Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL. The path forward for biofuels and biomaterials. Science. 2006;311(5760):484–9.
Article
CAS
Google Scholar
Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M. Lignin valorization: improving lignin processing in the biorefinery. Science. 2014;344(6185):1246843.
Article
Google Scholar
McCann MC, Carpita NC. Biomass recalcitrance: a multi-scale, multi-factor and conversion-specific property. J Exp Bot. 2015;66(14):4109–18.
Article
CAS
Google Scholar
Himmel ME, Ding S-Y, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science. 2007;315(5813):804–7.
Article
CAS
Google Scholar
Li M, Pu Y, Ragauskas AJ. Current understanding of the correlation of lignin structure with biomass recalcitrance. Front Chem. 2016;4:1–8.
Article
Google Scholar
Yan L, Ma R, Li L, Fu J. Hot water pretreatment of lignocellulosic biomass: an effective and environmentally friendly approach to enhance biofuel production. Chem Eng Technol. 2016;39(10):1759–70.
Article
CAS
Google Scholar
Zhuang X, Wang W, Yu Q, Qi W, Wang Q, Tan X, Zhou G, Yuan Z. Liquid hot water pretreatment of lignocellulosic biomass for bioethanol production accompanying with high valuable products. Bioresour Technol. 2016;199:68–75.
Article
CAS
Google Scholar
Kim Y, Hendrickson R, Mosier NS, Ladisch MR. Liquid hot water pretreatment of cellulosic biomass. Biofuels Methods Protoc. 2009;581:93–102.
CAS
Google Scholar
Mosier NS. Fundamentals of aqueous pretreatment of biomass. Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals. Wiley: New Jersey; 2013. pp. 129–143.
Nitsos CK, Choli-Papadopoulou T, Matis KA, Triantafyllidis KS. Optimization of hydrothermal pretreatment of hardwood and softwood lignocellulosic residues for selective hemicellulose recovery and improved cellulose enzymatic hydrolysis. ACS Sustain Chem Eng. 2016;4(9):4529–44.
Article
CAS
Google Scholar
Grénman H, Eränen K, Krogell J, Willför S, Salmi T, Murzin DY. Kinetics of aqueous extraction of hemicelluloses from spruce in an intensified reactor system. Ind Eng Chem Res. 2011;50(7):3818–28.
Article
Google Scholar
Mok WSL, Antal MJ Jr. Uncatalyzed solvolysis of whole biomass hemicellulose by hot compressed liquid water. Ind Eng Chem Res. 1992;31(4):1157–61.
Article
CAS
Google Scholar
Kumar R, Mago G, Balan V, Wyman CE. Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Bioresour Technol. 2009;100(17):3948–62.
Article
CAS
Google Scholar
Liu C, Wyman CE. Impact of fluid velocity on hot water only pretreatment of corn stover in a flow through reactor. In: Proceedings of the Twenty-Fifth Symposium on Biotechnology for Fuels and Chemicals Held May 4–7, 2003, in Breckenridge, CO: 2004. Springer: 977–987.
Donohoe BS, Decker SR, Tucker MP, Himmel ME, Vinzant TB. Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment. Biotechnol Bioeng. 2008;101(5):913–25.
Article
CAS
Google Scholar
Ko JK, Kim Y, Ximenes E, Ladisch MR. Effect of liquid hot water pretreatment severity on properties of hardwood lignin and enzymatic hydrolysis of cellulose. Biotechnol Bioeng. 2015;112(2):252–62.
Article
CAS
Google Scholar
Pu Y, Hu F, Huang F, Davison BH, Ragauskas AJ. Assessing the molecular structure basis for biomass recalcitrance during dilute acid and hydrothermal pretreatments. Biotechnol Biofuels. 2013;6(1):1.
Article
Google Scholar
Meng X, Pu Y, Yoo CG, Li M, Bali G, Park D-Y, Gjersing E, Davis M, Wellington M, Tuskan G. An in-depth understanding of biomass recalcitrance using natural poplar variants as the feedstock. ChemSusChem. 2016;10(1):139–150.
Article
Google Scholar
Cao S, Pu Y, Studer M, Wyman C, Ragauskas AJ. Chemical transformations of Populus trichocarpa during dilute acid pretreatment. Rsc Advances. 2012;2(29):10925–36.
Article
CAS
Google Scholar
Foston MB, Hubbell CA, Ragauskas AJ. Cellulose isolation methodology for NMR analysis of cellulose ultrastructure. Materials. 2011;4(11):1985–2002.
Article
CAS
Google Scholar
Bali G, Khunsupat R, Akinosho H, Payyavula RS, Samuel R, Tuskan GA, Kalluri UC, Ragauskas AJ. Characterization of cellulose structure of Populus plants modified in candidate cellulose biosynthesis genes. Biomass Bioenergy. 2016;94:146–54.
Article
CAS
Google Scholar
Sun R, Fang J, Tomkinson J, Geng Z, Liu J. Fractional isolation, physico-chemical characterization and homogeneous esterification of hemicelluloses from fast-growing poplar wood. Carbohydr Polym. 2001;44(1):29–39.
Article
CAS
Google Scholar
Yuan T-Q, Xu F, He J, Sun R-C. Structural and physico-chemical characterization of hemicelluloses from ultrasound-assisted extractions of partially delignified fast-growing poplar wood through organic solvent and alkaline solutions. Biotechnol Adv. 2010;28(5):583–93.
Article
CAS
Google Scholar
Capanema EA, Balakshin MY, Kadla JF. Quantitative characterization of a hardwood milled wood lignin by nuclear magnetic resonance spectroscopy. J Agric Food Chem. 2005;53(25):9639–49.
Article
CAS
Google Scholar
Yuan T-Q, Sun S-N, Xu F, Sun R-C. Structural characterization of lignin from triploid of Populus tomentosa Carr. J Agric Food Chem. 2011;59(12):6605–15.
Article
CAS
Google Scholar
Samuel R, Pu Y, Jiang N, Fu C, Wang Z-Y, Ragauskas A. Structural characterization of lignin in wild-type versus COMT down-regulated switchgrass. Front Energy Res. 2014;1:1–9.
Article
Google Scholar
Meng X, Wells T, Sun Q, Huang F, Ragauskas A. Insights into the effect of dilute acid, hot water or alkaline pretreatment on the cellulose accessible surface area and the overall porosity of Populus. Green Chem. 2015;17(8):4239–46.
Article
CAS
Google Scholar
Adani F, Papa G, Schievano A, Cardinale G, D’Imporzano G, Tambone F. Nanoscale structure of the cell wall protecting cellulose from enzyme attack. Environ Sci Technol. 2010;45(3):1107–13.
Article
Google Scholar
Shen J, Wyman CE. A novel mechanism and kinetic model to explain enhanced xylose yields from dilute sulfuric acid compared to hydrothermal pretreatment of corn stover. Bioresour Technol. 2011;102(19):9111–20.
Article
CAS
Google Scholar
Kim Y, Kreke T, Mosier NS, Ladisch MR. Severity factor coefficients for subcritical liquid hot water pretreatment of hardwood chips. Biotechnol Bioeng. 2014;111(2):254–63.
Article
Google Scholar
Steinbach D, Kruse A, Sauer J. Pretreatment technologies of lignocellulosic biomass in water in view of furfural and 5-hydroxymethylfurfural production-a review. Biomass Convers Biorefinery. 2017;7(2):1–28.
Article
Google Scholar
Zhao X, Zhang L, Liu D. Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuel Bioprod Bior. 2012;6(4):465–82.
Article
CAS
Google Scholar
Li M, Pu Y, Yoo CG, Gjersing E, Decker SR, Doeppke C, Shollenberger T, Tschaplinski TJ, Engle NL, Sykes RW. Study of traits and recalcitrance reduction of field-grown COMT down-regulated switchgrass. Biotechnol Biofuels. 2017;10(1):12.
Article
Google Scholar
Singh S, Khanna S, Moholkar VS, Goyal A. Screening and optimization of pretreatments for Parthenium hysterophorus as feedstock for alcoholic biofuels. Appl Energy. 2014;129:195–206.
Article
CAS
Google Scholar
Hall M, Bansal P, Lee JH, Realff MJ, Bommarius AS. Cellulose crystallinity–a key predictor of the enzymatic hydrolysis rate. FEBS J. 2010;277(6):1571–82.
Article
CAS
Google Scholar
Nimlos MR, Beckham GT, Matthews JF, Bu L, Himmel ME, Crowley MF. Binding preferences, surface attachment, diffusivity, and orientation of a family 1 carbohydrate-binding module on cellulose. J Biol Chem. 2012;287(24):20603–12.
Article
CAS
Google Scholar
Liu Y-S, Baker JO, Zeng Y, Himmel ME, Haas T, Ding S-Y. Cellobiohydrolase hydrolyzes crystalline cellulose on hydrophobic faces. J Biol Chem. 2011;286(13):11195–201.
Article
CAS
Google Scholar
Mosier NS, Hall P, Ladisch CM, Ladisch MR. Reaction kinetics, molecular action, and mechanisms of cellulolytic proteins. In: Recent Progress in Bioconversion of Lignocellulosics. Springer; 1999: 23-40.
Leschinsky M, Zuckerstätter G, Weber HK, Patt R, Sixta H. Effect of autohydrolysis of Eucalyptus globulus wood on lignin structure. Part 2: influence of autohydrolysis intensity. Holzforschung. 2008;62(6):653–8.
CAS
Google Scholar
Samuel R, Cao S, Das BK, Hu F, Pu Y, Ragauskas AJ. Investigation of the fate of poplar lignin during autohydrolysis pretreatment to understand the biomass recalcitrance. Rsc Advances. 2013;3(16):5305–9.
Article
CAS
Google Scholar
Overend RP, Chornet E, Gascoigne J. Fractionation of lignocellulosics by steam-aqueous pretreatments [and discussion]. Philos Trans Royal Soc London. 1987;321(1561):523–36.
Article
CAS
Google Scholar
Kumar R, Hu F, Hubbell CA, Ragauskas AJ, Wyman CE. Comparison of laboratory delignification methods, their selectivity, and impacts on physiochemical characteristics of cellulosic biomass. Biores Technol. 2013;130:372–81.
Article
CAS
Google Scholar
Yoo CG, Pu Y, Li M, Ragauskas AJ. Elucidating structural characteristics of biomass using solution-state 2 D NMR with a mixture of deuterated dimethylsulfoxide and hexamethylphosphoramide. Chemsuschem. 2016;9(10):1090–5.
Article
CAS
Google Scholar
Hu Z, Yeh T-F, Chang H-m, Matsumoto Y, Kadla JF. Elucidation of the structure of cellulolytic enzyme lignin. Holzforschung. 2006;60(4):389–97.
Article
CAS
Google Scholar
Cao S, Pu Y, Studer M, Wyman C, Ragauskas AJ. Chemical transformations of Populus trichocarpa during dilute acid pretreatment. RSC Adv. 2012;2(29):10925–36.
Article
CAS
Google Scholar
Mansfield SD, Kim H, Lu F, Ralph J. Whole plant cell wall characterization using solution-state 2D NMR. Nat Protoc. 2012;7(9):1579–89.
Article
CAS
Google Scholar
Kim H, Ralph J. A gel-state 2D-NMR method for plant cell wall profiling and analysis: a model study with the amorphous cellulose and xylan from ball-milled cotton linters. Rsc Advances. 2014;4(15):7549–60.
Article
CAS
Google Scholar
José C, Lino AG, Colodette JL, Lima CF, Gutiérrez A, Martínez ÁT, Lu F, Ralph J, Rencoret J. Differences in the chemical structure of the lignins from sugarcane bagasse and straw. Biomass Bioenergy. 2015;81:322–38.
Article
Google Scholar