Wiedenhoeft A. Structure and function of wood, handbook of wood chemistry and wood composites. 2nd ed. Boca Raton: CRC Press; 2012. p. 9–32.
Book
Google Scholar
Foston M, Hubbell CA, Samuel R, Jung S, Fan H, Ding S-Y, Zeng Y, Jawdy S, Davis M, Sykes R, Gjersing E, Tuskan GA, Kalluri U, Ragauskas AJ. Chemical, ultrastructural and supramolecular analysis of tension wood in Populus tremula × alba as a model substrate for reduced recalcitrance. Energy Environ Sci. 2011;4(12):4962–71.
Article
CAS
Google Scholar
Wada M, Okano T, Sugiyama J, Horii F. Characterization of tension and normally lignified wood cellulose in Populus maximowiczii. Cellulose. 1995;2(4):223–33.
Article
CAS
Google Scholar
Nishiyama Y, Langan P, Chanzy H. Crystal structure and hydrogen-bonding system in cellulose Iβ; from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc. 2002;124(31):9074–82.
Article
CAS
Google Scholar
Ding S-Y, Himmel ME. The maize primary cell wall microfibril: a new model derived from direct visualization. J Agric Food Chem. 2006;54(3):597–606.
Article
CAS
Google Scholar
Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsyth VT, Apperley DC, Kennedy CJ, Jarvis MC. Nanostructure of cellulose microfibrils in spruce wood. Proc Natl Acad Sci USA. 2011;108:E1195–203.
Article
Google Scholar
Newman RH, Hill SJ, Harris PJ. Wide-angle X-ray scattering and solid-state nuclear magnetic resonance data combined to test models for cellulose microfibrils in mung bean cell walls. Plant Physiol. 2013;163(4):1558–67.
Article
CAS
Google Scholar
Ding S-Y, Liu Y-S, Zeng Y, Himmel ME, Baker JO, Bayer EA. How does plant cell wall nanoscale architecture correlate with enzymatic digestibility? Science. 2012;338(6110):1055–60.
Article
CAS
Google Scholar
Ding S-Y, Zhao S, Zeng Y. Size, shape, and arrangement of native cellulose fibrils in maize cell walls. Cellulose. 2014;21(2):863–71.
Article
CAS
Google Scholar
Plaza NZ, Pingali SV, Qian S, Heller WT, Jakes JE. Informing the improvement of forest products durability using small angle neutron scattering. Cellulose. 2016;23(3):1593–607.
Article
CAS
Google Scholar
Andersson-Gunneras S, Mellerowicz EJ, Love J, Segerman B, Ohmiya Y, Coutinho PM, Nilsson P, Henrissat B, Moritz T, Sundberg B. Biosynthesis of cellulose-enriched tension wood in Populus: global analysis of transcripts and metabolites identifies biochemical and developmental regulators in secondary wall biosynthesis. Plant J. 2006;45(2):144–65.
Article
Google Scholar
Gerttula S, Zinkgraf M, Muday GK, Lewis DR, Ibatullin FM, Brumer H, Hart F, Mansfield SD, Filkov V, Groover A. Transcriptional and hormonal regulation of gravitropism of woody stems in Populus. Plant Cell. 2015;27(10):2800–13.
CAS
Google Scholar
Timell TE. The chemical composition of tension wood. Sven Papperstidn. 1969;6:173–81.
Google Scholar
Baba KI, Park YW, Kaku T, Kaida R, Takeuchi M, Yoshida M, Hosoo Y, Ojio Y, Okuyama T, Taniguchi T, Ohmiya Y, Kondo T, Shani Z, Shoseyov O, Awano T, Serada S, Norioka N, Norioka S, Hayashi T. Xyloglucan for generating tensile stress to bend tree stem. Mol Plant. 2009;2(5):893–903.
Article
CAS
Google Scholar
Okuyama T, Yamamoto H, Yoshida M, Hattori Y, Archer RR. Growth stresses in tension wood: role of microfibrils and lignification. Ann For Sci. 1994;51(3):291–300.
Article
Google Scholar
Brereton NJ, Ray MJ, Shield I, Martin P, Karp A, Murphy RJ. Reaction wood—a key cause of variation in cell wall recalcitrance in willow. Biotechnol Biofuels. 2012;5(1):83.
Article
CAS
Google Scholar
Muñoz C, Baeza J, Freer J, Mendonça RT. Bioethanol production from tension and opposite wood of Eucalyptus globulus using organosolv pretreatment and simultaneous saccharification and fermentation. J Ind Microbiol Biotechnol. 2011;38(11):1861.
Article
Google Scholar
Abraham P, Adams R, Giannone RJ, Kalluri U, Ranjan P, Erickson B, Shah M, Tuskan GA, Hettich RL. Defining the boundaries and characterizing the landscape of functional genome expression in vascular tissues of Populus using shotgun proteomics. J Proteome Res. 2012;11(1):449–60.
Article
CAS
Google Scholar
Jung S, Foston M, Kalluri UC, Tuskan GA, Ragauskas AJ. 3D chemical image using TOF-SIMS revealing the biopolymer component spatial and lateral distributions in biomass. Angew Chem Int Ed. 2012;51(48):12005–8.
Article
CAS
Google Scholar
Langan P, Petridis L, O’Neill HM, Pingali SV, Foston M, Nishiyama Y, Schulz R, Lindner B, Hanson BL, Harton S, Heller WT, Urban V, Evans BR, Gnanakaran S, Ragauskas AJ, Smith JC, Davison BH. Common processes drive the thermochemical pretreatment of lignocellulosic biomass. Green Chem. 2014;16(1):63–8.
Article
CAS
Google Scholar
Heller WT, Urban VS, Lynn GW, Weiss KL, O’Neill HM, Pingali SV, Qian S, Littrell KC, Melnichenko YB, Buchanan MV, Selby DL, Wignall GD, Butler PD, Myles DA. The Bio-SANS instrument at the high flux isotope reactor of Oak Ridge National Laboratory. J Appl Crystallogr. 2014;47(4):1238–46.
Article
CAS
Google Scholar
Ilavsky J, Jemian PR. Irena: tool suite for modeling and analysis of small-angle scattering. J Appl Crystallogr. 2009;42(2):347–53.
Article
CAS
Google Scholar
Skilling J, Bryan RK. Maximum entropy image reconstruction: general algorithm. Mon Not R Astron Soc. 1984;211(1):111–24.
Article
Google Scholar
Jemian PR, Weertman JR, Long GG, Spal RD. Characterization of 9Cr-1MoVNb steel by anomalous small-angle X-ray scattering. Acta Metall Mater. 1991;39(11):2477–87.
Article
CAS
Google Scholar
Potton JA, Daniell GJ, Eastop AD, Kitching M, Melville D, Poslad S, Rainford BD, Stanley H. Ferrofluid particle size distributions from magnetisation and small angle neutron scattering data. J Magn Magn Mater. 1983;39(1–2):95–8.
Article
CAS
Google Scholar
Pingali SV, Urban VS, Heller WT, McGaughey J, O’Neill H, Foston M, Myles DA, Ragauskas A, Evans BR. Breakdown of cell wall nanostructure in dilute acid pretreated biomass. Biomacromolecules. 2010;11(9):2329–35.
Article
CAS
Google Scholar
Pingali SV, Urban VS, Heller WT, McGaughey J, O’Neill H, Foston MB, Li H, Wyman CE, Myles DA, Langan P, Ragauskas A, Davison B, Evans BR. Understanding multiscale structural changes during dilute acid pretreatment of switchgrass and poplar. ACS Sustain Chem Eng. 2017;5(1):426–35.
Article
CAS
Google Scholar
Klug HP, Alexander LE. X-ray diffraction procedures for polycrystalline and amorphous materials. 2nd ed. New York: Wiley; 1974.
Google Scholar
Grethlein HE. The effect of pore size distribution on the rate of enzymatic hydrolysis of cellulosic substrates. Nat Biotechnol. 1985;3(2):155–60.
Article
CAS
Google Scholar
Kent MS, Cheng G, Murton JK, Carles EL, Dibble DC, Zendejas F, Rodriquez MA, Tran H, Holmes B, Simmons BA, Knierim B, Auer M, Banuelos JL, Urquidi J, Hjelm RP. Study of enzymatic digestion of cellulose by small angle neutron scattering. Biomacromolecules. 2010;11(2):357–68.
Article
CAS
Google Scholar
Lichtenegger H, Reiterer A, Stanzl-Tschegg SE, Fratzl P. Variation of cellulose microfibril angles in softwoods and hardwoods—a possible strategy of mechanical optimization. J Struct Biol. 1999;128(3):257–69.
Article
CAS
Google Scholar
Wardrop AB, Dadswell HE. The nature of reaction wood. IV. Variations in cell wall organization of tension wood fibres. Aust J Bot. 1955;3(2):177–89.
Article
Google Scholar
Clair B, Gril J, Di Renzo F, Yamamoto H, Quignard F. Characterization of a gel in the cell wall to elucidate the paradoxical shrinkage of tension wood. Biomacromolecules. 2008;9(2):494–8.
Article
CAS
Google Scholar
Chang S-S, Clair B, Ruelle J, Beauchêne J, Di Renzo F, Quignard F, Zhao G-J, Yamamoto H, Gril J. Mesoporosity as a new parameter for understanding tension stress generation in trees. J Exp Bot. 2009;60(11):3023–30.
Article
CAS
Google Scholar
Pingali SV, O’Neill HM, Nishiyama Y, He L, Melnichenko YB, Urban V, Petridis L, Davison B, Langan P. Morphological changes in the cellulose and lignin components of biomass occur at different stages during steam pretreatment. Cellulose. 2014;21(2):873–8.
Article
CAS
Google Scholar
Müller M, Burghammer M, Sugiyama J. Direct investigation of the structural properties of tension wood cellulose microfibrils using microbeam X-ray fibre diffraction. Holzforschung. 2006;60(5):474–79.
Article
Google Scholar
Joseleau J-P, Imai T, Kuroda K, Ruel K. Detection in situ and characterization of lignin in the G-layer of tension wood fibres of Populus deltoides. Planta. 2004;219(2):338–45.
Article
CAS
Google Scholar
Kaku T, Serada S, Baba KI, Tanaka F, Hayashi T. Proteomic analysis of the G-layer in poplar tension wood. J Wood Sci. 2009;55(4):250–7.
Article
CAS
Google Scholar
Mellerowicz EJ, Immerzeel P, Hayashi T. Xyloglucan: the molecular muscle of trees. Ann Bot. 2008;102(5):659–65.
Article
CAS
Google Scholar