Jones DT, Woods DR. Acetone–butanol fermentation revisited. Microbiol Rev. 1986;50:484–524.
CAS
Google Scholar
Yusri IM, Mamat R, Najafi G, Razman A, Awad OI, Azmi WH, Ishak WFW, Shaiful AIM. Alcohol based automotive fuels from first four alcohol family in compression and spark ignition engine: a review on engine performance and exhaust emissions. Renew Sustain Energy Rev. 2017;77:169–81.
Article
CAS
Google Scholar
Pfromm PH, Amanor-Boadu V, Nelson R, Vadlani P, Madl R. Bio-butanol vs. bio-ethanol: a technical and economic assessment for corn and switchgrass fermented by yeast or Clostridium acetobutylicum. Biomass Bioenergy. 2010;34:515–24.
Article
CAS
Google Scholar
Poehlein A, Solano JDM, Flitsch SK, Krabben P, Winzer K, Reid SJ, Jones DT, Green E, Minton NP, Daniel R, Durre P. Microbial solvent formation revisited by comparative genome analysis. Biotechnol Biofuels. 2017;10:15.
Article
Google Scholar
Jiang Y, Liu J, Jiang W, Yang Y, Yang S. Current status and prospects of industrial bio-production of n-butanol in China. Biotechnol Adv. 2015;33:1493–501.
Article
CAS
Google Scholar
Becerra M, Cerdán ME, González-Siso MI. Biobutanol from cheese whey. Microb Cell Fact. 2015;14:27.
Article
Google Scholar
Wang XF, Zhang ZT, Wang Y, Wang YF. Improvement of acetone–butanol–ethanol (ABE) production from switchgrass pretreated with a radio frequency-assisted heating process. Fuel. 2016;182:166–73.
Article
CAS
Google Scholar
Ezeji TC, Qureshi N, Blaschek HP. Bioproduction of butanol from biomass: from genes to bioreactors. Curr Opin Biotechnol. 2007;18:220–7.
Article
CAS
Google Scholar
Qureshi N, Liu S, Hughes S, Palmquist D, Dien B, Saha B. Cellulosic butanol (ABE) biofuel production from sweet sorghum bagasse (SSB): impact of hot water pretreatment and solid loadings on fermentation employing Clostridium beijerinckii P260. Bioenergy Res. 2016;9:1167–79.
Article
CAS
Google Scholar
Huang HB, Singh V, Qureshi N. Butanol production from food waste: a novel process for producing sustainable energy and reducing environmental pollution. Biotechnol Biofuels. 2015;8:12.
Article
Google Scholar
Gallazzi A, Branska B, Marinelli F, Patakova P. Continuous production of n-butanol by Clostridium pasteurianum DSM 525 using suspended and surface-immobilized cells. J Biotechnol. 2015;216:29–35.
Article
CAS
Google Scholar
Qureshi N, Lai LL, Blaschek HP. Scale-up of a high productivity continuous biofilm reactor to produce butanol by adsorbed cells of Clostridium beijerinckii. Food Bioprod Process. 2004;82:164–73.
Article
CAS
Google Scholar
Li HG, Ma XX, Zhang QH, Luo W, Wu YQ, Li XH. Enhanced butanol production by solvent tolerance Clostridium acetobutylicum SE25 from cassava flour in a fibrous bed bioreactor. Bioresour Technol. 2016;221:412–8.
Article
CAS
Google Scholar
Wen Z, Wu M, Lin Y, Yang L, Lin J, Cen P. Artificial symbiosis for acetone–butanol–ethanol (ABE) fermentation from alkali extracted deshelled corn cobs by co-culture of Clostridium beijerinckii and Clostridium cellulovorans. Microb Cell Fact. 2014;13:92.
Article
Google Scholar
Wu PF, Wang GY, Wang GH, Borresen BT, Liu HJ, Zhang JN. Butanol production under microaerobic conditions with a symbiotic system of Clostridium acetobutylicum and Bacillus cereus. Microb Cell Fact. 2016;15:11.
Article
Google Scholar
Yen HW, Wang YC. The enhancement of butanol production by in situ butanol removal using biodiesel extraction in the fermentation of ABE (acetone–butanol–ethanol). Bioresour Technol. 2013;145:224–8.
Article
CAS
Google Scholar
Wang YR, Chiang YS, Chuang PJ, Chao YP, Li SY. Direct in situ butanol recovery inside the packed bed during continuous acetone–butanol–ethanol (ABE) fermentation. Appl Microbiol Biotechnol. 2016;100:7449–56.
Article
CAS
Google Scholar
Mariano AP, Qureshi N, Maciel R, Ezeji TC. Bioproduction of butanol in bioreactors: new insights from simultaneous in situ butanol recovery to eliminate product toxicity. Biotechnol Bioeng. 2011;108:1757–65.
Article
CAS
Google Scholar
Liu XB, Gu QY, Liao CL, Yu XB. Enhancing butanol tolerance and preventing degeneration in Clostridium acetobutylicum by 1-butanol-glycerol storage during long-term preservation. Biomass Bioenergy. 2014;69:192–7.
Article
CAS
Google Scholar
Liu XB, Gu QY, Yu XB. Repetitive domestication to enhance butanol tolerance and production in Clostridium acetobutylicum through artificial simulation of bio-evolution. Bioresour Technol. 2013;130:638–43.
Article
CAS
Google Scholar
Zingaro KA, Papoutsakis ET. Toward a semisynthetic stress response system to engineer microbial solvent tolerance. Mbio. 2012;3:9.
Article
Google Scholar
Xue C, Zhao J, Chen L, Yang S-T, Bai F. Recent advances and state-of-the-art strategies in strain and process engineering for biobutanol production by Clostridium acetobutylicum. Biotechnol Adv. 2017;35:310–22.
Article
CAS
Google Scholar
Dusséaux S, Croux C, Soucaille P, Meynial-Salles I. Metabolic engineering of Clostridium acetobutylicum ATCC 824 for the high-yield production of a biofuel composed of an isopropanol/butanol/ethanol mixture. Metab Eng. 2013;18:1–8.
Article
Google Scholar
Pyne ME, Bruder M, Moo-Young M, Chung DA, Chou CP. Technical guide for genetic advancement of underdeveloped and intractable Clostridium. Biotechnol Adv. 2014;32:623–41.
Article
CAS
Google Scholar
Lütke-Eversloh T, Bahl H. Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production. Curr Opin Biotechnol. 2011;22:634–47.
Article
Google Scholar
Kuit W, Minton NP, López-Contreras AM, Eggink G. Disruption of the acetate kinase (ack) gene of Clostridium acetobutylicum results in delayed acetate production. Appl Microbiol Biotechnol. 2012;94:729–41.
Article
CAS
Google Scholar
Wang S, Dong S, Wang Y. Enhancement of solvent production by overexpressing key genes of the acetone–butanol–ethanol fermentation pathway in Clostridium saccharoperbutylacetonicum N1-4. Bioresour Technol. 2017;245:426–33.
Article
CAS
Google Scholar
Jang YS, Lee JY, Lee J, Park JH, Im JA, Eom MH, Lee J, Lee SH, Song H, Cho JH, et al. Enhanced butanol production obtained by reinforcing the direct butanol-forming route in Clostridium acetobutylicum. mBio. 2012;3:e00314-12.
Article
Google Scholar
Zhao YS, Hindorff LA, Chuang A, Monroe-Augustus M, Lyristis M, Harrison ML, Rudolph FB, Bennett GN. Expression of a cloned cyclopropane fatty acid synthase gene reduces solvent formation in Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol. 2003;69:2831–41.
Article
CAS
Google Scholar
Mann MS, Dragovic Z, Schirrmacher G, Lütke-Eversloh T. Over-expression of stress protein-encoding genes helps Clostridium acetobutylicum to rapidly adapt to butanol stress. Biotechnol Lett. 2012;34:1643–9.
Article
CAS
Google Scholar
Rühl J, Schmid A, Blank LM. Selected Pseudomonas putida strains able to grow in the presence of high butanol concentrations. Appl Environ Microbiol. 2009;75:4653–6.
Article
Google Scholar
Bowles LK, Ellefson WL. Effects of butanol on Clostridium acetobutylicum. Appl Environ Microbiol. 1985;50:1165–70.
CAS
Google Scholar
Peabody GL, Kao KC. Recent progress in biobutanol tolerance in microbial systems with an emphasis on Clostridium. FEMS Microbiol Lett. 2016;363:fnw017.
Article
Google Scholar
Liu Z, Qiao K, Tian L, Zhang Q, Liu ZY, Li FL. Spontaneous large-scale autolysis in Clostridium acetobutylicum contributes to generation of more spores. Front Microbiol. 2015;6:950.
Google Scholar
Kolek J, Branska B, Drahokoupil M, Patakova P, Melzoch K. Evaluation of viability, metabolic activity and spore quantity in clostridial cultures during ABE fermentation. FEMS Microbiol Lett. 2016;363:fnw031.
Article
Google Scholar
Linhová M, Branská B, Patáková P, Lipovský J, Fribert P, Rychtera M, Melzoch K. Rapid flow cytometric method for viability determination of solventogenic clostridia. Folia Microbiol. 2012;57:307–11.
Article
Google Scholar
Tracy BP, Gaida SM, Papoutsakis ET. Development and application of flow-cytometric techniques for analyzing and sorting endospore-forming Clostridia. Appl Environ Microbiol. 2008;74:7497–506.
Article
CAS
Google Scholar
Jones SW, Paredes CJ, Tracy B, Cheng N, Sillers R, Senger RS, Papoutsakis ET. The transcriptional program underlying the physiology of clostridial sporulation. Genome Biol. 2008;9:R114.
Article
Google Scholar
Linhová M, Patáková P, Lipovský J, Fribert P, Paulová L, Rychtera M, Melzoch K. Development of flow cytometry technique for detection of thinning of peptidoglycan layer as a result of solvent production by Clostridium pasteurianum. Folia Microbiol. 2010;55:340–4.
Article
Google Scholar
Díaz M, Herrero M, García LA, Quirós C. Application of flow cytometry to industrial microbial bioprocesses. Biochem Eng J. 2010;48:385–407.
Article
Google Scholar
Shapiro HM. Parameters and probes. In: Practical flow cytometry. New York: Wiley; 2005. p. 273–410. https://doi.org/10.1002/0471722731.ch7.
Want A, Hancocks H, Thomas CR, Stocks SM, Nebe-von-Caron G, Hewitt CJ. Multi-parameter flow cytometry and cell sorting reveal extensive physiological heterogeneity in Bacillus cereus batch cultures. Biotechnol Lett. 2011;33:1395–405.
Article
CAS
Google Scholar
Shi L, Gunther S, Hubschmann T, Wick LY, Harms H, Muller S. Limits of propidium iodide as a cell viability indicator for environmental bacteria. Cytometry Part A. 2007;71A:592–8.
Article
Google Scholar
Kolek J, Diallo M, Vasylkivska M, Branska B, Sedlar K, López-Contreras AM, Patakova P. Comparison of expression of key sporulation, solventogenic and acetogenic genes in C. beijerinckii NRRL B-598 and its mutant strain overexpressing spo0A. Appl Microbiol Biotechnol. 2017;101:8279–91.
Article
CAS
Google Scholar
Liao ZP, Zhang YN, Luo S, Suo YK, Zhang SZ, Wang JF. Improving cellular robustness and butanol titers of Clostridium acetobutylicum ATCC824 by introducing heat shock proteins from an extremophilic bacterium. J Biotechnol. 2017;252:1–10.
Article
CAS
Google Scholar
Jones AJ, Venkataramanan KP, Papoutsakis T. Overexpression of two stress-responsive, small, non-coding RNAs, 6S and tmRNA, imparts butanol tolerance in Clostridium acetobutylicum. FEMS Microbiol Lett. 2016;363:6.
Article
Google Scholar
Tomas CA, Welker NE, Papoutsakis ET. Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell’s transcriptional program. Appl Environ Microbiol. 2003;69:4951–65.
Article
CAS
Google Scholar
Takano S, Pawlowska BJ, Gudelj I, Yomo T, Tsuru S. Density-dependent recycling promotes the long-term survival of bacterial populations during periods of starvation. mBio. 2017;8:e02336-02316.
Article
Google Scholar
Allcock ER, Reid SJ, Jones DT, Woods DR. Autolytic activity and an autolysis deficient mutant of Clostridium acetobutylicum. Appl Environ Microbiol. 1981;42:929–35.
CAS
Google Scholar
Vanderwesthuizen A, Jones DT, Woods DR. Autolytic activity and butanol tolerance of Clostridium acetobutylicum. Appl Environ Microbiol. 1982;44:1277–81.
CAS
Google Scholar
Sandoval NR, Venkataramanan KP, Groth TS, Papoutsakis ET. Whole-genome sequence of an evolved Clostridium pasteurianum strain reveals Spo0A deficiency responsible for increased butanol production and superior growth. Biotechnol Biofuels. 2015;8:227.
Article
Google Scholar
Liu H, Huang D, Wen J. Integrated intracellular metabolic profiling and pathway analysis approaches reveal complex metabolic regulation by Clostridium acetobutylicum. Microb Cell Fact. 2016;15:36.
Article
Google Scholar
Zhang Y, Jiao SY, Lv J, Du RJ, Yan XN, Wan CX, Zhang RJ, Han B. Sigma factor regulated cellular response in a non-solvent producing Clostridium beijerinckii degenerated strain: a comparative transcriptome analysis. Front Microbiol. 2017;8:12.
Google Scholar
Sedlar K, Kolek J, Provaznik I, Patakova P. Reclassification of non-type strain Clostridium pasteurianum NRRL B-598 as Clostridium beijerinckii NRRL B-598. J Biotechnol. 2017;244:1–3.
Article
CAS
Google Scholar
Müller S, Nebe-von-Caron G. Functional single-cell analyses: flow cytometry and cell sorting of microbial populations and communities. FEMS Microbiol Rev. 2010;34:554–87.
Article
Google Scholar
Tracy BP, Gaida SM, Papoutsakis ET. Flow cytometry for bacteria: enabling metabolic engineering, synthetic biology and the elucidation of complex phenotypes. Curr Opin Biotechnol. 2010;21:85–99.
Article
CAS
Google Scholar
Müller S, Davey H. Recent advances in the analysis of individual microbial cells. Cytometry Part A. 2009;75A:83–5.
Article
Google Scholar
González-Peñas H, Lu-Chau TA, Moreira MT, Lema JM. Assessment of morphological changes of Clostridium acetobutylicum by flow cytometry during acetone/butanol/ethanol extractive fermentation. Biotechnol Lett. 2015;37:577–84.
Article
Google Scholar
Patakova P, Linhova M, Vykydalova P, Branska B, Rychtera M, Melzoch K. Use of fluorescent staining and flow cytometry for monitoring physiological changes in solventogenic clostridia. Anaerobe. 2014;29:113–7.
Article
CAS
Google Scholar
Paulová L, Hyka P, Branská B, Melzoch K, Kovar K. Use of a mixture of glucose and methanol as substrates for the production of recombinant trypsinogen in continuous cultures with Pichia pastoris Mut+. J Biotechnol. 2012;157:180–8.
Article
Google Scholar
Sekavova B, Melzoch K, Paulova L, Rychtera M. Application of flow cytometry to Saccharomyces cerevisiae population analysis. Chimia. 2005;59:745–8.
Article
CAS
Google Scholar
Hewitt CJ, Nebe-Von-Caron G. An industrial application of multiparameter flow cytometry: assessment of cell physiological state and its application to the study of microbial fermentations. Cytometry. 2001;44:179–87.
Article
CAS
Google Scholar
Millat T, Janssen H, Thorn GJ, King JR, Bahl H, Fischer RJ, Wolkenhauer O. A shift in the dominant phenotype governs the pH-induced metabolic switch of Clostridium acetobutylicum in phosphate-limited continuous cultures. Appl Microbiol Biotechnol. 2013;97:6451–66.
Article
CAS
Google Scholar
Nicolaou SA, Gaida SM, Papoutsakis ET. A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: from biofuels and chemicals, to biocatalysis and bioremediation. Metab Eng. 2010;12:307–31.
Article
CAS
Google Scholar
Mukhopadhyay A. Tolerance engineering in bacteria for the production of advanced biofuels and chemicals. Trends Microbiol. 2015;23:498–508.
Article
CAS
Google Scholar
Wang FQ, Kashket S, Kashket ER. Maintenance of Delta pH by a butanol-tolerant mutant of Clostridium beijerinckii. Microbiology. 2005;151:607–13.
Article
CAS
Google Scholar
Branduardi P, Porro D. n-butanol: challenges and solutions for shifting natural metabolic pathways into a viable microbial production. FEMS Microbiol Lett. 2016;363:7.
Article
Google Scholar
Grimmler C, Janssen H, Krausse D, Fischer RJ, Bahl H, Durre P, Liebl W, Ehrenreich A. Genome-wide gene expression analysis of the switch between acidogenesis and solventogenesis in continuous cultures of Clostridium acetobutylicum. J Mol Microbiol Biotechnol. 2011;20:1–15.
Article
CAS
Google Scholar
Harris LM, Welker NE, Papoutsakis ET. Northern, morphological, and fermentation analysis of spo0A inactivation and overexpression in Clostridium acetobutylicum ATCC 824. J Bacteriol. 2002;184:3586–97.
Article
CAS
Google Scholar
Xue Q, Yang Y, Chen J, Chen L, Yang S, Jiang W, Gu Y. Roles of three AbrBs in regulating two-phase Clostridium acetobutylicum fermentation. Appl Microbiol Biotechnol. 2016;100:9081–9.
Article
CAS
Google Scholar
Steiner E, Scott J, Minton NP, Winzer K. An agr quorum sensing system that regulates granulose formation and sporulation in Clostridium acetobutylicum. Appl Environ Microbiol. 2012;78:1113–22.
Article
CAS
Google Scholar
Jabbari S, Steiner E, Heap JT, Winzer K, Minton NP, King JR. The putative influence of the agr operon upon survival mechanisms used by Clostridium acetobutylicum. Math Biosci. 2013;243:223–39.
Article
CAS
Google Scholar
Zingaro KA, Nicolaou SA, Papoutsakis ET. Dissecting the assays to assess microbial tolerance to toxic chemicals in bioprocessing. Trends Biotechnol. 2013;31:643–53.
Article
CAS
Google Scholar
Wang YF, Tian J, Ji ZH, Song M-Y, Li H. Intracellular metabolic changes of Clostridium acetobutylicum and promotion to butanol tolerance during biobutanol fermentation. Int J Biochem Cell Biol. 2016;78:297–306.
Article
CAS
Google Scholar
Kanchanatawee S, Maddox IS. Effect of biomass concentration on the specific solvent productivity of Clostridium acetobutylicum in chemostat culture. J Ind Microbiol. 1991;7:151–4.
Article
CAS
Google Scholar
Qureshi N, Paterson AHJ, Maddox IS. Model for continuous production of solvents from whey permeate in a packed bed reactor using cells of Clostridium acetobutylicum immobilized by adsorption onto bonechar. Appl Microbiol Biotechnol. 1988;29:323–8.
Article
CAS
Google Scholar
Jain MK, Beacom D, Datta R. Mutant strain of C. acetobutylicum and process for making butanol. Google Patents, United States Patent US5192673A; 1993.
Sedlar K, Kolek J, Skutkova H, Branska B, Provaznik I, Patakova P. Complete genome sequence of Clostridium pasteurianum NRRL B-598, a non-type strain producing butanol. J Biotechnol. 2015;214:113–4.
Article
CAS
Google Scholar