) vibration spectroscopy and comparison with other analytical methods. Carbohyd Polym. 2012;89(3):802–9.
Article
CAS
Google Scholar
Kafle K, Greeson K, Lee C, Kim SH. Cellulose polymorphs and physical properties of cotton fabrics processed with commercial textile mills for mercerization and liquid ammonia treatments. Text Res J. 2014;84(16):1692–9.
Article
Google Scholar
Kafle K, Shi R, Lee CM, Mittal A, Park YB, Sun Y-H, Park S, Chiang V, Kim SH. Vibrational sum-frequency-generation (SFG) spectroscopy study of the structural assembly of cellulose microfibrils in reaction woods. Cellulose. 2014;21(4):2219–31.
Article
CAS
Google Scholar
Lee CM, Kafle K, Park YB, Kim SH. Probing crystal structure and mesoscale assembly of cellulose microfibrils in plant cell walls, tunicate tests, and bacterial films using vibrational sum frequency generation (SFG) spectroscopy. Phys Chem Chem Phys. 2014;16(22):10844–53.
Article
CAS
Google Scholar
Lee CM, Mittal A, Barnette AL, Kafle K, Park Y, Shin H, Johnson DK, Park S, Kim SH. Cellulose polymorphism study with sum-frequency-generation (SFG) vibration spectroscopy: identification of exocyclic CH2OH conformation and chain orientation. Cellulose. 2013;20(3):991–1000.
Article
CAS
Google Scholar
Park YB, Lee CM, Koo B-W, Park S, Cosgrove DJ, Kim SH. Monitoring meso-scale ordering of cellulose in intact plant cell walls using sum frequency generation spectroscopy. Plant Physiol. 2013;163(2):907–13.
Article
CAS
Google Scholar
Wang W, Chen X, Donohoe B, Ciesielski P, Katahira R, Kuhn E, Kafle K, Lee C, Park S, Kim S, et al. Effect of mechanical disruption on the effectiveness of three reactors used for dilute acid pretreatment of corn stover Part 1: chemical and physical substrate analysis. Biotechnol Biofuels. 2014;7(1):57.
Article
Google Scholar
Lee C, Kafle K, Belias D, Park Y, Glick R, Haigler C, Kim S. Comprehensive analysis of cellulose content, crystallinity, and lateral packing in Gossypium hirsutum and Gossypium barbadense cotton fibers using sum frequency generation, infrared and Raman spectroscopy, and X-ray diffraction. Cellulose. 2015;22(2):971–89.
Article
CAS
Google Scholar
Segal L, Creely J, Martin A, Conrad C. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J. 1959;29(10):786–94.
Article
CAS
Google Scholar
Kafle K, Lee CM, Shin H, Zoppe J, Johnson DK, Kim SH, Park S. Effects of delignification on crystalline cellulose in lignocellulose biomass characterized by vibrational sum frequency generation spectroscopy and x-ray diffraction. BioEnergy Res. 2015;8(4):1750–8.
Article
CAS
Google Scholar
Humar M, Bucˇar B, Pohleven F. Brown-rot decay of copper-impregnated wood. Int Biodeterior Biodegrad. 2006;58:9–14.
Article
CAS
Google Scholar
Schilling J, Jellison J. High performance liquid chromatographic analysis of soluble and total oxalate in Ca and Mg amended liquid cultures of three wood decay fungi. Holzforschung. 2004;58:682–7.
Article
CAS
Google Scholar
Liu R, Goodell B, Jellison J, Amirbahman A. Electrochemical study of 2,3-dihydroxybenzoic acid and its interaction with Cu(II) and H2O2 in aqueous solutions: implications for wood decay. Environ Sci Technol. 2005;39(1):175–80.
Article
CAS
Google Scholar
Howell C, Hastrup ACS, Jara R, Larsen FH, Goodell B, Jellison J. Effects of hot water extraction and fungal decay on wood crystalline cellulose structure. Cellulose. 2011;18(5):1179–90.
Article
CAS
Google Scholar
Lee C, Dazen K, Kafle K, Moore A, Johnson DK, Park S, Kim SH. Correlations of apparent cellulose crystallinity determined by XRD, NMR, IR, Raman, and SFG methods. In: Rojas JO, editor. cellulose chemistry and properties: fibers, nanocelluloses and advanced materials. Cham: Springer International Publishing; 2016. p. 115–31.
Google Scholar
Snell R, Groom LH, Rials TG. Characterizing the surface roughness of thermomechanical pulp fibers with atomic force microscopy. Holzforschung. 2001;55(5):511–20.
Article
CAS
Google Scholar
Wang S. Surface characterization of chemically modified fiber, wood and paper. Åbo Akademi University. 2014. http://www.doria.fi/handle/10024/96382.
Koljonen K, Österberg M, Kleen M, Fuhrmann A, Stenius P. Precipitation of lignin and extractives on kraft pulp: effect on surface chemistry, surface morphology and paper strength. Cellulose. 2004;11(2):209–24.
Article
CAS
Google Scholar
Fissore A, Carrasco L, Reyes P, Rodríguez J, Freer J, Mendonça RT. Evaluation of a combined brown rot decay–chemical delignification process as a pretreatment for bioethanol production from Pinus radiata wood chips. J Ind Microbiol Biotechnol. 2010;37(9):893–900.
Article
CAS
Google Scholar
Schilling JS, Ai J, Blanchette RA, Duncan SM, Filley TR, Tschirner UW. Lignocellulose modifications by brown rot fungi and their effects, as pretreatments, on cellulolysis. Biores Technol. 2012;116:147–54.
Article
CAS
Google Scholar
Kaffenberger JT, Schilling JS. Comparing lignocellulose physiochemistry after decomposition by brown rot fungi with distinct evolutionary origins. Environ Microbiol. 2015;17(12):4885–97.
Article
CAS
Google Scholar
Yelle DJ, Ralph J, Lu F, Hammel KE. Evidence for cleavage of lignin by a brown rot basidiomycete. Environ Microbiol. 2008;10(7):1844–9.
Article
CAS
Google Scholar
Zhang J, Presley GN, Hammel KE, Ryu J-S, Menke JR, Figueroa M, Hu D, Orr G, Schilling JS. Localizing gene regulation reveals a staggered wood decay mechanism for the brown rot fungus Postia placenta. Proc Natl Acad Sci. 2016;113(39):10968–73.
Article
CAS
Google Scholar
Curling S, Clausen CA, Winandy JE. The effect of hemicellulose degradation on the mechanical properties of wood during brown rot decay. Int Res Group Wood Preserv. 2001: 1–10.
Li K, Geng X. Formaldehyde-free wood adhesives from decayed wood. Macromol Rapid Commun. 2005;26(7):529–32.
Article
Google Scholar