Chisti Y. Biodiesel from microalgae. Biotechnol Adv. 2007;25:294–306.
Article
CAS
Google Scholar
Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 2008;54:621–39.
Article
CAS
Google Scholar
Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev. 2010;14:217–32.
Article
CAS
Google Scholar
Georgianna DR, Mayfield SP. Exploiting diversity and synthetic biology for the production of algal biofuels. Nature. 2012;488:329–35.
Article
CAS
Google Scholar
Pulz O, Gross W. Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol. 2004;65:635–48.
Article
CAS
Google Scholar
Da Silva TL, Gouveia L, Reis A. Integrated microbial processes for biofuels and high value-added products: the way to improve the cost effectiveness of biofuel production. Appl Microbiol Biotechnol. 2014;98:1043–53.
Article
Google Scholar
Slocombe SP, Zhang QY, Ross M, Anderson A, Thomas NJ, Lapresa A, Rad-Menéndez C, Campbell CN, Black KD, Stanley MS, Day JG. Unlocking the nature’s treasure-chest: screening for oleaginous algae. Sci Rep. 2015;5:09844.
Article
Google Scholar
Takagi M, Yoshida T. Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. J Biosci Bioeng. 2006;101:223–6.
Article
CAS
Google Scholar
Huang X, Huang Z, Wen W, Yan J. Effects of nitrogen supplementation of the culture medium on the growth, total lipid content and fatty acid profiles of three microalgae (Tetraselmis subcordiformis, Nannochloropsis oculata and Pavlova viridis). J Appl Phycol. 2013;25:129–37.
Article
Google Scholar
Campos H, Boeing WJ, Dungan BN, Schaub T. Cultivating the marine microalga Nannochloropsis salina under various nitrogen sources: effect on biovolume yields, lipid content and composition, and invasive organisms. Biomass Bioenergy. 2014;66:301–7.
Article
CAS
Google Scholar
Sheehan J, Dunahay T, Benemann J, Roessler P. A look back at the US Department of Energy’s aquatic species program: biodiesel from algae. Natl Renew Energy Lab. 1998;328. https://www.nrel.gov/docs/legosti/fy98/24190.pdf
Griffiths MJ, Harrison ST. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol. 2009;21:493–507.
Article
CAS
Google Scholar
Radakovits R, Jinkerson RE, Darzins A, Posewitz MC. Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell. 2010;9:486–501.
Article
CAS
Google Scholar
Ma Y-H, Wang X, Niu Y-F, Yang Z-K, Zhang M-H, Wang Z-M, Yang W-D, Liu J-S, Li H-Y. Antisense knockdown of pyruvate dehydrogenase kinase promotes the neutral lipid accumulation in the diatom Phaeodactylum tricornutum. Microb Cell Fact. 2014;13:100.
Google Scholar
Levitan O, Dinamarca J, Zelzion E, Lun DS, Guerra LT, Kim MK, et al. Remodeling of intermediate metabolism in the diatom Phaeodactylum tricornutum under nitrogen stress. Proc Natl Acad Sci. 2015;112:412–7.
Article
CAS
Google Scholar
Dinamarca J, Levitan O, Kumaraswamy GK, Lun DS, Falkowski P. Overexpression of a diacylglycerol acyltransferase gene in Phaeodactylum tricornutum directs carbon towards lipid biosynthesis. J Phycol. 2017;53:405–14.
Article
CAS
Google Scholar
Snow AA, Smith VH. Genetically engineered algae for biofuels: a key role for ecologists. Bioscience. 2012;62:765–8.
Article
Google Scholar
Wijffels RH, Kruse O, Hellingwerf KJ. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae. Curr Opin Biotechnol. 2013;24:405–13.
Article
CAS
Google Scholar
Shurin JB, Burkart MD, Mayfield SP, Smith VH. Recent progress and future challenges in algal biofuel production. F1000 Res. 2016;5:2434
Converti A, Casazza AA, Ortiz EY, Perego P, Del Borghi M. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process Process Intensif. 2009;48:1146–51.
Article
CAS
Google Scholar
Hounslow E, Kapoore RV, Vaidyanathan S, Gilmour DJ, Wright PC. The search for a lipid trigger: the effect of salt stress on the lipid profile of the model microalgal species Chlamydomonas reinhardtii for biofuels production. Curr Biotechnol. 2016;5:305–13.
Article
CAS
Google Scholar
Frada MJ, Burrows EH, Wyman KD, Falkowski PG. Quantum requirements for growth and fatty acid biosynthesis in the marine diatom Phaeodactylum tricornutum (Bacillariophyceae) in nitrogen replete and limited conditions. J Phycol. 2013;49:381–8.
Article
CAS
Google Scholar
Sukenik A, Carmeli Y, Berner T. Regulation of fatty acid composition by irradiance level in the eustigmatophyte Nannochloropsis sp. J Phycol. 1989;25:686–92.
Article
CAS
Google Scholar
Pal D, Khozin-Goldberg I, Cohen Z, Boussiba S. The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp. Appl Microbiol Biotechnol. 2011;90:1429–41.
Article
CAS
Google Scholar
Yeesang C, Cheirsilp B. Effect of nitrogen, salt, and iron content in the growth medium and light intensity on lipid production by microalgae isolated from freshwater sources in Thailand. Bioresour Technol. 2011;102:3034–40.
Article
CAS
Google Scholar
Simionato D, Sforza E, Carpinelli EC, Bertucco A, Giacometti GM, Morosinotto T. Acclimation of Nannochloropsis gaditana to different illumination regimes: effects on lipids accumulation. Bioresour Techol. 2011;102:6026–32.
Article
CAS
Google Scholar
Ho S-H, Chen C-Y, Chang J-S. Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour Techol. 2012;113:244–52.
Article
CAS
Google Scholar
Berges JA, Charlebois DO, Mauzerall DC, Falkowski PG. Differential effects of nitrogen limitation on photosynthetic efficiency of photosystems I and II in microalgae. Plant Physiol. 1996;110:689–96.
Article
CAS
Google Scholar
Juergens MT, Deshpande RR, Lucker B, Park JJ, Wang H, Gargouri M, et al. The regulation of photosynthetic structure and function during nitrogen deprivation in Chlamydomonas reinhardtii. Plant Physiol. 2015;167:558–73.
Article
CAS
Google Scholar
Klok AJ, Martens DE, Wijffels RH, Lamers PP. Simultaneous growth and neutral lipid accumulation in microalgae. Bioresour Technol. 2013;134:233–43.
Article
CAS
Google Scholar
Solovchenko A, Khozin-Goldberg I, Recht L, Boussiba S. Stress-induced changes in optical properties, pigment and fatty acid content of Nannochloropsis sp.: implications for non-destructive assay of total fatty acids. Mar Biotechnol. 2011;13:527–35.
Article
CAS
Google Scholar
Packer A, Li Y, Andersen T, Hu Q, Kuang Y, Sommerfeld M. Growth and neutral lipid synthesis in green microalgae: a mathematical model. Bioresour Technol. 2011;102:111–7.
Article
CAS
Google Scholar
Wilhelm C, Selmar D. Energy dissipation is an essential mechanism to sustain the viability of plants: the physiological limits of improved photosynthesis. J Plant Physiol. 2011;168:79–87.
Article
CAS
Google Scholar
Boussiba S, Vonshak A, Cohen Z, Avissar Y, Richmond A. Lipid and biomass production by the halotolerant microalga Nannochloropsis salina. Biomass. 1987;12:37–47.
Article
CAS
Google Scholar
Rodolfi L, Zittelli CG, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR. Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng. 2009;102:100–12.
Article
CAS
Google Scholar
Hildebrand M, Davis AK, Smith SR, Traller JC, Abbriano R. The place of diatoms in the biofuels industry. Biofuels. 2012;3:221–40.
Article
CAS
Google Scholar
Renaud S, Parry D, Thinh L, Kuo C, Padovan A, Sammy N. Effect of light intensity on the proximate biochemical and fatty acid composition of Isochrysis sp., and Nannochloropsis oculata for use in tropical aquaculture. J Appl Phycol. 1991;3:43–53.
Article
CAS
Google Scholar
Sukenik A. Production of EPA by Nannochloropsis. In: Cohen Z, editor. Chemicals from microalgae. London: Taylor and Francis; 1999. p. 41–56.
Google Scholar
Renaud SM, Parry DL. Microalgae for use in tropical aquaculture II: effect of salinity on growth, gross chemical composition and fatty acid composition of three species of marine microalgae. J Appl Phycol. 1994;6:347–56.
Article
CAS
Google Scholar
Adl SM, Simpson AGB, Lane CE, Lukes J, Bass D, et al. The revised classification of eukaryotes. J Eukaryot Microbiol. 2012;59:429–514.
Article
Google Scholar
Kilian O, Benemann CS, Niyogi KK, Vick B. High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp. Proc Natl Acad Sci. 2011;108:21265–9.
Article
CAS
Google Scholar
Brown JS. Functional organization of chlorophyll a and carotenoids in the alga, Nannochloropsis salina. Plant Physiol. 1987;83:434–7.
Article
CAS
Google Scholar
Lubián LM, Montero O, Moreno-Garrido I, Huertas IE, Sobrino C, González-del Valle M, Parés G. Nannochloropsis (Eustigmatophyceae) as source of commercially valuable pigments. J Appl Phycol. 2000;12:249–55.
Article
Google Scholar
Simionato D, Block MA, La Rocca N, Jouhet J, Maréchal E, Finazzi G, Morosinotto T. The response of Nannochloropsis gaditana to nitrogen starvation includes de novo biosynthesis of triacylglycerols, a decrease of chloroplast galactolipids, and reorganization of the photosynthetic apparatus. Eukaryot Cell. 2013;12:665–76.
Article
CAS
Google Scholar
Cao S, Zhang X, Xu D, Fan X, Mou S, Wang Y, Ye N, Wang W. A transthylakoid proton gradient and inhibitors induce a non-photochemical fluorescence quenching in unicellular algae Nannochloropsis sp. FEBS Lett. 2013;587:1310–5.
Article
CAS
Google Scholar
Wagner H, Jakob T, Lavaud J, Wilhelm C. Photosystem II cycle activity and alternative electron transport in the diatom Phaeodactylum tricornutum under dynamic light conditions and nitrogen limitation. Photosynth Res. 2015;128:151–61.
Article
Google Scholar
Guerra LT, Levitan O, Frada MJ, Sun JS, Falkowski PG, Dismukes GC. Regulatory branch points affecting protein and lipid biosynthesis in the diatom Phaeodactylum tricornutum. Biomass Bioenergy. 2013;59:306–15.
Article
CAS
Google Scholar
Wase N, Black PN, Stanley BA, DiRusso CC. Integrated quantitative analysis of nitrogen stress response in Chlamydomonas reinhardtii using metabolite and protein profiling. J Proteome Res. 2014;13:1373–96.
Article
CAS
Google Scholar
Hockin NL, Mock T, Mulholland F, Kopriva S, Malin G. The response of diatom central carbon metabolism to nitrogen starvation is different from that of green algae and higher plants. Plant Physiol. 2012;158:299–312.
Article
CAS
Google Scholar
Longworth J, Wu D, Huete-Ortega M, Wright PC, Vaidyanathan S. Proteome response of Phaeodactylum tricornutum, during lipid accumulation induced by nitrogen depletion. Algal Res. 2016;18:213–24.
Article
Google Scholar
Longworth J, Noirel J, Pandhal J, Wright PC, Vaidyanathan S. HILIC-and SCX-based quantitative proteomics of Chlamydomonas reinhardtii during nitrogen starvation induced lipid and carbohydrate accumulation. J Proteome Res. 2012;11:5959–71.
Article
CAS
Google Scholar
Schmollinger S, Mühlhaus T, Boyle NR, Blaby IK, Casero D, Mettler T, et al. NitrogeN-sparing mechanisms in Chlamydomonas affect the transcriptome, the proteome, and photosynthetic metabolism. Plant Cell. 2014;26:1410–35.
Article
CAS
Google Scholar
de Lomana ALG, Schäuble S, Valenzuela J, Imam S, Carter W, Bilgin DD, et al. Transcriptional program for nitrogen starvation-induced lipid accumulation in Chlamydomonas reinhardtii. Biotechnol Biofuels. 2015;8:207.
Article
Google Scholar
Geider RJ, MacIntyre HL, Kana TM. Dynamic model of phytoplankton growth and acclimation: responses of the balanced growth rate and the chlorophyll a: carbon ratio to light, nutrient-limitation and temperature. Mar Ecol Prog Ser. 1997;148:187–200.
Article
Google Scholar
McKew BA, Lefebvre SC, Achterberg EP, Metodieva G, Raines CA, Metodiev MV, Geider RJ. Plasticity in the proteome of Emiliania huxleyi CCMP 1516 to extremes of light is highly targeted. New Phytol. 2013;200:61–73.
Article
CAS
Google Scholar
Higgins ES, Richert DA, Westerfeld WW. Tungstate antagonism of molybdate in Aspergillus niger. Proc Soc Exp Biol Med. 1956;92:509–11.
Article
CAS
Google Scholar
Vega JM, Herrera J, Aparicio PJ, Paneque A, Losada M. Role of molybdenum in N+ reduction by Chlorella. Plant Physiol. 1971;48:294–9.
Article
CAS
Google Scholar
Deng M, Moureaux T, Caboche M. Tungstate, a molybdate analog inactivating N+ reductase, deregulates the expression of the N+ reductase structural gene. Plant Physiol. 1989;91:304–9.
Article
CAS
Google Scholar
Mendel RR. Biology of the molybdenum cofactor. J Exper Botany. 2007;58:2289–96.
Article
CAS
Google Scholar
Xiong J, Fu G, Yang Y, Zhu C, Tao L. Tungstate: is it really a specific N+ reductase inhibitor in plant nitric oxide research? J Exp Bot. 2012;63:33–41.
Article
CAS
Google Scholar
Lomas MW, Glibert PM. Temperature regulation of N+ uptake: a novel hypothesis about N+ uptake and reduction in cool-water diatoms. Limnol Oceanogr. 1999;44:556–72.
Article
CAS
Google Scholar
Lomas MW, Rumbley CJ, Glibert PM. ammonium release by nitrogen sufficient diatoms in response to rapid increases in irradiance. J Plankton Res. 2000;22:2351–66.
Article
CAS
Google Scholar
Parker MS, Armbrust E. Synergistic effects of light, temperature, and nitrogen source on transcription of genes for carbon and nitrogen metabolism in the centric diatom Thalassiosira pseudonana (Bacillariophyceae). J Phycol. 2005;41:1142–53.
Article
CAS
Google Scholar
Cannons AC, Pendleton LC. Possible role for mRNA stability in the ammonium-controlled regulation of nitrate reductase expression. Biochem J. 1994;297:561–5.
Article
CAS
Google Scholar
Song B, Ward BB. Molecular characterization of the assimilatory N+ reductase gene and its expression in the marine green alga Dunaliella tertiolecta (Chlorophyceae). J Phycol. 2004;40:721–31.
Article
CAS
Google Scholar
Shurin JB, Mandal S, Abbott RL. Trait diversity enhances yield in algal biofuel assemblages. J Appl Ecol. 2014;51:603–11.
Article
Google Scholar
Saroussi SI, Wittkopp TM, Grossman AR. The type II NADPH dehydrogenase facilitates cyclic electron flow, energy-dependent quenching, and chlororespiratory metabolism during acclimation of Chlamydomonas reinhardtii to nitrogen deprivation. Plant Physiol. 2016;170:1975–88.
Article
CAS
Google Scholar
Liu B, Vieler A, Li C, Jones AD, Benning C. Triacylglycerol profiling of microalgae Chlamydomonas reinhardtii and Nannochloropsis oceanica. Bioresour Technol. 2013;146:310–6.
Article
CAS
Google Scholar
Vieler A, Wu G, Tsai CH, Bullard B, Cornish AJ, Harvey C, et al. Genome, functional gene annotation, and nuclear transformation of the heterokont oleaginous alga Nannochloropsis oceanica CCMP1779. PLoS Genet. 2012;8:e1003064.
Article
CAS
Google Scholar
Levitan O, Dinamarca J, Zelzion E, Gorbunov MY, Falkowski PG. An RNA interference knock-down of N+ reductase enhances lipid biosynthesis in the diatom Phaeodactylum tricornutum. Plant J. 2015;84:963–73.
Article
CAS
Google Scholar
Schwarz G, Hagedoorn PL, Fischer K. Molybdate and tungstate: uptake, homeostasis, cofactors, and enzymes. In: Molecular microbiology of heavy metals. Berlin: Springer; 2007. p. 421–51.
Ritchie RJ. Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth Res. 2006;89:27–41.
Article
CAS
Google Scholar
Chen Y, Vaidyanathan S. Simultaneous assay of pigments, carbohydrates, proteins and lipids in microalgae. Anal Chim Acta. 2013;776:31–40.
Article
CAS
Google Scholar
Chen Y, Vaidyanathan S. a simple, reproducible and sensitive spectrophotometric method to estimate microalgal lipids. Anal Chim Acta. 2012;724:67–72.
Article
CAS
Google Scholar
Ritchie RJ. Fitting light saturation curves measured using modulated fluorometry. Photosynth Res. 2008;96:201–15.
Article
CAS
Google Scholar
Ruban AV, Murchie MH. Assessing the photoprotective effectiveness of non-photochemical chlorophyll fluorescence quenching: a new approach. Biochim Biophys Acta. 2012;1817:977–82.
Article
CAS
Google Scholar