Borodina I, Nielsen J. Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals. Biotechnol J. 2014;9:609–20.
Article
CAS
PubMed
Google Scholar
Hong K-K, Nielsen J. Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell Mol Life Sci. 2012;69:2671–90.
Article
CAS
PubMed
Google Scholar
Choi S, Song CW, Shin JH, Lee SY. Biorefineries for the production of top building block chemicals and their derivatives. Metab Eng. 2015;28:223–39.
Article
CAS
PubMed
Google Scholar
Sànchez Nogué V, Karhumaa K. Xylose fermentation as a challenge for commercialization of lignocellulosic fuels and chemicals. Biotechnol Lett. 2015;37:761–72.
Article
CAS
PubMed
Google Scholar
Ha S-J, Galazka JM, Kim SR, Choi J-H, Yang X, Seo J-H, Glass NL, Cate JHD, Jin Y-S. Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc Natl Acad Sci USA. 2011;108:504–9.
Article
PubMed
Google Scholar
Du J, Yuan Y, Si T, Lian J, Zhao H. Customized optimization of metabolic pathways by combinatorial transcriptional engineering. Nucleic Acids Res. 2012;40:e142.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wei N, Oh EJ, Million G, Cate JHD, Jin Y-S. Simultaneous utilization of cellobiose, xylose, and acetic acid from lignocellulosic biomass for biofuel production by an engineered yeast platform. ACS Synth Biol. 2015;4:707–13.
Article
CAS
PubMed
Google Scholar
Liang M, Damiani A, He QP, Wang J. Elucidating xylose metabolism of Scheffersomyces stipitis for lignocellulosic ethanol production. ACS Sustain Chem Eng. 2014;2:38–48.
Article
CAS
Google Scholar
Kim SR, Skerker JM, Kang W, Lesmana A, Wei N, Arkin AP, Jin Y-S. Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae. PLoS ONE. 2013;8:e57048.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oh EJ, Skerker JM, Kim SR, Wei N, Turner TL, Maurer MJ, Arkin AP, Jin Y-S. Gene amplification on demand accelerates cellobiose utilization in engineered Saccharomyces cerevisiae. Appl Environ Microbiol. 2016;82:3631–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Braaksma M, Bijlsma S, Coulier L, Punt PJ, van der Werf MJ. Metabolomics as a tool for target identification in strain improvement: the influence of phenotype definition. Microbiology. 2011;157:147–59.
Article
CAS
PubMed
Google Scholar
Vemuri GN, Aristidou AA. Metabolic engineering in the-omics era: elucidating and modulating regulatory networks. Microbiol Mol Biol Rev. 2005;69:197–216.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chaudhary AK, Dhakal D, Sohng JK. An insight into the “-omics” based engineering of Streptomycetes for secondary metabolite overproduction. Biomed Res Int. 2013;2013:968518.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim SR, Xu H, Lesmana A, Kuzmanovic U, Au M, Florencia C, Oh EJ, Zhang G, Kim KH, Jin Y-S. Deletion of PHO13, encoding haloacid dehalogenase type IIA phosphatase, results in upregulation of the pentose phosphate pathway in Saccharomyces cerevisiae. Appl Environ Microbiol. 2015;81:1601–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu H, Kim S, Sorek H, Lee Y, Jeong D, Kim J, Oh EJ, Yun EJ, Wemmer DE, Kim KH, Kim SR, Jin Y-S. PHO13 deletion-induced transcriptional activation prevents sedoheptulose accumulation during xylose metabolism in engineered Saccharomyces cerevisiae. Metab Eng. 2016;34:88–96.
Article
CAS
PubMed
Google Scholar
Kim S, Kim J, Song JH, Jung YH, Choi I-S, Choi W, Park Y-C, Seo J-H, Kim KH. Elucidation of ethanol tolerance mechanisms in Saccharomyces cerevisiae by global metabolite profiling. Biotechnol J. 2016;11:1221–9.
Article
CAS
PubMed
Google Scholar
Martien JI, Amador-Noguez D. Recent applications of metabolomics to advance microbial biofuel production. Curr Opin Biotechnol. 2017;43:118–26.
Article
CAS
PubMed
Google Scholar
Feng X, Zhao H. Investigating xylose metabolism in recombinant Saccharomyces cerevisiae via 13C metabolic flux analysis. Microb Cell Fact. 2013;12:114.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang X, Bai X, Chen D-F, Chen F-Z, Li B-Z, Yuan Y-J. Increasing proline and myo-inositol improves tolerance of Saccharomyces cerevisiae to the mixture of multiple lignocellulose-derived inhibitors. Biotechnol Biofuels. 2015;8:142.
Article
CAS
PubMed
PubMed Central
Google Scholar
Teoh ST, Putri S, Mukai Y, Bamba T, Fukusaki E. A metabolomics-based strategy for identification of gene targets for phenotype improvement and its application to 1-butanol tolerance in Saccharomyces cerevisiae. Biotechnol Biofuels. 2015;8:144.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bornscheuer UT, Kazlauskas RJ. Catalytic promiscuity in biocatalysis: using old enzymes to form new bonds and follow new pathways. Angew Chem Int Ed. 2004;43:6032–40.
Article
CAS
Google Scholar
Hult K, Berglund P. Enzyme promiscuity: mechanism and applications. Trends Biotechnol. 2007;25:231–8.
Article
CAS
PubMed
Google Scholar
Khersonsky O, Roodveldt C, Tawfik DS. Enzyme promiscuity: evolutionary and mechanistic aspects. Curr Opin Chem Biol. 2006;10:498–508.
Article
CAS
PubMed
Google Scholar
Brat D, Boles E, Wiedemann B. Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae. Appl Environ Microbiol. 2009;75:2304–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuyper M, Harhangi HR, Stave AK, Winkler AA, Jetten MSM, de Laat WTAM, den Ridder JJJ, Op den Camp HJM, van Dijken JP, Pronk JT. High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? FEMS Yeast Res. 2003;4:69–78.
Article
CAS
PubMed
Google Scholar
Seiboth B, Gamauf C, Pail M, Hartl L, Kubicek CP. The d-xylose reductase of Hypocrea jecorina is the major aldose reductase in pentose and d-galactose catabolism and necessary for β-galactosidase and cellulase induction by lactose. Mol Microbiol. 2007;66:890–900.
Article
CAS
PubMed
Google Scholar
Kötter P, Amore R, Hollenberg CP, Ciriacy M. Isolation and characterization of the Pichia stipitis xylitol dehydrogenase gene, XYL2, and construction of a xylose-utilizing Saccharomyces cerevisiae transformant. Curr Genet. 1990;18:493–500.
Article
PubMed
Google Scholar
Ha S-J, Wei Q, Kim SR, Galazka JM, Cate JH, Jin Y-S. Cofermentation of cellobiose and galactose by an engineered Saccharomyces cerevisiae strain. Appl Environ Microbiol. 2011;77:5822–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bohlin C, Praestgaard E, Baumann MJ, Borch K, Praestgaard J, Monrad RN, Westh P. A comparative study of hydrolysis and transglycosylation activities of fungal β-glucosidases. Appl Microbiol Biotechnol. 2013;97:159–69.
Article
CAS
PubMed
Google Scholar
Hou J, Suo F, Wang C, Li X, Shen Y, Bao X. Fine-tuning of NADH oxidase decreases byproduct accumulation in respiration deficient xylose metabolic Saccharomyces cerevisiae. BMC Biotechnol. 2014;14:13.
Article
CAS
PubMed
PubMed Central
Google Scholar
van Heerden JH, Wortel MT, Bruggeman FJ, Heijnen JJ, Bollen YJM, Planqué R, Hulshof J, O’Toole TG, Wahl SA, Teusink B. Lost in transition: start-up of glycolysis yields subpopulations of nongrowing cells. Science. 2014;343:1245114.
Article
CAS
PubMed
Google Scholar
Cao J, Barbosa JM, Singh NK, Locy RD. GABA shunt mediates thermotolerance in Saccharomyces cerevisiae by reducing reactive oxygen production. Yeast. 2013;30:129–44.
Article
CAS
PubMed
Google Scholar
Bach B, Meudec E, Lepoutre JP, Rossignol T, Blondin B, Dequin S, Camarasa C. New insights into γ-aminobutyric acid catabolism: evidence for γ-hydroxybutyric acid and polyhydroxybutyrate synthesis in Saccharomyces cerevisiae. Appl Environ Microbiol. 2009;75:4231–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bu’Lock JD. Intermediary metabolism and antibiotic synthesis. Adv Appl Microbiol. 1961;3:293–342.
Article
PubMed
Google Scholar
Calvo AM, Wilson RA, Bok JW, Keller NP. Relationship between secondary metabolism and fungal development. Microbiol Mol Biol Rev. 2002;66:447–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chomvong K, Benjamin DI, Nomura DK, Cate JHD. Cellobiose consumption uncouples extracellular glucose sensing and glucose metabolism in Saccharomyces cerevisiae. mBio. 2017;8:e00855-17.
Article
PubMed
PubMed Central
Google Scholar
Reggiori F, Klionsky DJ. Autophagic processes in yeast: mechanism, machinery and regulation. Genetics. 2013;194:341–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Galluzzi L, Pietrocola F, Levine B, Kroemer G. Metabolic control of autophagy. Cell. 2014;159:1263–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kwak S, Kim SR, Xu H, Zhang G-C, Lane S, Kim H, Jin Y-S. Enhanced isoprenoid production from xylose by engineered Saccharomyces cerevisiae. Biotechnol Bioeng. 2017;114:2581–91.
Article
CAS
PubMed
Google Scholar
Kwak S, Jin Y-S. Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: a review and perspective. Microb Cell Fact. 2017;16:82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim S, Lee DY, Wohlgemuth G, Park HS, Fiehn O, Kim KH. Evaluation and optimization of metabolome sample preparation methods for Saccharomyces cerevisiae. Anal Chem. 2013;85:2169–76.
Article
CAS
PubMed
Google Scholar
Stein SE. An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data. J Am Soc Mass Spectrom. 1999;10:770–81.
Article
CAS
Google Scholar
Styczynski MP, Moxley JF, Tong LV, Walther JL, Jensen KL, Stephanopoulos GN. Systematic identification of conserved metabolites in GC/MS data for metabolomics and biomarker discovery. Anal Chem. 2007;79:966–73.
Article
CAS
PubMed
Google Scholar
Kopka J, Schauer N, Krueger S, Birkemeyer C, Usadel B, Bergmüller E, Dörmann P, Weckwerth W, Gibon Y, Stitt M, Willmitzer L, Fernie AR, Steinhauser D. GMD@CSB.DB: the Golm metabolome database. Bioinformatics. 2005;21:1635–8.
Article
CAS
PubMed
Google Scholar
Howe E, Holton K, Nair S, Schlauch D, Sinha R, Quackenbush J. In: Ochs MF, Casagrande JT, Davuluri RV, editors. Biomedical informatics for cancer research. Boston: Springer; 2010. p. 267–77.
Chapter
Google Scholar
Noda T, Klionsky DJ. The quantitative Pho8∆60 assay of nonspecific autophagy. Methods Enzymol. 2008;451:33–42.
Article
CAS
PubMed
Google Scholar