Pettolino FA, Walsh C, Fincher GB, Bacic A. Determining the polysaccharide composition of plant cell walls. Nat Protoc. 2012;7:1590–607.
Article
CAS
PubMed
Google Scholar
Pauly M, Keegstra K. Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J. 2008;54:559–68.
Article
CAS
PubMed
Google Scholar
Nakagame S, Chandra RP, Saddler JN. The effect of isolated lignins, obtained from a range of pretreated lignocellulosic substrates, on enzymatic hydrolysis. Biotechnol Bioeng. 2010;105:871–9.
CAS
PubMed
Google Scholar
Berlin A, Balakshin M, Gilkes N, Kadla J, Maximenko V, Kubo S, et al. Inhibition of cellulase, xylanase and β-glucosidase activities by softwood lignin preparations. J Biotechnol. 2006;125:198–209.
Article
CAS
PubMed
Google Scholar
Chernoglazov VM, Ermolova OV, Klyosovt AA. Adsorption of high-purity endo-l,4-β-glucanases from Trichoderma reesei on components of lignocellulosic materials: cellulose, lignin, and xylan. Enzyme Microb Technol. 1988;10:503–7.
Article
CAS
Google Scholar
Zheng Y, Zhang S, Miao S, Su Z, Wang P. Temperature sensitivity of cellulase adsorption on lignin and its impact on enzymatic hydrolysis of lignocellulosic biomass. J Biotechnol. 2013;166:135–43.
Article
CAS
PubMed
Google Scholar
Maurya DP, Singla A, Negi S. An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3. Biotech. 2015;5:597–609.
Google Scholar
Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol. 2010;101:4851–61.
Article
CAS
PubMed
Google Scholar
Kumar AK, Sharma S. Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour Bioprocess. 2017;4:7.
Article
PubMed
PubMed Central
Google Scholar
Moreno AD, Ibarra D, Alvira P, Tomás-Pejó E, Ballesteros M. A review of biological delignification and detoxification methods for lignocellulosic bioethanol production. Crit Rev Biotechnol. 2015;35:342–54.
Article
CAS
PubMed
Google Scholar
Parawira W, Tekere M. Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review. Crit Rev Biotechnol. 2011;31:20–31.
Article
CAS
PubMed
Google Scholar
Sindhu R, Binod P, Pandey A. Biological pretreatment of lignocellulosic biomass—an overview. Bioresour Technol. 2016;199:76–82.
Article
CAS
PubMed
Google Scholar
Wan C, Li Y. Fungal pretreatment of lignocellulosic biomass. Biotechnol Adv. 2012;30:1447–57.
Article
CAS
PubMed
Google Scholar
Lombard V, Ramulu HG, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42:490–5.
Article
CAS
Google Scholar
Mishra V, Jana AK, Jana MM, Gupta A. Improvement of selective lignin degradation in fungal pretreatment of sweet sorghum bagasse using synergistic CuSO4-syringic acid supplements. J Environ Manage. 2017;193:558–66.
Article
CAS
PubMed
Google Scholar
Mishra V, Jana AK, Jana MM, Gupta A. Fungal pretreatment of sweet sorghum bagasse with supplements: improvement in lignin degradation, selectivity and enzymatic saccharification. 3 Biotech. 2017;7:110.
Article
PubMed
PubMed Central
Google Scholar
Yang Y, Wei F, Zhuo R, Fan F, Liu H, Zhang C, et al. Enhancing the laccase production and laccase gene expression in the white-rot fungus Trametes velutina 5930 with great potential for biotechnological applications by different metal ions and aromatic compounds. PLoS ONE. 2013;8:e79307.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vicentim MP, Ferraz A. Enzyme production and chemical alterations of Eucalyptus grandis wood during biodegradation by Ceriporiopsis subvermispora in cultures supplemented with Mn2+, corn steep liquor and glucose. Enzyme Microb Technol. 2007;40:645–52.
Article
CAS
Google Scholar
Elisashvili V, Kachlishvili E, Khardziani T, Agathos SN. Effect of aromatic compounds on the production of laccase and manganese peroxidase by white-rot basidiomycetes. J Ind Microbiol Biotechnol. 2010;37:1091–6.
Article
CAS
PubMed
Google Scholar
Naresh Kumar M, Ravikumar R, Thenmozhi S, Kirupa Sankar M. Development of natural cellulase inhibitor mediated intensified biological pretreatment technology using Pleurotus florida for maximum recovery of cellulose from paddy straw under solid state condition. Bioresour Technol. 2017;244:353–61.
Article
CAS
PubMed
Google Scholar
Alfaro M, Castanera R, Lavín JL, Grigoriev IV, Oguiza JA, Ramírez L, et al. Comparative and transcriptional analysis of the predicted secretome in the lignocellulose-degrading basidiomycete fungus Pleurotus ostreatus. Environ Microbiol. 2016;18:4710–26.
Article
CAS
PubMed
Google Scholar
Fernández-Fueyo E, Ruiz-Dueñas FJ, Miki Y, Martínez MJ, Hammel KE, Martínez AT. Lignin-degrading peroxidases from genome of selective ligninolytic fungus Ceriporiopsis subvermispora. J Biol Chem. 2012;287:16903–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hori C, Gaskell J, Igarashi K, Samejima M, Hibbett D, Henrissat B, et al. Genomewide analysis of polysaccharides degrading enzymes in 11 white- and brown-rot Polyporales provides insight into mechanisms of wood decay. Mycologia. 2013;105:1412–27.
Article
CAS
PubMed
Google Scholar
Nagy LG, Riley R, Bergmann PJ, Krizsan K, Martin FM, Grigoriev IV, et al. Genetic bases of fungal white rot wood decay predicted by phylogenomic analysis of correlated gene-phenotype evolution. Mol Biol Evol. 2017;34:35–44.
Article
CAS
PubMed
Google Scholar
Nagy LG, Tóth R, Kiss EŐ, Slot J, Gácser A, Kovács GM. Six key traits of fungi: their evolutionary origins and genetic bases. Microbiol Spectr. 2017;5:1–22.
Google Scholar
Riley R, Salamov AA, Brown W, Nagy LG, Floudas D, Held BW, et al. Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. Proc Natl Acad Sci. 2014;111:9923–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuuskeri J, Häkkinen M, Laine P, Smolander OP, Tamene F, Miettinen S, et al. Time-scale dynamics of proteome and transcriptome of the white-rot fungus Phlebia radiata: growth on spruce wood and decay effect on lignocellulose. Biotechnol Biofuels. 2016;9:192.
Article
CAS
PubMed
PubMed Central
Google Scholar
Isroi, Millati R, Syamsiah S, Niklasson C, Cahyanto MN, Lundquist K, et al. Biological pretreatment of lignocelluloses with white-rot fungi and its applications: a review. BioResources. 2011;6:5224–59.
Google Scholar
Xu C, Ma F, Zhang X, Chen S. Biological pretreatment of corn stover by Irpex lacteus for enzymatic hydrolysis. J Agric Food Chem. 2010;58:10893–8.
Article
CAS
PubMed
Google Scholar
Castoldi R, Bracht A, de Morais GR, Baesso ML, Correa RCG, Peralta RA, et al. Biological pretreatment of Eucalyptus grandis sawdust with white-rot fungi: study of degradation patterns and saccharification kinetics. Chem Eng J. 2014;258:240–6.
Article
CAS
Google Scholar
Moraïs S, Morag E, Barak Y, Goldman D, Hadar Y, Lamed R, et al. Deconstruction of lignocellulose into soluble sugars by native and designer cellulosomes. MBio. 2012;3:e00508–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ardon O, Kerem Z, Hadar Y. Enhancement of lignin degradation and laccase activity in Pleurotus ostreatus by cotton stalk extract. Can J Microbiol. 1998;44:676–80.
Article
CAS
Google Scholar
Cianchetta S, Di Maggio B, Burzi PL, Galletti S. Evaluation of selected white-rot fungal isolates for improving the sugar yield from wheat straw. Appl Biochem Biotechnol. 2014;173:609–23.
CAS
PubMed
Google Scholar
López-Abelairas M, Álvarez Pallín M, Salvachúa D, Lú-Chau T, Martínez MJ, Lema JM. Optimisation of the biological pretreatment of wheat straw with white-rot fungi for ethanol production. Bioprocess Biosyst Eng. 2013;36:1251–60.
Article
CAS
PubMed
Google Scholar
Taniguchi M, Suzuki H, Watanabe D, Sakai K, Hoshino K, Tanaka T. Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw. J Biosci Bioeng. 2005;100:637–43.
Article
CAS
PubMed
Google Scholar
Hatakka AI. Pretreatment of wheat straw by white-rot fungi for enzymic saccharification of cellulose. Eur J Appl Microbiol Biotechnol. 1983;18:350–7.
Article
CAS
Google Scholar
Salame TM, Knop D, Levinson D, Mabjeesh SJ, Yarden O, Hadar Y. Release of Pleurotus ostreatus versatile-peroxidase from Mn2+ repression enhances anthropogenic and natural substrate degradation. PLoS ONE. 2012;7:e52446.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dowzer CE, Kelly JM. Analysis of the creA gene, a regulator of carbon catabolite repression in Aspergillus nidulans. Mol Cell Biol. 1991;11:5701–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun J, Glass NL. Identification of the CRE-1 cellulolytic regulon in Neurospora crassa. PLoS ONE. 2011;6:e25654.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nehlin JO, Ronne H. Yeast MIG1 repressor is related to the mammalian early growth response and Wilms’ tumour finger proteins. EMBO J. 1990;9:2891–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ruijter GJ, Vanhanen SA, Gielkens MMC, van de Vondervoort PJI, Visser J. Isolation of Aspergillus niger creA mutants and effects of the mutations on expression of arabinases and l-arabinose catabolic enzymes. Microbiol. 1997;143:2991–8.
Article
CAS
Google Scholar
Ebbole DJ. Carbon catabolite repression of gene expression and conidiation in Neurospora crassa. Fungal Genet Biol. 1998;25:15–21.
Article
CAS
PubMed
Google Scholar
Portnoy T, Margeot A, Linke R, Atanasova L, Fekete E, Sándor E, et al. The CRE1 carbon catabolite repressor of the fungus Trichoderma reesei: a master regulator of carbon assimilation. BMC Genomics. 2011;12:269.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakari-Setälä T, Paloheimo M, Kallio J, Vehmaanperä J, Penttilä M, Saloheimo M. Genetic modification of carbon catabolite repression in Trichoderma reesei for improved protein production. Appl Environ Microbiol. 2009;75:4853–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ziv C, Gorovits R, Yarden O. Carbon source affects PKA-dependent polarity of Neurospora crassa in a CRE-1-dependent and independent manner. Fungal Genet Biol. 2008;45:103–16.
Article
CAS
PubMed
Google Scholar
Lamed R, Kenig R, Setter E, Bayer EA. Major characteristics of the cellulolytic system of Clostridium thermocellum coincide with those of the purified cellulosome. Enzyme Microb Technol. 1985;7:37–41.
Article
CAS
Google Scholar
Himmel ME, Abbas CA, Baker JO, Bayer EA, Bomble YJ, Brunecky R, et al. Undefined cellulase formulations hinder scientific reproducibility. Biotechnol Biofuels. 2017;10:283.
Article
PubMed
PubMed Central
Google Scholar
Feldman D, Kowbel DJ, Glass NL, Yarden O, Hadar Y. Detoxification of 5-hydroxymethylfurfural by the Pleurotus ostreatus lignolytic enzymes aryl alcohol oxidase and dehydrogenase. Biotechnol Biofuels. 2015;8:63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Camarero S, Martinez MJ, Martinez AT. Understanding lignin biodegradation for the improved utilization of plant biomass in modern biorefineries. Biofuels Bioprod Biorefining. 2014;8:615–25.
Article
CAS
Google Scholar
Yu H, Zhang X, Song L, Ke J, Xu C, Du W, et al. Evaluation of white-rot fungi-assisted alkaline/oxidative pretreatment of corn straw undergoing enzymatic hydrolysis by cellulase. J Biosci Bioeng. 2010;110:660–4.
Article
CAS
PubMed
Google Scholar
Rouches E, Herpoël-Gimbert I, Steyer JP, Carrere H. Improvement of anaerobic degradation by white-rot fungi pretreatment of lignocellulosic biomass: a review. Renew Sustain Energy Rev. 2016;59:179–98.
Article
CAS
Google Scholar
Kong W, Fu X, Wang L, Alhujaily A, Zhang J, Ma F, et al. A novel and efficient fungal delignification strategy based on versatile peroxidase for lignocellulose bioconversion. Biotechnol Biofuels. 2017;10:2018.
Article
Google Scholar
Qin X, Su X, Luo H, Ma R, Yao B, Ma F. Deciphering lignocellulose deconstruction by the white rot fungus Irpex lacteus based on genomic and transcriptomic analyses. Biotechnol Biofuels. 2018;11:58.
Article
PubMed
PubMed Central
Google Scholar
Todd RB, Zhou M, Ohm RA, Leeggangers HACF, Visser L, de Vries RP. Prevalence of transcription factors in ascomycete and basidiomycete fungi. BMC Genomics. 2014;15:214.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goulet KM, Saville BJ. Carbon acquisition and metabolism changes during fungal biotrophic plant pathogenesis: insights from Ustilago maydis. Can J Plant Pathol. 2017;39:247–66.
Article
CAS
Google Scholar
Mello-de-Sousa TM, Gorsche R, Rassinger A, Pocas-Fonseca MJ, Mach RL, Mach-Aigner AR. A truncated form of the carbon catabolite repressor 1 increases cellulase production in Trichoderma reesei. Biotechnol Biofuels. 2014;7:129.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mach RL, Strauss J, Zeilinger S, Schindler M, Kubicek CP. Carbon catabolite repression of xylanase I (xyn1) gene expression in Trichoderma reesei. Mol Microbiol. 1996;21:1273–81.
Article
CAS
PubMed
Google Scholar
Ronne H. Glucose repression in fungi. Trends Genet. 1995;11:12–7.
Article
CAS
PubMed
Google Scholar
Xiong Y, Sun J, Glass NL. VIB1, a link between glucose signaling and carbon catabolite repression, is essential for plant cell wall degradation by Neurospora crassa. PLoS Genet. 2014;10:e1004500.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ruijter GJG, Visser J. Carbon repression in Aspergilli. FEMS Microbiol Lett. 1997;151:103–14.
Article
CAS
PubMed
Google Scholar
Bouws H, Wattenberg A, Zorn H. Fungal secretomes—nature’s toolbox for white biotechnology. Appl Microbiol Biotechnol. 2008;80:381–8.
Article
CAS
PubMed
Google Scholar
Xiao Q, Ma F, Li Y, Yu H, Li C, Zhang X. Differential proteomic profiles of Pleurotus ostreatus in response to lignocellulosic components provide insights into divergent adaptive mechanisms. Front Microbiol. 2017;8:480.
PubMed
PubMed Central
Google Scholar
Gaskell J, Blanchette RA, Stewart PE, BonDurant SS, Adams M, Sabat G, et al. Transcriptome and secretome analyses of the wood decay fungus Wolfiporia cocos support alternative mechanisms of lignocellulose conversion. Appl Environ Microbiol. 2016;82:3979–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miyauchi S, Navarro D, Grisel S, Chevret D, Berrin JG, Rosso MN. The integrative omics of white-rot fungus Pycnoporus coccineus reveals co-regulated CAZymes for orchestrated lignocellulose breakdown. PLoS ONE. 2017;12:e0175528.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vanden Wymelenberg A, Gaskell J, Mozuch M, Sabat G, Ralph J, Skyba O, et al. Comparative transcriptome and secretome analysis of wood decay fungi Postia placenta and Phanerochaete chrysosporium. Appl Environ Microbiol. 2010;76:3599–610.
Article
CAS
Google Scholar
Fernández-Fueyo E, Ruiz-Dueñas FJ, López-Lucendo MF, Pérez-Boada M, Rencoret J, Gutiérrez A, et al. A secretomic view of woody and nonwoody lignocellulose degradation by Pleurotus ostreatus. Biotechnol Biofuels. 2016;9:49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Coradetti ST, Craig JP, Xiong Y, Shock T, Tian C, Glass NL. Conserved and essential transcription factors for cellulase gene expression in ascomycete fungi. Proc Natl Acad Sci. 2012;109:7397–402.
Article
PubMed
PubMed Central
Google Scholar
Znameroski EA, Coradetti ST, Roche CM, Tsai JC, Iavarone AT, Cate JHD, et al. Induction of lignocellulose-degrading enzymes in Neurospora crassa by cellodextrins. Proc Natl Acad Sci. 2012;109:6012–7.
Article
PubMed
PubMed Central
Google Scholar
Stricker AR, Mach RL, de Graaff LH. Regulation of transcription of cellulases- and hemicellulases-encoding genes in Aspergillus niger and Hypocrea jecorina (Trichoderma reesei). Appl Microbiol Biotechnol. 2008;78:211–20.
Article
CAS
PubMed
Google Scholar
Kunitake E, Tani S, Sumitani JI, Kawaguchi T. A novel transcriptional regulator, ClbR, controls the cellobiose- and cellulose-responsive induction of cellulase and xylanase genes regulated by two distinct signaling pathways in Aspergillus aculeatus. Appl Microbiol Biotechnol. 2013;97:2017–28.
Article
CAS
PubMed
Google Scholar
Yoav S, Barak Y, Shamshoum M, Borovok I, Lamed R, Dassa B, et al. How does cellulosome composition influence deconstruction of lignocellulosic substrates in Clostridium (Ruminiclostridium) thermocellum DSM 1313? Biotechnol Biofuels. 2017;10:222.
Article
PubMed
PubMed Central
Google Scholar
Liu D, Li J, Zhao S, Zhang R, Wang M, Miao Y, et al. Secretome diversity and quantitative analysis of cellulolytic Aspergillus fumigatus Z5 in the presence of different carbon sources. Biotechnol Biofuels. 2013;6:149.
Article
CAS
PubMed
PubMed Central
Google Scholar
Suzuki H, Igarashi K, Samejima M. Cellotriose and cellotetraose as inducers of the genes encoding cellobiohydrolases in the basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol. 2010;76:6164–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carlsen M, Nielsen J. Influence of carbon source on α-amylase production by Aspergillus oryzae. Appl Microbiol Biotechnol. 2001;57:346–9.
Article
CAS
PubMed
Google Scholar
Antoniêto AC, dos Santos Castro L, Silva-Rocha R, Persinoti GF, Silva RN. Defining the genome-wide role of CRE1 during carbon catabolite repression in Trichoderma reesei using RNA-Seq analysis. Fungal Genet Biol. 2014;73:93–103.
Article
CAS
PubMed
Google Scholar
Larraya LM, Perez G, Penas Maria M, Baars JJP, Mikosch TSP, Pisabarro AG, et al. Molecular karyotype of the white rot fungus Pleurotus ostreatus. Appl Environ Microbiol. 1999;65:3413–7.
CAS
PubMed
PubMed Central
Google Scholar
Salame TM, Knop D, Tal D, Levinson D, Yarden O, Hadar Y. Predominance of a versatile-peroxidase-encoding gene, mnp4, as demonstrated by gene replacement via a gene targeting system for Pleurotus ostreatus. Appl Environ Microbiol. 2012;78:5341–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Irie T, Honda Y, Watanabe T, Kuwahara M. Efficient transformation of filamentous fungus Pleurotus ostreatus using single-strand carrier DNA. Appl Microbiol Biotechnol. 2001;55:563–5.
Article
CAS
PubMed
Google Scholar
Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual. 2nd ed. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 1989.
Google Scholar
Schmoll M, Tian C, Sun J, Tisch D, Glass NL. Unravelling the molecular basis for light modulated cellulase gene expression—the role of photoreceptors in Neurospora crassa. BMC Genomics. 2012;13:127.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salame TM, Knop D, Levinson D, Yarden O, Hadar Y. Redundancy among manganese peroxidases in Pleurotus ostreatus. Appl Environ Microbiol. 2013;79:2405–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu JH, Hamari Z, Han KH, Seo JA, Reyes-Domínguez Y, Scazzocchio C. Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet Biol. 2004;11:973–81.
Article
CAS
Google Scholar
Honda Y, Matsuyama T, Irie T, Watanabe T, Kuwahara M. Carboxin resistance transformation of the homobasidiomycete fungus Pleurotus ostreatus. Curr Genet. 2000;37:209–12.
Article
CAS
PubMed
Google Scholar
Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Biochem. 1959;31:426–8.
CAS
Google Scholar
Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26:1367–72.
Article
CAS
PubMed
Google Scholar
Choi H, Ghosh D, Nesvizhskii AI. Statistical validation of peptide identifications in large-scale proteomics using the target-decoy database search strategy and flexible mixture modeling. J Proteome Res. 2007;7:286–92.
Article
CAS
PubMed
Google Scholar
Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M. Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res. 2011;10:1794–805.
Article
CAS
PubMed
Google Scholar
Deutsch EW, Csordas A, Sun Z, Jarnuczak A, Perez-Riverol Y, Ternent T, et al. The ProteomeXchange consortium in 2017: supporting the cultural change in proteomics public data deposition. Nucleic Acids Res. 2017;45:D1100–6.
Article
CAS
PubMed
Google Scholar
Kerem Z, Friesem D, Hadar Y. Lignocellulose degradation during solid-state fermentation: Pleurotus ostreatus versus Phanerochaete chrysosporium. Appl Environ Microbiol. 1992;58:1121–7.
CAS
PubMed
PubMed Central
Google Scholar
Ehrman T. Standard method for determination of total solids in biomass. Golden: Laboratory Analytical Procedure LAP-001, National Renewable Energy Laboratory (NREL); 1994.
Google Scholar
Templeton D, Ehrman T. Determination of acid-insoluble lignin in biomass. Golden: Laboratory Analytic Procedure LAP-003, National Renewable Energy Laboratory (NREL); 1995.
Google Scholar
Ruiz R, Ehrman T. Determination of carbohydrates in biomass by high performance liquid chromatography. Golden: Laboratory Analytical Procedure LAP-002, National Renewable Energy Laboratory (NREL); 1996.
Google Scholar