Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB. Biomass pretreatment: fundamentals toward application. Biotechnol Adv. 2011;29:675–85.
Article
CAS
PubMed
Google Scholar
Zheng Y, Pan Z, Zhang R. Overview of biomass pretreatment for cellulosic ethanol production. Int J Agric Biol Eng. 2009;2:51–68.
CAS
Google Scholar
Alvira P, Tomas-Pejo E, Ballesteros M, Negro MJ. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol. 2010;101:4851–61.
Article
CAS
PubMed
Google Scholar
Shi J, Sharma-Shivappa RR, Chinn M, Howell N. Effect of microbial pretreatment on enzymatic hydrolysis and fermentation of cotton stalks for ethanol production. Biomass Bioenergy. 2009;33:88–96.
Article
CAS
Google Scholar
Tang C-J, Duan C-S, Yu C, Song Y-X, Chai L-Y, Xiao R, Wei Z, Min X-B. Removal of nitrogen from wastewaters by anaerobic ammonium oxidation (ANAMMOX) using granules in upflow reactors. Environ Chem Lett. 2017;15:311–28.
Article
CAS
Google Scholar
Liu J, Wang ML, Tonnis B, Habteselassie M, Liao X, Huang Q. Fungal pretreatment of switchgrass for improved saccharification and simultaneous enzyme production. Bioresour Technol. 2013;135:39–45.
Article
CAS
PubMed
Google Scholar
Wan C, Li Y. Fungal pretreatment of lignocellulosic biomass. Biotechnol Adv. 2012;30:1447–57.
Article
CAS
PubMed
Google Scholar
Kong W, Fu X, Wang L, Alhujaily A, Zhang J, Ma F, Zhang X, Yu H. A novel and efficient fungal delignification strategy based on versatile peroxidase for lignocellulose bioconversion. Biotechnol Biofuels. 2017;10:218.
Article
PubMed
PubMed Central
Google Scholar
Ma F, Huang X, Ke M, Shi Q, Chen Q, Shi C, Zhang J, Zhang X, Yu H. Role of selective fungal delignification in overcoming the saccharification recalcitrance of bamboo culms. ACS Sustain Chem Eng. 2017;5:8884–94.
Article
CAS
Google Scholar
Bak JS, Ko JK, Choi IG, Park YC, Seo JH, Kim KH. Fungal pretreatment of lignocellulose by Phanerochaete chrysosporium to produce ethanol from rice straw. Biotechnol Bioeng. 2009;104:471–82.
Article
CAS
PubMed
Google Scholar
Martínez Ángel T, Speranza Mariela, Ruiz-Dueñas Francisco J, Ferreira Patricia, Camarero Susana, Guillén Francisco, Martínez María J, Gutiérrez Ana, del Río José C. Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int Microbiol. 2005;8:195–204.
PubMed
Google Scholar
Chandra RP, Chu Q, Hu J, Zhong N, Lin M, Lee JS, Saddler J. The influence of lignin on steam pretreatment and mechanical pulping of poplar to achieve high sugar recovery and ease of enzymatic hydrolysis. Bioresour Technol. 2016;199:135–41.
Article
CAS
PubMed
Google Scholar
Ma F, Yang N, Xu C, Yu H, Wu J, Zhang X. Combination of biological pretreatment with mild acid pretreatment for enzymatic hydrolysis and ethanol production from water hyacinth. Bioresour Technol. 2010;101:9600–4.
Article
CAS
PubMed
Google Scholar
Sawada Tatsuro, Nakamura Yoshitoshi, Kobayashi Fumihisa, Kuwahara Masaaki, Watanabe Takashi. Effects of fungal pretreatment and steam explosion pretreatment on enzymatic saccharification of plant biomass. Biotechnol Bioeng. 1995;48:719–24.
Article
CAS
PubMed
Google Scholar
Shirkavand E, Baroutian S, Gapes DJ, Young BR. Combination of fungal and physicochemical processes for lignocellulosic biomass pretreatment—a review. Renew Sust Energ Rev. 2016;54:217–34.
Article
CAS
Google Scholar
Yu H, Du W, Zhang J, Ma F, Zhang X, Zhong W. Fungal treatment of cornstalks enhances the delignification and xylan loss during mild alkaline pretreatment and enzymatic digestibility of glucan. Bioresour Technol. 2010;101:6728–34.
Article
CAS
PubMed
Google Scholar
Itoh H, Wada M, Honda Y, Kuwahara M, Watanabe T. Bioorganosolve pretreatments for simultaneous saccharification and fermentation of beech wood by ethanolysis and white rot fungi. J Biotechnol. 2003;103:273–80.
Article
CAS
PubMed
Google Scholar
Baba Y, Tanabe T, Shirai N, Watanabe T, Honda Y, Watanabe T. Pretreatment of Japanese cedar wood by white rot fungi and ethanolysis for bioethanol production. Biomass Bioenergy. 2011;35:320–4.
Article
CAS
Google Scholar
Hatakka AI. Pretreatment of wheat straw by white-rot fungi for enzymic saccharification of cellulose. Eur J Appl Microbiol Biotechnol. 1983;18:350–7.
Article
CAS
Google Scholar
Kadimaliev DA, Revin VV, Atykyan NA, Samuilov VD. Effect of wood modification on lignin consumption and synthesis of lignolytic enzymes by the fungus Panus (Lentinus) tigrinus. Appl Biochem Microbiol. 2003;39:555–60.
Article
CAS
Google Scholar
Wan C, Li Y. Effect of hot water extraction and liquid hot water pretreatment on the fungal degradation of biomass feedstocks. Bioresour Technol. 2011;102:9788–93.
Article
CAS
PubMed
Google Scholar
Yu J, Zhang J, He J, Liu Z, Yu Z. Combinations of mild physical or chemical pretreatment with biological pretreatment for enzymatic hydrolysis of rice hull. Bioresour Technol. 2009;100:903–8.
Article
CAS
PubMed
Google Scholar
Li G, Chen H. Synergistic mechanism of steam explosion combined with fungal treatment by Phellinus baumii for the pretreatment of corn stalk. Biomass Bioenergy. 2014;67:1–7.
Article
CAS
Google Scholar
Keller Fred A, Hamilton Jenny E, Nyguyen Quang A. Microbial pretreatment of biomass: potential for reducing severity of thermochemical biomass pretreatment. Appl Biochem Biotechnol. 2003;27:105–8.
Google Scholar
Silveira MH, Morais AR, da Costa Lopes AM, Olekszyszen DN, Bogel-Lukasik R, Andreaus J, Pereira Ramos L. Current pretreatment technologies for the development of cellulosic ethanol and biorefineries. Chemsuschem. 2015;8:3366–90.
Article
CAS
PubMed
Google Scholar
Gao Ziqing, Mori Toshio, Kondo Ryuichiro. The pretreatment of corn stover with Gloeophyllum trabeum KU-41 for enzymatic hydrolysis. Biotechnol Biofuels. 2012;5:28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shi Y, Chai L, Tang C, Yang Z, Zhang H, Chen R, Chen Y, Zheng Y. Characterization and genomic analysis of kraft lignin biodegradation by the beta-proteobacterium Cupriavidus basilensis B-8. Biotechnol Biofuels. 2013;6:1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chai LY, Chen YH, Tang CJ, Yang ZH, Zheng Y, Shi Y. Depolymerization and decolorization of kraft lignin by bacterium Comamonas sp. B-9. Appl Microbiol Biotechnol. 2014;98:1907–12.
Article
CAS
PubMed
Google Scholar
Chen Y, Chai L, Tang C, Yang Z, Zheng Y, Shi Y, Zhang H. Kraft lignin biodegradation by Novosphingobium sp. B-7 and analysis of the degradation process. Bioresour Technol. 2012;123:682–5.
Article
CAS
PubMed
Google Scholar
Masai E, Katayama Y, Fukuda M. Genetic and biochemical investigations on bacterial catabolic pathways for lignin-derived aromatic compounds. Biosci Biotechnol Biochem. 2007;71:1–15.
Article
CAS
PubMed
Google Scholar
Ramachandra Muralidhara, Crawford Don L, Hertel Greg. Characterization of an extracellular lignin peroxidase of the lignocellulolytic actinomycete Streptomyces viridosporus. Appl Environ Microbiol. 1988;54:3057–63.
CAS
PubMed
PubMed Central
Google Scholar
Margaret E, Brown TB, Chang MCY. Identification and characterization of a multifunctional dye peroxidase from a lignin-reactive bacterium. ACS Chem Biol. 2012;7:2074–81.
Article
CAS
Google Scholar
Majumdar S, Lukk T, Solbiati JO, Bauer S, Nair SK, Cronan JE, Gerlt JA. Roles of small laccaes from Streptomyces in lignin degradation. Biochem. 2014;53:4047–58.
Article
CAS
Google Scholar
Sharma P, Goel R, Capalash N. Bacterial laccases. World J Microbiol Biotechnol. 2006;23:823–32.
Article
CAS
Google Scholar
Dick GJ, Torpey JW, Beveridge TJ, Tebo BM. Direct identification of a bacterial manganese(II) oxidase, the multicopper oxidase MnxG, from spores of several different marine Bacillus species. Appl Environ Microbiol. 2008;74:1527–34.
Article
CAS
PubMed
Google Scholar
Shi Y, Chai L, Tang C, Yang Z, Zheng Y, Chen Y, Jing Q. Biochemical investigation of kraft lignin degradation by Pandoraea sp. B-6 isolated from bamboo slips. Bioprocess Biosyst Eng. 2013;36:1957–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ihssen J, Reiss R, Luchsinger R, Thony-Meyer L, Richter M. Biochemical properties and yields of diverse bacterial laccase-like multicopper oxidases expressed in Escherichia coli. Sci Rep. 2015;5:10465.
Article
CAS
PubMed
PubMed Central
Google Scholar
Camarero S, Ibarra D, Martinez MJ, Martinez AT. Lignin-derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes. Appl Environ Microbiol. 2005;71:1775–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hofrichter M. Review: lignin conversion by manganese peroxidase (MnP). Enzyme Microb Technol. 2002;30:454–66.
Article
CAS
Google Scholar
Yan X, Wang Z, Zhang K, Si M, Liu M, Chai L, Liu X, Shi Y. Bacteria-enhanced dilute acid pretreatment of lignocellulosic biomass. Bioresour Technol. 2017;245:419–25.
Article
CAS
PubMed
Google Scholar
Shen Z, Zhang K, Si M, Liu M, Zhuo S, Liu D, Ren L, Yan X, Shi Y. Synergy of lignocelluloses pretreatment by sodium carbonate and bacterium to enhance enzymatic hydrolysis of rice straw. Bioresour Technol. 2017;249:154–60.
Article
CAS
PubMed
Google Scholar
Si M, Yan X, Liu M, Shi M, Wang Z, Wang S, Zhang J, Gao C, Chai L, Shi Y. In-situ lignin bioconversion promotes complete carbohydrate conversion of rice straw by Cupriavidus basilensis B-8. ACS Sustain Chem Eng. 2018. https://doi.org/10.1021/acssuschemeng.8b01336.
Article
Google Scholar
Nguyen TY, Cai CM, Kumar R, Wyman CE. Co-solvent pretreatment reduces costly enzyme requirements for high sugar and ethanol yields from lignocellulosic biomass. ChemSuschem. 2015;8:1716–25.
Article
CAS
PubMed
Google Scholar
Nguyen TY, Cai CM, Osman O, Kumarad R, Wyman CE. CELF pretreatment of corn stover boosts ethanol titers and yields from high solids SSF with low enzyme loadings. Green Chem. 2016;18:1581–9.
Article
CAS
Google Scholar
Liu D, Yan X, Zhuo S, Si M, Liu M, Wang S, Ren L, Chai L, Shi Y. Pandoraea sp. B-6 assists the deep eutectic solvent pretreatment of rice straw via promoting lignin depolymerization. Bioresour Technol. 2018;257:62–8.
Article
CAS
PubMed
Google Scholar
Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 1959;31:426–8.
Article
CAS
Google Scholar
Teramoto Y, Tanaka N, Lee SH, Endo T. Pretreatment of eucalyptus wood chips for enzymatic saccharification using combined sulfuric acid-free ethanol cooking and ball milling. Biotechnol Bioeng. 2008;99:75–85.
Article
CAS
PubMed
Google Scholar
Zhang K, Si M, Liu D, Zhuo S, Liu M, Liu H, Yan X, Shi Y. A bionic system with Fenton reaction and bacteria as a model for bioprocessing lignocellulosic biomass. Biotechnol Biofuels. 2018;11:31.
Article
PubMed
PubMed Central
Google Scholar
Min X, Li Y, Ke Y, Shi M, Chai L, Xue K. Fe–FeS2 adsorbent prepared with iron powder and pyrite by facile ball milling and its application for arsenic removal. Water Sci Technol. 2017;77:192–200.
Article
CAS
Google Scholar
Liu H, Xiang K, Yang B, Xie X, Wang D, Zhang C, Liu Z, Yang S, Liu C, Zou J, Chai L. The electrochemical selective reduction of NO using CoSe2@CNTs hybrid. Environ Sci Pollut Res Int. 2017;24:14249–58.
Article
CAS
PubMed
Google Scholar
Hu L, Luo Y, Cai B, Li J, Tong D, Hu C. The degradation of the lignin in Phyllostachys heterocycla cv. pubescens in an ethanol solvothermal system. Green Chem. 2014;16:3107–16.
Article
CAS
Google Scholar
Yan X, Chai L, Li Q, Ye L, Yang B, Wang Q. Abiological granular sludge formation benefit for heavy metal wastewater treatment using sulfide precipitation. Clean Soil Air Water. 2017;45:1500730.
Article
CAS
Google Scholar
Wen JL, Sun SL, Yuan TQ, Sun RC. Structural elucidation of whole lignin from Eucalyptus based on preswelling and enzymatic hydrolysis. Green Chem. 2015;17:1589–96.
Article
CAS
Google Scholar
Chai L, Liu M, Yan X, Cheng X, Zhang T, Si M, Min X, Shi Y. Elucidating the interactive impacts of substrate-related properties on lignocellulosic biomass digestibility: a sequential analysis. ACS Sustain Chem Eng. 2018. https://doi.org/10.1021/acssuschemeng.8b00592.
Article
Google Scholar
Li C, Cheng G, Balan V, Kent MS, Ong M, Chundawat SPS, Sousa LD, Melnichenko YB, Dale BE, Simmons BA, Singh S. Influence of physico-chemical changes on enzymatic digestibility of ionic liquid and AFEX pretreated corn stover. Bioresour Technol. 2011;102:6928–36.
Article
CAS
PubMed
Google Scholar
Liang Y, Min X, Chai L, Wang M, Liyang W, Pan Q, Okido M. Stabilization of arsenic sludge with mechanochemically modified zero valent iron. Chemosphere. 2017;168:1142–51.
Article
CAS
PubMed
Google Scholar
Chundawat SP, Venkatesh B, Dale BE. Effect of particle size based separation of milled corn stover on AFEX pretreatment and enzymatic digestibility. Biotechnol Bioeng. 2007;96:219–31.
Article
CAS
PubMed
Google Scholar
Pu Y, Hu F, Huang F, Davison BH, Ragauskas AJ. Assessing the molecular structure basis for biomass recalcitrance during dilute acid and hydrothermal pretreatments. Biotechnol Biofuels. 2013;6:15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mou H, Wu S. Comparison of organosolv and hydrotropic pretreatments of eucalyptus for enhancing enzymatic saccharification. Bioresour Technol. 2016;220:637–40.
Article
CAS
PubMed
Google Scholar
Lange H, Schiffels P, Sette M, Sevastyanova O, Crestini C. Fractional precipitation of wheat straw organosolv lignin: macroscopic properties and structural insights. ACS Sustain Chem Eng. 2016;4:5136–51.
Article
CAS
Google Scholar
Hofrichter M, Ullrich R, Pecyna MJ, Liers C, Lundell T. New and classic families of secreted fungal heme peroxidases. Appl Microbiol Biotechnol. 2010;87:871–97.
Article
CAS
PubMed
Google Scholar
Lundell TK, Makela MR, Hilden K. Lignin-modifying enzymes in filamentous basidiomycetes—ecological, functional and phylogenetic review. J Basic Microbiol. 2010;50:5–20.
Article
CAS
PubMed
Google Scholar
Brown ME, Chang MC. Exploring bacterial lignin degradation. Curr Opin Chem Biol. 2014;19:1–7.
Article
CAS
PubMed
Google Scholar
Lange H, Decina S, Crestini C. Oxidative upgrade of lignin—recent routes reviewed. Eur Polym J. 2013;49:1151–73.
Article
CAS
Google Scholar
Brown ME, Walker MC, Nakashige TG, Iavarone AT, Chang MC. Discovery and characterization of heme enzymes from unsequenced bacteria: application to microbial lignin degradation. J Am Chem Soc. 2011;133:18006–9.
Article
CAS
PubMed
Google Scholar
Sindhu R, Binod P, Pandey A. Biological pretreatment of lignocellulosic biomass–An overview. Bioresour Technol. 2016;199:76–82.
Article
CAS
PubMed
Google Scholar
Cai CM, Zhang T, Kumar R, Wyman CE. THF co-solvent enhances hydrocarbon fuel precursor yields from lignocellulosic biomass. Green Chem. 2013;15:3140.
Article
CAS
Google Scholar
Mostofian B, Cai CM, Smith MD, Petridis L, Cheng X, Wyman CE, Smith JC. Local phase separation of co-solvents enhances pretreatment of biomass for bioenergy applications. J Am Chem Soc. 2016;138:10869–78.
Article
CAS
PubMed
Google Scholar
Nousiainen P, Kontro J, Manner H, Hatakka A, Sipila J. Phenolic mediators enhance the manganese peroxidase catalyzed oxidation of recalcitrant lignin model compounds and synthetic lignin. Fungal Genet Biol. 2014;72:137–49.
Article
CAS
PubMed
Google Scholar
Pihlajaniemi V, Sipponen MH, Liimatainen H, Sirviö JA, Nyyssölä A, Laakso S. Weighing the factors behind enzymatic hydrolyzability of pretreated lignocellulose. Green Chem. 2016;18:1295–305.
Article
CAS
Google Scholar
Li Y, Zhang R, He Y, Liu X, Chen C, Liu G. Thermophilic solid-state anaerobic digestion of alkaline-pretreated corn stover. Energy Fuels. 2014;28:3759–65.
Article
CAS
Google Scholar
Ghaffar SH, Fan M. Structural analysis for lignin characteristics in biomass straw. Biomass Bioenergy. 2013;57:264–79.
Article
CAS
Google Scholar
Zeng J, Helms GL, Gao X, Chen S. Quantification of wheat straw lignin structure by comprehensive NMR analysis. J Agric Food Chem. 2013;61:10848–57.
Article
CAS
PubMed
Google Scholar
Shen DK, Gu S, Luo KH, Wang SR, Fang MX. The pyrolytic degradation of wood-derived lignin from pulping process. Bioresour Technol. 2010;101:6136–46.
Article
CAS
PubMed
Google Scholar
Braun JL, Holtman KM, Kadla JF. Lignin-based carbon fibers: oxidative thermostabilization of kraft lignin. Carbon. 2005;43:385–94.
Article
CAS
Google Scholar
Zhang Y, Liao J, Fang X, Bai F, Qiao K, Wang L. Renewable high-performance polyurethane bioplastics derived from lignin–poly(ε-caprolactone). ACS Sustain Chem Eng. 2017;5:4276–84.
Article
CAS
Google Scholar