Flores R, Rice C, Stricker G, Warden A, Ellis M. Methanogenic pathways of coal-bed gas in the Powder River Basin, United States: the geologic factor. Int J Coal Geol. 2008;76(1):52–75.
Article
CAS
Google Scholar
Papendick S, Downs K, Vo K, Hamilton S, Dawson G, Golding SD, Gilcrease P. Biogenic methane potential for Surat Basin, Queensland coal seams. Int J Coal Geol. 2011;88(2):123–34.
Article
CAS
Google Scholar
Scott AR, Kaiser WR, Ayers B. Thermogenic and secondary biogenic gases, San Juan Basin, Colorado and New Mexico-implications for coalbed gas producibility. Am Assoc Pet Geol Bull. 1994;78(8):1186–209.
CAS
Google Scholar
Plá H. Significance of microbial activity in Australian coal bed methane reservoirs—a review. Bull Can Petrol Geol. 2006;54(3):261–72.
Article
Google Scholar
Shimizu S, Akiyama M, Naganuma T, Fujioka M, Nako M, Ishijima Y. Molecular characterization of microbial communities in deep coal seam groundwater of northern Japan. Geobiology. 2007;5(4):423–33.
Article
CAS
Google Scholar
Xiao D, Peng S, Wang B, Yan X. Anthracite bio-degradation by methanogenic consortia in Qinshui basin. Int J Coal Geol. 2013;116–117(5):46–52. https://doi.org/10.1016/j.coal.2013.06.008.
Article
CAS
Google Scholar
Rice D. Generation, accumulation and resource potential of biogenic gas. AAPG Bull. 1981;65(1):5–25.
CAS
Google Scholar
Schoell M. The hydrogen and carbon isotopic composition of methane from natural gases of various origins. Geochim Cosmochim Acta. 1980;44(5):649–61.
Article
CAS
Google Scholar
Weimer P, Zeikus J. One carbon metabolism in methanogenic bacteria. Cellular characterization and growth of Methanosarcina barkeri. Arch Microbiol. 1978;119(1):49.
Article
CAS
PubMed
Google Scholar
Conrad R, Bak F, Seitz H, Thebrath B, Mayer H, Schütz H. Hydrogen turnover by psychrotrophic homoacetogenic and mesophilic methanogenic bacteria in anoxic paddy soil and lake sediment. FEMS Microbiol Lett. 1989;62(5):285–93.
Article
CAS
Google Scholar
Whiticar M. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol. 1999;161(1–3):291–314.
Article
CAS
Google Scholar
Lee W, Chua A, Yeoh H, Ngoh G. A review of the production and applications of waste-derived volatile fatty acids. Chem Eng J. 2014;235(1):83–99.
Article
CAS
Google Scholar
Silva D, Cantão E, Mezzari P, Ma J, Nossa W. Assessment of bacterial and archaeal community structure in swine wastewater treatment processes. Microb Ecol. 2015;70(1):77–87.
Article
PubMed
Google Scholar
Scott C. Contribution of anaerobic energy expenditure to whole body thermogenesis. Nutr. Metab. 2005;2(1):1–9.
Article
CAS
Google Scholar
Lindeboom F, Shin G, Weijma J, Lier V, Plugge M. Piezo-tolerant natural gas-producing microbes under accumulating pCO2. Biotechnol Biofuels. 2016;9(1):236.
Article
CAS
PubMed
PubMed Central
Google Scholar
Agler M, Spirito C, Usack J, Werner J, Angenent L. Chain elongation with reactor microbiomes: upgrading dilute ethanol to medium-chain carboxylates. Energy Environ Sci. 2012;5(8):8189–92.
Article
CAS
Google Scholar
Zhou M, Zhou J, Tan M, Zhang Y, Du J, Yan B, Wong J. Enhanced carboxylic acids production by decreasing hydrogen partial pressure during acidogenic fermentation of glucose. Bioresour Technol. 2017;245(Pt A):44–51. https://doi.org/10.1016/j.biortech.2017.08.152.
Article
CAS
PubMed
Google Scholar
Yao C, Liu H, Luo X, Yue J, Li S, Chen D. Mechanism and microbial community analysis of anaerobic acid production (VFAs) by low carbon sludge in South China at alkaline condition[J]. Ciesc J. 2016;67(4):1565–71.
CAS
Google Scholar
Davis J, Lu S, Barnhart P, Parker E, Fields W, Gerlach R. Type and amount of organic amendments affect enhanced biogenic methane production from coal and microbial community structure. Fuel. 2018;211:600–8.
Article
CAS
Google Scholar
Park S, Liang Y. Biogenic methane production from coal: a review on recent research and development on microbially enhanced coalbed methane (MECBM). Fuel. 2016;166:258–67.
Article
CAS
Google Scholar
Gupta P, Gupta A. Biogas production from coal via anaerobic fermentation. Fuel. 2014;118(1):238–42.
Article
CAS
Google Scholar
Wang H, Lin H, Dong Y, Sui M, Li Y. Experiments on the gas production of brown coal degraded by exogenous methanogens. Pet Explor Dev. 2012;39(6):813–7.
Article
CAS
Google Scholar
Huber J, Mark D, Morrison H, Huse S, Neal P, Butterfiled D, Sogin M. Microbial population structures in the deep marine biosphere. Science. 2007;318(5847):97.
Article
CAS
PubMed
Google Scholar
Cao R, Zhao L, Sun H, Liu Q. Characterization of microbial community in high-pressure treated oysters by high-throughput sequencing technology. Innov Food Sci Emerg Technol. 2018;45:241–8.
Article
CAS
Google Scholar
Sogin M, Morrison H, Huber J, Welch D, Huse S, Neal P, Arrieta J, Herndl G. Microbial diversity in the deep sea and the underexplored “rare biosphere”. PNAS. 2006;103(32):12115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hua G, Cheng Y, Kong J, Li M, Zhao Z. High-throughput sequencing analysis of bacterial community spatiotemporal distribution in response to clogging in vertical flow constructed wetlands. Bioresour Technol. 2017;248:104–12.
Article
CAS
PubMed
Google Scholar
Strąpoć D, Mastalerz M, Eble C, Schimmelmann A. Characterization of the origin of coalbed gases in southeastern Illinois Basin by compound-specific carbon and hydrogen stable isotope ratios. Org Geochem. 2007;38(2):267–87.
Article
CAS
Google Scholar
Midgley D, Hendry P, Pinetown K, Fuentes D, Gong S, Mitchell D, Faiz M. Characterisation of a microbial community associated with a deep, coal seam methane reservoir in the Gippsland Basin, Australia. Int J Coal Geol. 2010;82(3–4):232–9.
Article
CAS
Google Scholar
Guo H, Yu Z, Liu R, Zhang H, Zhong Q, Xiong Z. Methylotrophic methanogenesis governs the biogenic coal bed methane formation in Eastern Ordos Basin, China. Appl Microbiol Biotechnol. 2012;96(6):1587.
Article
CAS
PubMed
Google Scholar
Tang Y, Ji P, Lai G, Chi C, Liu Z, Wu X. Diverse microbial community from the coalbeds of the Ordos Basin, China. Int J Coal Geol. 2012;s90–91(1):21–33. https://doi.org/10.1016/j.coal.2011.09.009.
Article
CAS
Google Scholar
Wang X, Hu X, Deng K, Cheng X, Wei J, Jiang M, Wang X, Chen T. High-throughput sequencing of microbial diversity in implant-associated infection. Infect Genet Evol. 2016;43:307–11.
Article
CAS
PubMed
Google Scholar
Stach EM, Mackowsky TM, Teichmuller M, Taylor GH, Chandra D, Teichmuller R. Stach’s textbook of coal petrology. Berlin: Gebruder Bwnfraeger Sfuftgarf; 1982.
Google Scholar
Wang X, Min X, Li J, Zhang Y. Rate-limiting of hydrogen-producing acetogenesis to anaerobic digestion compared with methanogenesis. China Environ Sci. 2016;36(10):2997–3002.
Google Scholar
Winderl C, Penning H, Netzer F, Meckenstock R, Lueders T. DNA-SIP identifies sulfate-reducing Clostridia as important toluene degraders in tar-oil-contaminated aquifer sediment. ISME J. 2010;4(10):1314.
Article
PubMed
Google Scholar
Cheng C, Chang J. Hydrolysis of lignocellulosic feedstock by novel cellulases originating from Pseudomonas sp. CL3 for fermentative hydrogen production. Bioresour Technol. 2011;102(18):8628.
Article
CAS
PubMed
Google Scholar
Vijayalaxmi S, Anu A, Jayalakshmi S, Mulimani V, Sreeramulu K. Production of bioethanol from fermented sugars of sugarcane bagasse produced by lignocellulolytic enzymes of Exiguobacterium sp. VSG-1. Appl Biochem Biotechnol. 2013;171(1):246–60.
Article
CAS
PubMed
Google Scholar
Wu Y, Hao Y, Wei X, Shen Q, Ding X, Wang L, Zhao H, Lu Y. Impairment of NADH dehydrogenase and regulation of anaerobic metabolism by the small RNA RyhB and NadE for improved biohydrogen production in Enterobacter aerogenes. Biotechnol Biofuels. 2017;10(1):248.
Article
PubMed
PubMed Central
Google Scholar
Chen S, Dong X. Acetanaerobacterium elongatum gen. nov. sp. nov. from paper mill waste water. Int J Syst Evol Microbiol. 2004;54(Pt 6):2257.
Article
CAS
PubMed
Google Scholar
Kannisto M, Mangayil R, Shrivastavabhattacharya A, Pletschke B, Karp M, Santala V. Metabolic engineering of Acinetobacter baylyi ADP1 for removal of Clostridium butyricum growth inhibitors produced from lignocellulosic hydrolysates. Biotechnol Biofuels. 2015;8(1):198.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar V, Park S. Potential and limitations of Klebsiella pneumoniae as a microbial cell factory utilizing glycerol as the carbon source. Biotechnol Adv. 2017. https://doi.org/10.1016/j.biotechadv.2017.10.004.
Article
PubMed
Google Scholar
Jiménez D, Dini-Andreote F, Elsas J. Metataxonomic profiling and prediction of functional behaviour of wheat straw degrading microbial consortia. Biotechnol Biofuels. 2014;7(1):92.
Article
PubMed
PubMed Central
Google Scholar
Chen S, Niu L, Zhang Y. Saccharofermentans acetigenes gen. nov. sp. nov. an anaerobic bacterium isolated from sludge treating brewery wastewater. Int J Syst Evol Microbiol. 2010;60(12):2735–8.
Article
CAS
PubMed
Google Scholar
Zhilina TN, Kevbrin VV, Turova TP, Lysenko AM, Kostrikina NA, Zavarzin GA. Clostridium alkalicellum sp. nov. an obligately alkaliphilic cellulolytic bacterium from a soda lake in the Baikal Region. Microbiology. 2005;74(5):642–53.
Article
CAS
PubMed
Google Scholar
Hamilton C, Calusinska M, Baptiste S, Masset J, Beckers L, Thonart P, Hiligsmann S. Effect of the nitrogen source on the hydrogen production metabolism and hydrogenases of Clostridium butyricum, CWBI1009. Int J Hydrogen Energy. 2018;43:5451–62.
Article
CAS
Google Scholar
Weissenfels W, Beyer M, Klein J. Degradation of phenanthrene, fluorene and fluoranthene by pure bacterial cultures. Appl Microbiol Biotechnol. 1990;32(4):479–84.
Article
CAS
PubMed
Google Scholar
Kämpfer P, Schulze R, Jäckel U, Malik K, Amann R, Spring S. Hydrogenophaga defluvii sp. nov. and Hydrogenophaga atypica sp. nov. isolated from activated sludge. Int J Syst Evol Microbiol. 2005;55(Pt 1):341.
Article
CAS
PubMed
Google Scholar
Neal A, Techkarnjanaruk S, Dohnalkova A, Mccready D, Peyton B, Geesey G. Iron sulfides and sulfur species produced at hematite surfaces in the presence of sulfate-reducing bacteria. Geochim Cosmochim Acta. 2001;65(2):223–35.
Article
CAS
Google Scholar
Lovley D, Chapelle F. Deep subsurface microbial processes. Rev Geophys. 1995;33(3):365–81.
Article
Google Scholar
Zhang G, Ren S, Xu M, Zeng G, Luo H, Chen J, Tan Z, Sun G. Rhizobium borbori sp. nov. aniline-degrading bacteria isolated from activated sludge. Int J Syst Evol Microbiol. 2011;61(4):816–22.
Article
CAS
PubMed
Google Scholar
Costa KC, Leigh JA. Metabolic versatility in methanogens. Curr Opin Biotechnol. 2014;29(1):70.
Article
CAS
PubMed
Google Scholar
Zabranska J, Pokorna D. Bioconversion of carbon dioxide to methane using hydrogen and hydrogenotrophic methanogens. Biotechnol Adv. 2017. https://doi.org/10.1016/j.biotechadv.2017.12.003.
Article
PubMed
Google Scholar
Tian H, Fotidis I, Kissas K, Angelidaki I. Effect of different ammonia sources on aceticlastic and hydrogenotrophic methanogens. Bioresour Technol. 2017;250:390.
Article
CAS
PubMed
Google Scholar
Pobeheim H, Munk B, Lindorfer H, Guebitz GM. Impact of nickel and cobalt on biogas production and process stability during semi-continuous anaerobic fermentation of a model substrate for maize silage. Water Res. 2011;45:781–7. https://doi.org/10.1016/j.watres.2010.09.001.
Article
CAS
PubMed
Google Scholar
Biswas R, Zheng T, Olson DG, Lynd LR, Guss AMET. Elimination of hydrogenase active site assembly blocks H2, production and increases ethanol yield in Clostridium thermocellum. Biotechnol Biofuels. 2015;8(1):20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zinn T, Schnackenberg J, Haak D, Römer S, Schulz R, Senger H. Evidence for nickel in the soluble hydrogenase from the unicellular green alga Scenedesmus obliquus. Zeitschrift Für Naturforschung C. 1994;49(1–2):33.
Article
CAS
Google Scholar
Liu J, Vipulanandan C. Effects of Fe, Ni, and Fe/Ni metallic nanoparticles on power production and biosurfactant production from used vegetable oil in the anode chamber of a microbial fuel cell. Waste Manag. 2017;66:169–77.
Article
CAS
PubMed
Google Scholar
Kida K, Shigematsu T, Kijima J, Numaguchi M, Mochinaga Y, Abe N, Morimura S. Influence of Ni2+ and Co2+ on methanogenic activity and the amounts of coenzymes involved in methanogenesis. J Biosci Bioeng. 2001;91(6):590–5.
Article
CAS
PubMed
Google Scholar
Thauer R, Klein A, Hartmann G. Reactions with molecular hydrogen in microorganisms: evidence for a purely organic hydrogenation catalyst. Chem Rev. 1996;96(7):3031–42.
Article
CAS
PubMed
Google Scholar
Balucan RD, Turner LG, Steel KM. Acid-induced mineral alteration and its influence on the permeability and compressibility of coal. J Nat Gas Sci Eng. 2016;33:973–87.
Article
CAS
Google Scholar
Gao J, Xing H, Turner L, Steel K, Sedek M, Golding SD, Rudolph V. Pore-scale numerical investigation on chemical stimulation in coal and permeability enhancement for coal seam gas production. Transp Porous Media. 2017;116(1):335–51.
Article
CAS
Google Scholar
Oleszkiewicz J, Sharma V. Stimulation and inhibition of anaerobic processes by heavy metals—a review. Biol. Waste. 1990;31(1):45–67.
Article
CAS
Google Scholar
Zandvoort M, Hullebusch E, Fermoso F, Lens P. Trace metals in anaerobic granular sludge reactors: bioavailability and dosing strategies. Eng Life Sci. 2006;6(3):293–301.
Article
CAS
Google Scholar
Kalyuzhnyi S, Fedorovich V. Mathematical modelling of competition between sulphate reduction and methanogenesis in anaerobic reactors. Bioresour Technol. 1998;65(3):227–42.
Article
CAS
Google Scholar
Donnelly MI, Dagley S. Production of methanol from aromatic acids by Pseudomonas putida. J Bacteriol. 1980;142(3):916.
CAS
PubMed
PubMed Central
Google Scholar
Wang X, Lin D, Jing X, Zhu S, Yang J, Chen J. Complete genome sequence of the highly Mn(II) tolerant Staphylococcus, sp. AntiMn-1 isolated from deep-sea sediment in the Clarion-Clipperton Zone. J Biotechnol. 2018;266:34–8.
Article
CAS
PubMed
Google Scholar
Oremland R, Polcin S. Methanogenesis and sulfate reduction: competitive and noncompetitive substrates in estuarine sediments. Appl Environ Microbiol. 1982;44(6):1270–6.
CAS
PubMed
PubMed Central
Google Scholar
Teeling H, Fuchs B, Bennke C, Krüger K, Chafee M, Kappelmann L, Reintjes G, Waldmann J, Quast C, Glöckner F, Lucas J, Wichels A, Gerdts G, Wiltshire K, Amann R. Recurring patterns in bacterioplankton dynamics during coastal spring algae blooms. Elife. 2016;5:e11888.
Article
PubMed
PubMed Central
Google Scholar
Baker G, Smith J, Cowan D. Review and re-analysis of domain-specific 16S primers. J Microbiol Methods. 2003;55(3):541.
Article
CAS
PubMed
Google Scholar
Claesson MJ, O’Sullivan O, Wang Q, et al. Comparative analysis of pyrosequencing and a phylogenetic microarray for exploring microbial community structures in the human distal intestine. PLoS ONE. 2009;4(8):e6669.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. BMC Bioinf. 2011;27(6):863–4.
Article
CAS
Google Scholar
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26(19):2460.
Article
CAS
PubMed
Google Scholar
Wang Q, Garrity GM, Tiedje JM, Cole JR. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73(16):5261–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Horn DJ, Weber CF. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75(23):7537–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Thurber RV, Knight R, Beiko RG, Huttenhower CET. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol. 2013;31(9):814–21.
Article
CAS
PubMed
PubMed Central
Google Scholar